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Chapter 1Introdution
The rising era of synopti imaging surveys has opened the exiting hapter oftime-domain astrophysis: one of the fastest growing areas of astrophysialresearh. A number of important phenomena an, in fat, be studied onlyin this domain, while new and previously unknown phenomena expet to bedisovered. The purpose of this thesis is the lassi�ation of astrophysialtransients in synopti surveys, using data mining tehniques and methods.The exploration of the temporal domain in searh of variable objets andtransients has known a onstant expansion during the last few years, im-pating on all branhes of astrophysial researh. With the term variablewe refer to sky objets whose luminosity presents a more or less aentuatevariation in time. As we shall see in what follows, the understanding of theunderlying physial mehanisms responsible for the variability represents aruial aspet in explaining a great variety of phenomena, from Supernovae(SN), to variable stars and Ative Galati Nulei (AGN), inluding some ofthe most energeti events in the Universe, and the produed data volumeshave begun to overome what is possible to visually inspet even for largeteams of astronomers, and also rowds of "itizen sientists" are not su�-ient to the task. So, an inreasingly entral role of software and hardwareframeworks is needed in order to supply the traditional roles of humans inthe real-time loop. In this not so futuristi senario, data need to be au-tomatially transported, proessed, alibrated, and ingested into databaseswithout human intervention.Eah step of suh data �ow presents many hallenges: from the disovery tothe detetion, to lassi�ation and, possibly, to the automati setup of follow-ups for the most interesting and peuliar variable objets. This requires toemploy signi�ant resoures, in partiular for what onerns the observingtime and the tehnologies used. This will beome even more ogent in thenear future when a new generation of instruments (suh as LSST - Large Syn-7



8 1. Introdutionopti Survey Telesope1, SKA - Square Kilometer Array2, et.) will produean inreasingly large amounts of omplex data every night. For these instru-ments a massive appliation of intelligent and automati multi-disiplinarymethods, enlosed under the umbrella of Astroinformatis (that an be on-sidered as a new sienti� matter, standing in the more general family alledX-informatis), will be an absolute must and in fat, Astroinformatis inpartiular and X-informatis in general, on�gure as the "fourth paradigm"of sienti� researh (the others are experimentation, theory and simulation- [27℄). In other words, Information Tehnologies (IT), Data Mining (DM)and Mahine Learning (ML) methods need to beome an indispensable partof the game.A entral role, in this sense, has been aquired by the Virtual Observatoryinfrastruture. It is a projet that has the aim to reate a new way to on-strut astrophysial researh. It is developed in an international frameworkfrom national researh agenies and expanded ollaborations. The majoraim of the projet is to make possible to researhers and students a simpleaess to data arhives, resoures and appliations through the web. Pro-grams that are needed for data analysis are available in pre-ompiled pakets(for example viewing instruments, statistial analysis, regression and all thatan be useful to extrat knowledge from astronomi data). Therefore, theVirtual Observatory is the result of onvergene of researh interests andinformatis and information tehnologies.The appliation of these methodologies to the disovery and lassi�ation oftransients (whih is the main target of the present work) an be approahedfrom two di�erent points of view: (i) online treatment of data and (ii) o�inedata analysis. In fat, in some ases it is important to quikly reognize thetransient andidates and to perform a rapid follow-up almost in real time,while, in other ases, o�ine proessing may be required to ahieve a deeperunderstanding of the data.In this work we shall fous on o�ine lassi�ation of variable objets, makinguse of mahine learning approahes, in partiular the MLPQNA method([9℄ - [8℄), and analyzing alternative ones like the random forest method([21℄ - [20℄ - [42℄). We will use intensively some statistial methods like theLomb-Sargle [39℄, and we shall make extensive use of the Calteh TimeSeries Charaterization Servie, a web servie devoted to the derivation ofphotometri features assoiated with light urves. Most of the work willbe performed using the DAMEWARE (Data Mining & Exploration WebAppliation REsoure) infrastruture. The �nal purpose is to perform astep for a more preise lassi�ation based on several methods that in thenext future will allow a fully automatized lassi�ation of variable objetsand transients. In this way, as it has been said before, it shall be possible to1http://www.lsst.org/lsst/2https://www.skatelesope.org/



1.1 Time Domain Astronomy: the past 9reah a better omprehension of the known phenomena and to disover newones yet unknown.1.1 Time Domain Astronomy: the pastSine the early days, time domain astronomy (hereafter TDA) has enor-mously grown, inluding all wavelength ranges and many di�erent parts ofastrophysis. In fat, in the history of Astronomy, studies of transient phe-nomena have always played a key role. In this paragraph we shall outlinejust a few among the most relevant fats that helped to develop modernTDA. First of all let us introdue the distintion between photometri andastrometri transients.It is known that astrometry is the branh of Astronomy that involves preisemeasurements of positions and movements of stars and other elestial bod-ies. Photometry, instead, onerns with measuring the �ux, or intensity ofan astronomial objet eletromagneti radiation, partiularly refering overdi�erent wavelength bands of radiation. Therefore, we an de�ne astro-metri transients those objets whose variability is due to hanges in theirpositions on the sky. This is the ase, for example, of asteroids, omets, et.Conversely, photometri transients an be de�ned as those objets whosevariability is due to variations in the luminosity of the objet aused eitherby intrinsi or extrinsi phenomena. To the �rst family belong objets inwhih the variability is aused by physial variations in its struture whihmodify also the luminosity �ux. It ould be the ase of supernovae, AGN,atalismi variables, and so on. Extrinsi variables are instead objets wherethe variability is indued by other phenomena, suh as for instane elipsingvariables.Modern Astrophysis was born with the �rst systemati study of a transient.In fat, in 1782 the English amateur astronomer John Goodrike observedthe variable star Algol (Beta Persei). We have to reall that, in the anientera, the stati sidereal universe was outside sienti� investigation, beauseit was onsidered unhangeable. Goodrike notied the strange variabilityof Algol3 and proposed several mehanisms to explain it, as the presene ofshape e�ets (non spherial simmetry) or the passage of a dark body in frontof the star. This fat brought to the attention of the sienti� ommunitythe variability of the universe and we an say that it gave life for the �rsttime to Astrophysis, as a disipline that studies the physial mehanismsand the auses of astronomial phenomena.Meanwhile, in 1774 Charles Messier had published the Catalogue des Neb-uleuses et des Amas d'Etoiles nowadays known as theMessier Catalog, whih3We wish to stress that Algol is a quite bright objet learly visible by naked eye andpresents a strong variability. The fat that none before Goodrike seems to have expliitlynoted the phenomenon tells a lot about the strenght of the Aristoteli dogma.



10 1. Introdutionan be onsidered as an involuntary by-produt of transient astronomy. Infat, he was a "omet hunter" and he ompiled his atalog of nebulae withthe aim to better disentangle new omets (astrometri transients) from neb-ulae (stationary objets).At the beginning of the 20th entury, Henrietta Swan Levitt, one of thehuman omputers hired by Edward Charles Pikering at the Harvard Col-lege Observatory, by studying variable stars, disovered the Cepheid Period-Luminosity relation. This onstituted a key result whih enabled the mea-surement of galati distanes. We will return on this fundamental disoveryin the following.In 1936 Fritz Zwiky and Walter Baade had aess to what we now on-sider the �rst example of dediated hardware for transient astronomy: the
18” Shmidt Telesope at the Palomar Observatory (Fig. 1.1). Using thisinstrument, Zwiky began to workout the �rst supernovae surveys, and to-gether with Baade, they oined the term "supernova" itself, onsidered astransitions from normal stars into neutron stars [1℄. So they started huntingfor supernovae, founding a total of 120 objets. Moreover, Baade proposedthe use of supernovae as standard andles, to estimate distane in spae. Theinstrument was also used to disover nearly 50 omets, the most famous ofwhih was the Shoemaker-Levy 9 omet, disovered in 1993, whih ollidedwith Jupiter in 1994.In more reent years the Calan/Tololo Survey was performed, a supernovasurvey ran from 1989 to 1995 at the University of Chile and the Cerro TololoInter-Amerian Observatory to measure a Hubble diagram out to redshifts of0.1. It led to the disovery of 32 Ia supernovae, whih were used as auratestandard andles for measuring distanes, bringing to preise measurementsof the Hubble Constant H0 and to the evidene of the aelerated expansionof the Universe and the hypothesis of the presene of dark energy or of aosmologial onstant dominating the mass/energy of the Universe itself.Modern transient surveys an o�er information only on phenomena whihvary signi�antly on time sales between 1 days and ≈ 10 years (ideal forsupernovae, but a large portion of the Universe operates at a muh slowerrate, so we ould strongly expand our knowledge if we ould extend the timerange of our available data) the so alled DASCH projet (Digital Aess to aSky Century � Harvard) was performed. The aim of this quest is to digitizeover 100 years of historial photographi plates at Harvard [24℄.Harvard College Observatory was founded in 1839 and soon moved to theforefront of astronomy researh, housing the 15-inh "Great Refrator",whih resulted to be the largest telesope in the U.S. between 1847 and1867. In the late 1800s, the observatory began imaging large portions ofthe sky with telesopes positioned all around the world, and these photo-graphi plates were examined by the already mentioned human omputersas we previously said when we spoke about the period-luminosity relationfor Cepheid. So, Harvard's olletion of photographi plates ontinued to
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Figure 1.1: The 18" Shmidt telesope at the Palomar Observatory.grow until the early 1990s, i.e. until when most telesopes had replaed pho-tographi plates with CCDs. Nowadays the arhive ontains about 500.000photographi plates, obtained between 1885 and 1993, overing, with dif-ferent frequeny and sampling, the entire sky. Most loations were imagedfrom hundreds to thousands of times in a 100 year window. Therefore, theprojet mainly onsists in digitizing the plates, deteting soures and mea-suring their magnitudes, and �nally produing the 100-year light urve forevery objet. The 100-year temporal overage, ompared with < 10 years ofoverage by PTF (Palomar Transient Fatory4) and CRTS (Catalina Real-Time Transient Survey5) and the several epohs of SDSS (Sloan Digital SkySurvey6), and many other surveys, will enable new studies of long-time salephenomena, as it an be seen by the omparison in Fig. 1.2.The overall onlusion is that by expanding TDA surveys to time-sales thatare 1 o 2 orders of magnitude longer than those reahed by urrent or plannedmodern surveys, a range of fundamental lasses of objets an be studied asindividual objets in well-de�ned samples7.4http://www.ptf.alteh.edu/iptf5http://rts.alteh.edu/6http://www.sdss.org/7One of the purposes is to reate a historial knowledge (Historial TDA), taking a stepbak and looking to the past, also in the optis of the inoming new projets previouslypresented. This also gives the idea of the always inreasing interest of the astronomialommunity in the wide �eld of TDA.
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Figure 1.2: Representative lasses of variables and transients vs their reur-rene time that an be measured for a omplete sample with DASCH (right)vs PTF, CRTS, Pan-STARRS-1 and LSST (dashed box, left) or jointly (over-lap region).1.2 Time Domain Astronomy: the presentTDA is opening a totally new disovery spae, extending to the time axisthe Observable Parameter Spae (or OPS). In general the parameter spaeis de�ned as the set of all possible ombinations of values for all the di�erentparameters ontained in a partiular mathematial or physial model. Sodi�erent on�gurations of the parameters spae produe di�erent behaviorsof the model. In astrophysis, the set of the parameters is usually obtainedfrom photometri or spetrosopi observables, and from statistial patterns.It is known from the history of siene and from literature that every timea tehnology enables us to open a new portion of the OPS, new types of ob-jets and phenomena are usually disovered. Therefore, adding the temporaldimension to the parameter spae has allowed and will allow the disovery ofnew phenomena and a better haraterization of the old ones, with a majoromprehension of some physial phenomena (Fig. 1.3).At the present time, the overall desription that emerges is the one depitedby the semanti tree of Fig. 1.4, from whih a �rst lassi�ation of vari-able objets in extrinsi and intrinsi ones an be dedued, as previouslyexplained. As we shall see in more details in the next hapter, extrinsiobjets an be asteroids or elipsed, mirolensed and rotating stars, whileintrinsi objets are eruptive, atalysmi, pulsating and seular stars, orAGN.
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Figure 1.3: The plot, from Harwit [25℄, shows how our knowledge of theparameter spae has inreased trough the years, both in wavelength and timeresolution of the phenomena. It is interesting to notie that new phenomena(marked with di�erent symbols) are always at the edges of the olored ar-eas, making lear that they were a result of a new tehnology, opening newwindows in the OPS.Therefore, TDA allows to takle a broad range of di�erent physial phenom-ena. In fat, we have to onsider that some phenomena an be studied onlyin the time domain, for example various osmi explosions, aretion and rel-ativisti phenomena. We an safely state that TDA regards essentially every�eld of astronomy, from the Solar System to osmology, and from stellarstruture and evolution to extreme relativisti phenomena.It is needed to emphasize that the data and event disovery rates are expetedto inrease dramatially, from 0.1 TB and ≈ 10−102 events per night now, to
30 TB and 105−107events per night in the LSST era, and that the availablefollow-up failities would be simply overwhelmed, and will result absolutelyunable to reat to all potentially interesting events. The traditional manualapproah will simply not sale to the next generation of surveys, espeiallyif we are interested in �nding the rarer transients. So, the main hallengeis to ahieve the dynamial, real-time haraterization and lassi�ation oftransient events, and the subsequent optimal deision for their follow-up.In Fig. 1.5 it is possible to see an example of how suh oordination works,for a single event whih was observed in the Crab Nebula. This episodeillustrates brilliantly how the availability of instruments that survey largeareas of the sky, ombined with the ability to proess the data in real time,has opened new perspetives in TDA.Moreover, not only eletromagneti signals are involved, if we onsider thatneutrino and osmi ray astronomy are ready to explode and gravitationalwave astronomy is at its �rst steps.The ommunity is growing toward this
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Figure 1.4: Semanti tree of astronomial variables and transients (seeEyer [23℄).
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Figure 1.5: Timetable of the Astronomer's Telegram releases on a CrabNebula �are in universal time, within 1 month after disovery on 22 Septem-ber 2010 (see [2℄).kind of "multimessenger astronomy". But now it is lear that the hugevolume of data to be searhed for transients and the multitude of possibledeisions to be taken will soon make it impossible to rely on human apabili-ties to rapidly ollet and disriminate time-ritial information. E�orts aretherefore being put into developing ommon standards for the implementa-tion of fully automated near real-time systems.The study of the presented phenomenology implies two di�erent operationalmodes:
• O�ine TDA: understanding of the variable universe from the hugeamounts of light urves produed by modern surveys and stored in thedigital arhives.
• Online TDA: deteting and haraterizing in real time photometritransients.
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Chapter 2Phenomenology of transientsIn this hapter we shall provide the reader with more details about the las-si�ation based on the semanti tree of Fig. 1.4, presented in the previoushapter and we shall furnish a desription of the main phenomena and phys-ial proess regarding the objets mainly involved in the development of thisthesis work.2.1 The semanti-tree based lassi�ationFirst of all one must say that it is possible to distinguish transients from sim-ple variable objets using the de�nition taken from CRTS: transient objetsare those whih show a magnitude variability of ∆m > 2 mag.Looking at the semanti tree (Fig. 1.4), the �rst obvious division is, asit was already said previously, between astrometri and extrinsi ones andphotometri or intrinsi ones. We reall that astrometri transients are thosephenomena that show a variability indued by variations of their position inthe sky with time, so it is not onneted to physial properties of the objets.Instead photometri transients onsist in those phenomena that owe theirvariability to a real hange of the luminosity of the objet itself, aused byintrinsi variations of its physial state and/or parameters.2.1.1 Astrometri and extrinsi transientsAstrometri and extrinsi transients an be then divided mainly in two at-egories.
• Asteroids: the auses of their extrinsi variability an be identi�ed inrotational or elipsing proesses.
• Elipsing, rotating and mirolensed stars: In an elipsing system astar an hange its brightness due to an asteroid oultation, to aplanetary transit or to the interation with another star. In the latter17



18 2. Phenomenology of transientsase we speak of Elipsing Binaries. These systems are formed byphysially bound stars, having an orbital plane whih lies near theline-of-sight of the observer. The omponents periodially elipse eahother, ausing a derease in the apparent brightness of the system,with the period of the elipse that an range from minutes to years.In partiular, the ase of planetary transit underlies for the searh ofextrasolar planets. This is one of the most ative and intriguing �eld ofthe modern astrophysial researh, and it is performed mainly with themethods of TDA. Rotating stars, instead, show small hanges in lightthat may be due to dark or bright spots on the stellar surfaes. Finally,mirolensing is a phenomenon due to the gravitational lens e�et, thatan be used to detet objets ranging from the mass of a planet tothe mass of a star, if obsured by another massive objets, as in theusual lensing phenomenon for galaxies. Mirolensing phenomena anbe monitored over time through the detetion of their light urves.2.1.2 Intrinsi transientsIntrinsi transients an again be divided in the two major sublasses.
• Variable stars: for what onern stars, we an onsider the subate-gories of eruptive, atalysmi and pulsating variables, depending onwhih phenomenon is at the origin of their variability, and stars dis-playing a seular evolution, whih are usually stars in the post-AGB(Asymptotial Giant Branh) of the H-R diagram (Hertzsprung-Russell[26℄ - [37℄). The entire work desribed in this thesis in entirely basedon intrinsi transients, so in the following paragraphs we will desribethese lasses in muh more detail.
• Galaxies: in the spei�, galaxies that show marked variability phe-nomena are lassi�ed as AGN (Ative Galati Nulei).Spei�ally, for what onern stars:
• Eruptive variables: these stars su�er very large variations in brightnessdue to violent proesses and �ares ourring in their hromospheresand oronae. The light hanges are often aompanied by shell eventsor mass out�ow in the form of stellar winds of variable intensity andby interation with the surrounding interstellar medium. We reall,as example of eruptive variables, the Wolf-Rayet and the R CoronaeBorealis stars. R Coronae Borealis variables are luminous, hydrogen-poor, arbon-rih, supergiant star whih spend most of their life timeat maximum light, oasionally fading even by nine magnitudes at ir-regular intervals. Wolf-Rayet stars are very luminous hot PopulationI stars with e�etive temperatures between 30000 and 50000 K. They



2.1 The semanti-tree based lassi�ation 19are haraterized by very high mass-loss rate (≈ 10−5 M⊙yr
−1). Theyshow light variations with amplitudes of several hundredths of a mag-nitude and time sales from milliseonds to years. Therefore, eruptivestars are substantially evolved stars that have left the main sequeneand are proeeding step by step towards the last phases of their life.

• Catalysmi variables: are usually lose binary systems in whih themost massive omponent is a white dwarf and the ompanion a mainsequene star. In most ases mass is transferred from the ompanionto the white dwarf through a surrounding aretion disk. This a-reted material feeds various types of phenomena, inluding oasionaleruptions and jets. Components of this lass of objets are:� Novae: these systems are onstituted by a white dwarf and amain-sequene low mass star that has �lled his Rohe lobe. Alassial nova an show an inrease of brightness from 7 to 15magnitude in a range of 1 to several hundred days.� Dwarf Novae: these systems are onstituted by a white dwarf anda red dwarf star ooler of our Sun. They experiene semi-regularoutbursts with a typial timesale ranging from weeks to yearsand a range of 4-5 magnitudes.� Symbioti Stars: these are interating binary systems omposedof an evolved red giant and a hot ompanion star that ould bea main sequene star, a white dwarf, or a neutron star. Mostsymbiotis have orbital periods of a few years while other orbitover several deades.But the most famous type of atalysmi variables of ourse remainthe Supernovae, to whih we shall dediate the next paragraph, due totheir importane in our work.
• Pulsating variables: stars haraterized by periodi variations of its lu-minosity. Stellar pulsations an be radial, if the expansion has spherialsymmetry, or non-radial, and in this ase the shapes of the stars an beasymmetrially distorted. Pulsations an our at various frequenies,with the lowest allowed frequeny alled fundamental mode, and thehigher frequenies alled overtones. For eah osillation mode, thesewaves have at least one node, where the matter remains steady, at theenter of the star and an antinode, where the veloity of the gases ismaximum, at the surfae.The prinipal ategories of pulsating stars are observed to lay in theso alled Instability Strip (see Fig. 2.3), a nearly vertial region of theH-R diagram, whih de�nes a range of luminosities, olors and periods,over whih pulsation is a stable mode for the star.



20 2. Phenomenology of transientsWe shall analyze the theory of pulsation in more detail in a subsequentparagraph.An important thing to be notied is that, in this shema, there are somepoints of ontat between the two great ategories of intrinsi and extrinsitransients. In fat, some types of stars that show eruptive phenomena, ouldhave also an extrinsi variability due to rotational e�ets.2.2 SupernovaeWith the term supernova it is intended the atastrophi explosion ourringin the last stages of the life of a massive star, whih is apable to ejet amass of ≈ 10− 100 M⊙, with veloities of about 0.01− 0.1 . The explosionommonly feeds the external environment and the interstellar medium withthe heavy elements that were produed in the interior of the star. The burstof radiation in a supernova often brie�y outshines the luminosity of the entirehost galaxy, before fading from view over several weeks or months.Supernovae are, without any doubt, among the most spetaular elestialobjets ever observed by humans and for sure one of the most energeti phe-nomena in the Universe. The oldest known supernova was the one observedin 185 AD. Supernovae in 386 and 393 AD are reorded only in Chinesereports with no preise information about their positions. The brightest Su-pernova ever seen was the one exploded in 1006 AD, whih reahed a visualmagnitude of -7.5 mag. It was desribed by observers in China, Egypt, Iraq,Japan, Switzerland. However, the most famous supernova is probably theone seen in 1054, whih produed an expanding shell of gas and dust todayknown as the Crab Nebula (see Fig. 2.1). This SN shone brighter thanVenus and remained visible for 23 days also during daylight. Another super-nova was observed in the 1181 AD by Chinese and Japanese astronomers inthe onstellation of Cassiopeia. In the same onstellation, another famoussupernova was observed by the Danish astronomer Tyho Brahe in the 1572AD, onstituting the basis for most of his suessive researh. Finally, thelast on�rmed supernova exploded in the Milky Way was the one observedby Kepler in 1604.For what onern the previous listed supernovae, all of them have left be-hind the so-alled Supernova remnants, and beause no supernova has beenobserved in our Galaxy during the telesopi era, everything we know aboutthese phenomena omes from these remnant and from supernovae in othergalaxies.The features of the optial spetra at maximum light and the harateristisof light urves de�ne the various ategories of supernovae. The �rst divi-sion was performed by R. Minkowski in 1941 [32℄, who de�ned two mainategories, type I and type II. The former di�er from the latter for the lakof hydrogen emission line, H, in type I. Type I Supernovae have then been
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Figure 2.1: The Crab Nebula resulting from the explosion of the Supernova1054. In its enter there is the so-alled Crab Pulsar, a neutron star of about10 km of diameter.subdivided in three further lasses: type Ia, Ib and I, depending on theirspetral harateristis. The �rst one shows the absorption line of the SiIIλ6355 (however we shall see next that Ia Supernovae are originated by aompletely di�erent proess). Ib show the absorption line of He Iλ5876 to-gether with Calium and Oxygen emission lines, while I do not show any ofthe previous absorption lines. Type II Supernovae are also divided in typeII-L (linear) and type II-P (plateau), depending from the shape of the result-ing light urve after the explosion, whih an respetively present a steadydeline or a slower deline followed by a normal deay.Type Ia Supernovae were found in all kind of galaxies, elliptials, spirals andirregulars, and this is an evidene of the fat that their progenitors must belong-lived stars, beause in elliptials there is no ongoing stellar formation.They show the presene of harateristi elements in their spetrum, suh asmagnesium, silion, sulphur, alium and iron. Type Ib, I and II instead,seem to explode respetively in stellar formation zones of the arms of spi-ral galaxies and in H II region of spiral diss or in irregular galaxies, thusindiating that their progenitors must be short-lived, hene massive, stars.2.2.1 Core Collapse SupernovaeAording to what has been said in the previous paragraph, we an nowunderstand that type Ib, I and II have a ommon origin as Core CollapseSupernovae, while type Ia must be onsidered as ompletely di�erent phe-
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Figure 2.2: Shell struture of the interior of an evolved star that willundergo a supernova explosion.nomena. In fat, the former ones are originated from the ollapse of a mas-sive, evolved stellar ore. In partiular, type II Supernovae must be starswith masses between 8 − 40 M⊙. Instead, stars with a bigger initial mass,like Wolf-Rayet, loose their envelopes bringing to Ib and I Supernovae.These stars pass through the burning phases of hydrogen, helium, arbon,neon, oxygen, and silion, �nally produing an iron ore (Fig. 2.2). At thispoint, beause the nulear binding energy per nuleon has its maximum foriron, no energy an be released by nulear fusion of this element. Due to theproess known as photodisintegration, photons at the very high temperaturespresent in the iron ore are apable to destroy heavy nulei. Meanwhile, thefree eletrons that ontribute to support the star through the eletron degen-eray pressure, in these ritial onditions, are aptured by heavy elementsand by protons produed through photodisintegration. Then the ore startsto ollapse.The ollapse is halted by the repulsive omponent of the strong nulearfore, when the ore has reahed about twie the density of atomi nulei,
≈ 4 − 5 × 1014 g/cm3. But the sudden halt of the ollapsing ore produea rebound mehanism, and shok waves form, direted toward the surfaeof the star. The shok waves, together with the enormous fore generatedby neutrinos, whih at the opaity aused by the impressive pressure annotesape as usually, propagate through the still ollapsing layers of the star,leading to the supernova explosion. A huge amount of energy is released andthe outer layers, ontaining heavy metals, together with the remaining outerenvelope of hydrogen, are expelled.



2.3 Pulsating variables and theory of pulsation 232.2.2 Type Ia SupernovaeRegarding type Ia Supernovae, there are still unertainties about the pro-ess that originates these kind of phenomena. The most aepted hypothesisis that the formation of these supernovae happens in binary systems on-stituted by a arbon-oxygen white dwarf and an evolved star. The auseof the explosion an be found in the areting material on the white dwarffrom the ompanion star, during its red giant phase, until the white dwarfitself reahes its Chandrasekhar limit. At this point, in the most areditedmodels, the degeneray pressure is no longer able to support the star againstgravity, and the star starts to ontrat, soon reahing pressure and temper-ature onditions su�ient to ignite arbon fusion. What happens next isnot well understood, but probably the shok waves produed by the explo-sion ignites a de�agration that ompletely disrupt the star, without leavingany remnant. Part of the material beomes 56Ni and the remaining lighterelements like Si and C.The typial light urve an be divided in four phases, all explainable onsid-ering the energy released in the deay from 56Ni to 56Fe. We an identify:
• rise time: the period in whih the supernova rises very fast to itsmaximum;
• maximum phase;
• seond maximum: a pronouned seond maximum has been observedin redder light urves about from 20 to 40 days after the �rst maximum;
• late deline: about after 50 days the light urves reahes a steadydeline phase, exponential in luminosity.Ia Supernovae reah their maximum about 2 or 3 weeks after the explosion,are brighter of one magnitude then the type II and all of them have the samepeak luminosity. For these reasons they an be good standard andles, andif it would possible to measure the absolute magnitude of the supernova,regardless its distane, we ould obtain a measure of the Hubble onstant.In fat, in 1993, Phillips [34℄ disovered a linear relationship between thedeline rate parameter of the light urve, ∆m15 (the di�erene between themagnitude at maximum light and the magnitude after �fteen days), and theabsolute peak magnitude of the supernova. This orrelation makes possibleto greatly improve the preision of distane estimation of Ia Supernovae,using them for the determination of osmologial parameters.2.3 Pulsating variables and theory of pulsationThe theory of radial stellar pulsation is based on the assumption that thisis generated by small perturbations around the hydrodynamial equilibrium
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Figure 2.3: Position of some pulsating variables and of the Instability Stripin the H-R diagram



2.3 Pulsating variables and theory of pulsation 25state (during this phase the star plaes on the Instability Strip, see Fig. 2.3),whih an grow to observed amplitudes (linear stability analysis of stellarstruture). The �rst step is to onsider the stellar struture equations:
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Γ1 = (d lnP/d ln ρ)ad and Γ3 = (d ln T/d ln ρ)adare the adiabati exponents of pressure and temperature. Considering onlysolutions of the form:

ζ(r, t) = ξ(r)eiωt (2.9)where ξ(r) is a omplex funtion of the only spatial variable and ω is afrequeny. Therefore, in the ase of adiabati osillations, from Eq. 2.8 weobtain:
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ξ = ω2ξ (2.10)This is an eigenvalue equation whih admits disrete solution haraterizedby eigenfuntions ζk, where every k is a node with ζk = 0, and eigenvalues ωk.
ω0 is the fundamental mode, while the other frequenies are the overtones.Obviously, the solution of suh equation requires speial onditions at theenter and at the surfae of the star.The driving mehanism whih sustains the pulsation must be found in theopaity of the star. It was suggested by Eddington [22℄ that ertain layers ofthe star, during the ompression phase due to pulsation, might beome quiteopaque to radiation. But the inrease of the opaity generates an aumula-tion of heat under these layers, whih brings to an inrease of pressure andan expansion of the star. At this point, there is a new derease of opaityand pressure, the star ontrats again and a new yle begins. In 1980, J.P.Cox [14℄ found that the mehanism proposed by Eddington an suessfullyoperate in the partially ionization zones of the pulsating star.2.3.1 Types of pulsating variablesThe parameters that permits to distinguish between the various types ofpulsating variables are the pulsation period, mass and evolutionary status ofthe star, besides the harateristis of the pulsation itself.

• RR Lyrae stars: short period (1 hour to 30 hours), pulsating, bluegiant stars, usually of spetral lass A. The amplitude of variation isusually from 0.3 to 2 magnitudes.
• δ Suti: their variations in luminosity are due to both radial and nonradial pulsations of their surfae. Flutuations in brightness are om-prised between 0.003 and 0.9 magnitudes in V, over a period of a fewhours. They an be A0 to F5 type giant or main sequene stars.
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• RV Tauri: yellow supergiants with harateristi light variation whihalternates deep and shallow minima. The period between two deepminima ranges usually between 30 to 150 days and the variation inmagnitude an be up to 3. Some of these stars show also long-termyli variations from hundreds to thousands of days. The spetrallass often ranges from G to K.
• Pulsating white dwarf: their luminosity variations are due to non radialgravity wave pulsations. The variations are small (1% - 30%) and theperiods are omprised from hundreds to thousands of seonds.
• Long period variables: pulsating red giants or supergiants in whihvariations our over long timesales of months or years. We an dis-tinguish the two major sublasses of Mira and Semiregular variables.
• Irregular variable stars: red supergiants white little or no periodiityat all.But the most famous example of pulsating stars remain Cepheid variables.These are massive stars, with spetral type that an hange during pulsation,from F at maximum luminosity to G or K at minimum. Pulsation is mainlyradial. It is possible to identify four lasses of Cepheid variables:
• Classial Cepheids: also alled type I Cepheids, fundamental modepulsators with periods that vary from 1 to 70 days.
• Beat Cepheids: they display the presene of two or more simultane-ously operating pulsation modes, generally the fundamental and the�rst overtone, with periods between 2 and 7 days.
• S Cepheids: probably �rst-overtone pulsators, with periods in the samerange of Beat Cepheids.
• W Virginis: population II Cepheids, they are fundamental mode pul-sators with periods between 1 and 30 days.Cepheids exhibit strong orrelations between their periods, luminosity andolors, but not for amplitudes, whih do not seem to orrelate with otherobservables. In the next paragraph we will analyze this in more detail.2.3.2 Period-Luminosity relationIn 1912 Henrietta Swan Leavitt, an Amerian astronomer and human om-puter of Edward Pikering at the Harvard Observatory, disovered a linearorrelation between the apparent magnitude and the logarithm of the pe-riod for a sample of stars, in the spei� Classial Cepheids, in the Large
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Figure 2.4: Period-luminosity relations of lassial (grey points) and typeII Cepheids (olor symbols) in the Large Magellani Cloud, as taken byOGLE. As the "luminosity" the reddening-free Wesenheit index [13℄ wasused, de�ned as WI = I − 1.55(V − I) − DM , where I and V are meanluminosities of Cepheids in these passbands, and DM = 18.5 mag is thedistane modulus of the Large Magellani Cloud.Magellani Cloud (LMC). However, the relation is valid also for the abso-lute magnitude, beause all the stars of the LMC an be onsidered at thesame distane. The relation disovered by Leavitt was alled the "Period-Luminosity relation", and an be expressed as:
M = a+ b ∗ log10 P (2.11)An example of the Period-Luminosity relation is reported in Fig. 2.4. Oneit has been properly alibrated, this relation allows us to derive, from themeasured period of a Cepheid, its absolute magnitude and so its distanemodule. Obviously, one has to take into aount the e�ets of interstellarreddening, whih will produe systemati errors that ould be reported intothe distane sale.2.4 Ative Galati NuleiGalaxies hosting Ative Galati Nulei (Fig. 2.5), that ontain all AGNsublasses suh as Blazars, Seyfert Galaxies, Quasars and so on, are also
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Figure 2.5: The ative radiogalaxy M87 as seen by Hubble Spae Telesope,with its harateristi 5000-light-year-long jet. It is thought to be produedby the synhrotron radiation of the partiles aelerated from the entralengine.usually variable. AGN, however, are very partiular variables. In fat theyemit strongly over a wide range of wavelengths, from X-ray to radio. ManyAGN vary in brightness by huge amounts over relatively short timesales,suh as months, days, or even hours. AGN are onveniently divided in twomain lasses, radio-loud and radio-quiet, depending on whether or not theyemit in the radio portion of the eletromagneti spetrum respetively.Nowadays, the di�erent types of AGN and their physial properties havefound explanation in a uni�ed model that bases the ativity of these objetson a entral engine onstituted by a supermassive blak hole on whih thedynamial e termodynamial properties of the entire galaxy are based. Itresults evident that the strong emission oming from AGN ould be explainedonly onsidering aretion onto a supermassive blak hole (in the range of
106 − 1010 M⊙). In fat, we must remember that gravitational aretion isthe most e�ient known way of using mass to get energy, muh more e�ientthan nulear fusion.The uni�ed model proposes that di�erent types of AGN are a single typeof physial objet observed under di�erent onditions, as showed in Fig.2.6. The urrently aepted idea is that this models are "orientation-baseduni�ed models", meaning that the apparent di�erenes between the varioustypes of objets arise simply beause of their di�erent orientations to theobserver. Moreover, it has been proposed that, on�rmed the presene of asupermassive blak hole in the nuleus of almost all galaxies, the AGN phase



30 2. Phenomenology of transientsis just a step in the evolutionary history of a galaxy.However, one �xed the division in radio-quiet and radio-loud AGN, it ispossible to identify the following subategories.Radio-quiet AGN
• Low-ionization nulear emission-line regions (LINERs): weak nulearemission-line regions. It is still debated if the are truly AGN.
• Seyfert galaxies: these objets show optial range nulear ontinuumemission, narrow and oasionally broad emission lines, oasionallystrong nulear X-ray emission and sometimes a weak small-sale radiojet. They are divided into two types known as Seyfert 1 and 2: Seyfert1 show strong broad emission lines while Seyfert 2 do not, and Seyfert1 are more likely to show strong low-energy X-ray emission. The hostgalaxies of Seyferts are usually spiral or irregular galaxies.
• Radio-quiet quasars/QSOs: haraterized by a very high redshift, quasarswere originally "quasi-stellar" in optial images as they had optial lu-minosities that were greater than that of their host galaxy. They showstrong optial ontinuum emission, broad and narrow emission lines,and strong X-ray ontinuum emission. The host galaxies of quasarsan be spirals, irregulars or elliptials.Radio-loud AGN
• Radio-loud quasars: they behave exatly like radio-quiet quasars, withthe addition of emission from a jet. Thus, they show strong optialontinuum emission, broad and narrow emission lines, and strong X-ray emission, together with nulear and often extended radio emission.
• Blazars, i.e. BL La objets and OVV (optial violent variable) quasars:their variable emission is believed to originate in a relativisti jet ori-ented lose to the line of sight. Both lasses are distinguished by rapidlyvariable, polarized optial, radio and X-ray emission. BL La objetsshow no optial emission lines, broad or narrow, so that their redshiftsan only be determined from features in the spetra of their host galax-ies. The emission-line features may be intrinsially absent or simplyswamped by the additional variable omponent. OVV quasars behavemore like standard radio-loud quasars with the addition of a rapidlyvariable omponent.
• Radio galaxies: these objets show nulear and extended radio emis-sion. Their other AGN properties are heterogeneous, but their hostgalaxies, whatever their emission-line type, are essentially always ellip-tials.



2.4 Ative Galati Nulei 31

Figure 2.6: Uni�ation by viewing angle. From bottom to top: down thejet - Blazar, at an angle to the jet - Quasar/Seyfert 1 Galaxy, at 90 degreesfrom the jet - Radio galaxy / Seyfert 2 Galaxy.
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Chapter 3Automated lassi�ation oftransientsFor what lassi�ation is onerned, the main aspet that must be takeninto aount is that nowadays data volumes have begun to surpass what ispossible to visually inspet by even large teams of astronomers and volunteeritizen sientists. This implies an inreasingly more entral role of softwareand hardware frameworks to substitute humans in the real-time loop. Dataneed to be automatially transported, proessed, photometered and insertedinto databases almost without human intervention.Of ourse, autonomous disovery of transients and variables is a big hal-lenge. Threshold uts in photometri quality, hanges in apparent magni-tudes, mathed �ltering, et., an be very e�etive tools to disover newevents, but other types of variables and transients ould be not easily re-overed from these kinds of approahes. Furthermore, previous mahine-learning based disovery have been optimized on domain-spei� disovery,leaving apart the multitude of other variables not of diret interest for apartiular projet.The hallenge is to on�ate the proess of disovery with lassi�ation, usingdi�erent mahineries and methods working on the same problem with variousapproahes. In this view, the advantages of a omputational approah, ratherthan human-entri, beome lear:
• mahines, properly trained, are faster than humans both in disoveryand lassi�ation of andidates/events; at least in theory they allowfor operations at arbitrarily high data rates;
• more e�ient use of follow-up (e.g. spetrosopi, photometri, et.)failities;
• experimentations with new disovery and lassi�ation shema requirelittle more than re-running new odes on existing data;33
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Figure 3.1: Sheme of lassi�ation for variable and periodi stars by Du-bath [21℄
• mahine-learned lassi�ation is reproduible and very often determin-isti;
• the reproduibility allows for alibration of the unertainties of las-si�ation probability statements, giving assuranes that lassi�ationsare robust as the survey proeeds.In this framework, there may still be a vital role for humans in the real-timeloop, in the ase of ambiguous lassi�ations or unertain follow-up pathsfor a partiular soure, but the main idea is that the whole proess must notbe guided by humans.3.1 Periodi objets lassi�ationAs it has already been mentioned, this thesis fouses on o�ine lassi�ationand therefore real-time issues are not ruial. The study of their periodiityrepresents the baseline for a deeper analysis of transients. The traditionaland most logi approah onsists in three main steps (see Dubath [21℄).During the �rst one it tries to separate variable objets from the ones thatdo not show variability. Then the seond part the method onsiders theperiodiity of the objets and measures their period. Finally, in the thirdpart, one an proeed to the lassi�ation of the periodi objets (see Fig.3.1 - 3.2 for the sheme).
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Figure 3.2: Modi�ed sheme for a most general lassi�ation of variableand periodi objets.To determine the variability in a ertain data sample, it is possible to usemany riteria. We analyze the one due to Stetson [42℄. This riterion employsan index used to determine the probability that a given objet presents aertain variability degree, so determining the p-value of the distribution. Wereall that the p-value is de�ned as the probability, under the assumption ofa ertain hypothesis, of obtaining a result equal or more extreme than whatwas atually observed (Fig. 3.3). The index provides the prinipal measureof on�dene that the variability is real, and not due to noise. In fat noisean be onfused for a variable soure if not orretly dealt with.These are two expressions of the Stetson index:
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Figure 3.3: Example of a p-value omputation. The p-value is the area ingreen under the urve, past the observed data point.are the standard errors of those magnitudes, b and v are the weighted meanmagnitudes in the two �lters, and n is the number of observation pairs. wkinstead is a weight and δ is a magnitude residual of a given observation fromthe average of all observations in the same bandpass, saled by the standarderror.The J value is a more robust version of the same index, whih, ombinedwith the distribution kurtosis, gives:
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) (3.6)where the fator∑w/wall, with wall being the total weights an objet wouldhave if suessfully measured in all frame pairs, takes into aount possibleproblems of detetion of the same objet if it results to be absent from one ormore frames. In this way, those andidates that were suessfully measuredthe most times will also be the �rst to be followed up. A value of L an be



3.2 An automated lassi�ation method 37determined for every objet in the �eld having some minimum total weight,and stars exeeding some threshold value of L may be subjeted to periodsearhes and light urve �ts.After the potentially variable objets have been identi�ed, the seond steprequires to disentangle periodi from non periodi objets. One possibilityis to evaluate the periodogram funtion through the Lomb-Sargle method[39℄:
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) (3.7)This funtion is a disrete expression of the power spetrum of the signal,and the periods are taken as the peak frequeny of the distribution.3.2 An automated lassi�ation methodThere are many automated methods that an be used to ahieve the �nallassi�ation. In this paragraph, we want to desribe brie�y one of them,the Random Forest method, that has also been used by Donalek [17℄, whihwe adopted as a template for omparison. Then, in the next hapter, we willfous on lassi�ation based on neural networks.Firstly developed by Leo Breiman and Adele Cutler ([3℄ - [20℄), a randomforest is a lassi�er onsisting of a olletion of tree-strutured lassi�ers

{h(x,Θk), k = 1, ...} where the {Θk} are independent identially distributedrandom vetors and eah tree ast a unit vote for the most popular lass atinput x. The algorithm is de�ned as follows (see Fig. 3.4):1. A bootstrap objet sample is obtained, by building it substituting ob-jets from the training set, with the same size as the original set, butwith some objets represented multiple times, while others left out(Out of Bag stars, OOB from now - the same number of the objetedused multiple times are omitted and will be used to estimate the pre-dition error).2. The tree is reursively grown by partitioning the bootstrap sample intosubgroups having always more and more homogeneous type ontents.At eah node, mtry divisions into two groups are onsidered, eah usingone attribute from a randomly seleted set ofmtry attributes. The bestsplit is seleted and the proess is then repeated for the hild nodes.3. Finally, a maximum tree is onstruted, i.e., a tree with terminal nodesontaining only a single type of objets.Large numbers of trees are built and eah tree provides a predited type foran objet. The most probable type is the most frequent one in the sample of



38 3. Automated lassi�ation of transientspreditions from the di�erent trees. The error rate and onfusion matrix anbe built by omparing the predited with the atual types. The attributeimportane is given by the di�erene in lassi�ation error averaged over alltrees obtained by the OOB sample, permuting the attributes to infer abouttheir importane.The proedure to build a list of the most important, not too orrelated,attributes is as follows (Fig. 3.5):1. A ranked list of attributes, from the most to the least important, isbuilt using a 20000-tree random forest with the full attribute set.2. The most important attribute is seleted and all other attributes witha Spearman orrelation oe�ient (Spearman [41℄) above 80% are dis-arded.
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(3.8)3. A new ranked attribute list is built by re-running a random forest withthe seleted and the remaining attributes.4. The seond most important attribute is seleted and all other attributeshighly orrelated with any of the �rst two are disarded, repeating thesame proedure.5. The proess is iterated, obtaining a full ranked list of not too orrelatedattributes.The importane value dereases in the list, but never reahes zero, so it isimportant to understand where to ut the list.In order to redue the number of attributes, it is used the following algorithm:1. The data sample is partitioned for a 10-fold ross validation (CVAL bynow).2. On eah CVAL training set, a ranked list of attributes is establishedusing the random forest importane measures.3. On eah CVAL training set, a model is trained on all attributes andused to predit types for the CVAL test set. The CVAL error rate isreorded and the proess is repeated after removing the least importantattribute. Iterating by removing one attribute at a time and stoppingwhen only 2 attributes are left, a vetor of CVAL error rates is obtained.4. A mean error vetor is omputed by taking the mean of the 10 valuesobtained for eah attribute subset.
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Figure 3.4: Simpli�ed sheme that summarizes the priniples of the randomforest method.5. Steps 1 to 4 are repeated 20 times. The mean value and the stan-dard deviation of the 20 CVAL mean errors are omputed for eahattribute number, ombining the results of the lassi�ation experi-ments ahieved with a spei� attribute number.The optimum number of attributes an then be inferred by the plot resultingfrom this proedure. Finally it is possible to proeed with lassi�ation anddetermine the onfusion matrix.3.3 Photometri featuresThe proess of lassi�ation relies upon the ability to reognize and quantifythe di�erenes between light urves. To build a supervised mahine-learninglassi�er, many instanes of light urves are required for eah lass of interest.These labeled instanes are used in the training and testing proesses. Sinethe data are, in general, not sampled at regular intervals, nor are all instanesof a ertain lass observed with the same number of epohs and S/N ratio,the identi�ation of the di�erenes diretly from the time-series data is both
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Figure 3.5: An example of a ranked list of 14 most important, not too or-related attributes, from Dubath [20℄. The Spearman orrelation oe�ientof any of the above attributes pairs is smaller than the 80%. The attributeimportane is measured with the random forest OOB mean derease au-ray.
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Figure 3.6: Using the CTSCS a set of photometri features is extratedfrom eah light urve forming a feature vetor. Here a light urve of aCatalysmi Variable from CRTS is shown.oneptually and omputationally hallenging.Instead, we homogenize the data by transforming eah light urve into aset of real-number line features using statistial and model-spei� �ttingproedures (Fig. 3.6). These features an be identi�ed, for example, withthe attributes used for the random forest method, as said in the previousparagraph.The features needed for our purpose were alulated by raw light urves usingthe web servie "Calteh Time Series Charaterization Servie"1 (CTSCS).With the help of this web servie it was possible to determine the 31 non-periodi features ([35℄ - [15℄) for a data sample taken from the CatalinaReal-Time Transient Survey (CRTS). Moreover, it is possible to upload alsoa user de�ned atalog. Furthermore there exist a number of features thatan be determined from the Lomb-Sargle method. In the next paragraphwe list the above features, with a brief desription for eah of them.3.3.1 Desription of the featuresAs said before, it is possible to divide features in periodi and non-periodiones. The formers are extrated using the Lomb-Sargle method, while thelatter are statistial parameters derived from the light urve analysis.
• Amplitude: arithmeti average between maximum and minimum1http://nirgun.alteh.edu:8000/sripts/desription.html#data_input
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amplitude =

magmax −magmin

2
(3.9)

• Beyond1std: fration of photometri magnitudes (≤ 1) that areabove or under a ertain standard deviation from the weighted average(by photometri errors).
beyond1std = P (|mag −mag| > σ) (3.10)

• Flux Perentage Ratio: The perentile is the value of a variableunder whih there is a ertain perentage of observations. The �uxperentile Fn,m was de�ned to be the di�erene between the �ux valuesat perentiles n and m, and the following �ux perentile ratios wereused:
fpr_mid20 = F40,60/F5,95

fpr_mid35 = F32.5,67.5/F5,95

fpr_mid50 = F25,75/F5,95

fpr_mid65 = F17.5,82.5/F5,95

fpr_mid80 = F10,90/F5,95

• Linear Trend: slope of the light urve in the linear �t, that is to saythe b parameter in the following linear relation.
mag = a ∗ t+ b (3.11)
linear_trend = b (3.12)

• Maximum Slope: the maximum di�erene obtained measuring mag-nitudes at suessive instants.
maximum_slope = max(|

(magi+1 −magi)

(ti+1 − ti)
|) =

∆mag

∆t
(3.13)
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• Median Absolute Deviation: median of the deviation of �uxes fromthe median �ux.

med_abs_dev = mediani(|xi −medianj(xj)|) (3.14)
• Median Bu�er Range Perentage: fration of observations thatare within 10% of the median �ux.

med_buf_range_per = P (|xi −medianj(xj)| < 0.1 ∗medianj(xj))(3.15)
• Pair Slope Trend: perentage of the last 30 ouples of onseutivemeasures of �uxes that show positive slope.

pair_slope_trend = P (xi+1 − xi > 0, i = n− 30, ..., n) (3.16)
• Perent Amplitude: maximum perentage di�erene between max-imum or minimum �ux and the median.

percent_amplitude = max(|xmax −median(x)|, |xmin −median(x)|)(3.17)
• Perent Di�erene Flux Perentile: Di�erene between the seondand the 98th perentile �ux, onverted in magnitudes. It is alulatedby the ratio F5,95 on median �ux.

pdfp =
(mag95 −mag5)

median(mag)
(3.18)

• QSO - NOT QSO: the χ2/qso and χ2/non-qso statistis and their sig-ni�ane levels from the quasar variability metri of Butler and Bloom[11℄. These parameters, obtained from a funtion of time modeledusing a ovariane matrix, make possible to determine a probabilitydistribution for an objet to be or not to be a quasar.
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• Skew: the skewness is an index of the asymmetry of a distribution. Itis given by the ratio between the 3rd order momentum and the varianeube.

skew =
µ3

σ3
(3.19)

• Small Kurtosis: the kurtosis represents the departure of a distribu-tion by normality and it is given by the ratio between the 4th ordermomentum and the variane square. For small kurtosis it is intendedthe reliable kurtosis on a small number of epohs.
kurtosis =

µ4

σ2
(3.20)

• Standard deviation: standard deviation of the �uxes.
• Stetson J-K: the Stetson variability index, whih desribes variabilityfor Cepheids by p-value determination, as desribed in Chapter 3.
• Lomb-Sargle Periodogram: the period obtained by the peak fre-queny of the Lomb-Sargle periodogram (Sargle [39℄), as desribedin Chapter 3. There are also a faster version of the algorithm, thatdetermines the top �ve periods and their false-peak probabilities, andthe Generalized Lomb-Sargle Periodogram (see Zehmeister [43℄), thatinstead determines the �rst �ve periods obtaining them from a gener-alization of the Lomb-Sargle method, using appropriate weights.
• Self Correlation: the orrelation funtion expresses the statistialorrelation between random variables in di�erent points of spae andtime. If orrelation funtions between variables representing the samequantity measured in two di�erent points are onsidered, we speakabout an autoorrelation funtion.

ρX,Y = corr(X,Y ) =
cov(X,Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
(3.21)

C(s, t) = corr(X(s),X(t)) (3.22)
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• Struture Funtion: the �rst order struture funtion obtained usingthe square di�erential.

sf = f(|magi −magj |
2, |ti − tj|) (3.23)

• Debossher Frequeny Statistis: the frequeny statisti analysisdesribed by Debossher et al. [15℄, that is to say the slope of the lineartrend, the �rst three frequenies and their �rst four harmonis (ampli-tude and phase for eah of them) and the ratio between the variane ofthe light urve before and after the subtration of a harmoni �t withthe �rst frequeny.
• R Cor Bor: the fration of magnitudes that is below 1.5 magnitudesrespet to the median.

rcorbor = P (mag > (median(mag) + 1.5)) (3.24)
• AOV: the period aording to the analysis of variane method ofShwarzenberg-Czerny [40℄.
• Magnitude Ratio: an index used to estimate if the objet spendsmost of the time above or below the median.

mag_ratio = P (mag > median(mag)) (3.25)
• Phase Dispersion Minimization: the period obtained by the min-imization of the variane of data with respet to the medium lighturve.
• Fast χ: this tehnique uses Fourier series trunated at the H harmonito model the periodi funtion. The quality of data is obtained fromthe Fourier oe�ients' χ2 together with the frequeny f.
• Periodi features: these are a series of features obtained by lighturves using the generalized Lomb-Sargle method. The light urvesare modeled as follows:

yi(t|fi) = ai sin(2πfit) + bi cos(2πfit) + bi,0 (3.26)To determine periodi variations then it is possible to do a minimiza-tion of the square sum:
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χ2 =

∑

[dk − yi(tk)]
2/σ2

k (3.27)So one an de�ne the generalized periodogram:
Pf (f) =

(N − 1)

2

χ2
0 − χ2

m(f)

χ2
0

(3.28)where:
χ2
0 =

∑

[dk − µ]2/σ2
k (3.29)

µ =
∑

[dk/σ
2
k]/

∑

1/σ2
k (3.30)Then a �t of light urves is done using the sum of a linear term plus asum of sinusoids:

y(t) = ct+
∑∑

yi(t|ifi) (3.31)The features used are so obtained:
Ai,j =

√

a2i,j + b2i,j (3.32)
PHi,j = tan−1(bi,j, ai,j) (3.33)

fi (3.34)Finally, other four features are used, obtained by the ratio of the pre-vious features and the o�set .



Chapter 4Mahine learning with NeuralNetworksAs already mentioned in the introdution, this thesis work tries to lassifytransients using a mahine learning approah based on the use of neuralnetworks.4.1 Neural networksA neural network is an analysis instrument modeled on the human brainstruture, inserted in an informatis devie. It an be onstituted both bysoftware and/or by dediated hardware. Its purpose is to simulate a heavilyinteronneted omputational struture, onsisting of many relatively simpleindividual proess elements, the neurons, whih make simple alulations onthe input signal, then passing the output one to another neuron. Theseelementary objets are usually organized in groups or layers. Layers angenerally reeive input signals (input layers), emit output signals (outputlayers), or be inaessible to both types of signals, having only onnetionswith other layers (hidden layers).4.1.1 Biologial foundationsIn almost all living organisms there are omplex organizations of neuralells, with on�gurations de�ned by external environment, memorization andreation to stimuli. Human brain represents the most extraordinary produtof biologial evolution, due to his apaity to elaborate information. Withthe aim to do these operations, biologial networks use a massive number ofsimple omputational elements, neurons, highly interonneted so as to varytheir on�guration in response to external stimuli: in this sense we an speakabout learning and arti�ial models trying to ath this distintive featureof biology. 47



48 4. Mahine learning with Neural NetworksGenerally a neuron is onstituted from three priniple parts: soma (ellbody), axon (the unique output neuron line, branhing o� in thousandsof lines) and dendrite (input neuron line, reeiving input signals by otheraxons through synapses). The ell body makes a weighted sum (integration)of input signals. If the result exeeds a ertain threshold value, then theneuron is ativated and an ation potential is produed and sent to theaxon. If the result does not exeed the threshold value, the neuron remainsin the rest state. An arti�ial neural network reeives external signals on aninput nodes' layer (elaboration units), eah one onneted with numerousinternal nodes, organized in more layers. Every node elaborates the reeivedsignals and transmits the result to the nodes in the subsequent nodes layer.4.1.2 History and utilizationThe wide variety of neural networks models annot leave aside from its basionstituent, the arti�ial neuron proposed by W.S. MCulloh and W. Pittsin 1943 [31℄, whih outlines a linear threshold ombiner, with multiple inputbinary data and a single output binary data. An appropriate number ofthese elements, onneted to form a network, is apable to alulate simpleboolean funtions.In 1958, F. Rosenblatt [36℄ introdues the �rst neural network shema, alledpereptron, whih is the preursor of urrent neural networks, for identi�a-tion and lassi�ation of shapes, with the aim to furnish an interpretationof biologial systems general organization. So, the probabilisti model ofRosenblatt looks at the analysis, in mathematial sense, of funtions suh asinformation storing and their in�uene on models' identi�ation. It onsti-tutes a ruial improvement with respet to the binary model of MCullohand Pitts, beause the synapti weights are variable and therefore the per-eptron is apable to learn.Rosenblatt's work stimulate a great number of studies and researhes andauses strong interest and expetations on sienti� ommunity, whih un-derwent a stop in 1969, when Marvin Minsky and Seymour A. Papert [33℄show the operative limits of simple two layers networks based on pereptron,demonstrating the impossibility to resolve many lasses of problems: in fat,this type of neural network is not quite powerful for alulating the XOR(exlusive or) funtion.The mathematial ontext to train Multilayer Pereptron networks (MLP)was established by the Amerian mathematiian Paul Werbos in his dotor-ate thesis in 1974. One of the best known and e�ient methods for neuralnetworks training is the so alled error bakpropagation algorithm, proposedin 1986 by Rumelhart, Hinton and Williams, that systematially modi�esweights of onnetions between nodes, bringing the network response alwaysnearer to the one desired. The bakpropagation (BP) algorithm is a learningtehnique by examples, onstituting a generalization of the pereptron learn-



4.1 Neural networks 49ing algorithm developed by Rosenblatt in the Sixties. Through this tehniqueit was possible, as it has already been said, treating just appliations har-aterized as linearly separable boolean funtions. The new algorithm, whihallowed to overome pereptron limitations and to resolve the problem of nonlinear separability (so alulating the XOR funtion), marked the de�nitiverevival of neural networks, as showed also by the great variety of ommerialappliations.Neural networks are usually used in ontexts where data ould be partiallywrong or where does not exist analytial models to fae the problem. Typialutilizations are in optial harater reognition software (OCR), in faialreognition systems, and more generally in systems that treat data subjetedto errors or rumor. Neural networks are also one of the most used instrumentin Data Mining analysis. They are also used as preditive instrument in�nanial or weather analysis. In last years their importane has enormouslygrown also in bioinformati and astrophysis, in whih they are used forresearhing funtional and strutural models in proteins and nulei aids inthe �rst ase and, as previously said, in regression and lassi�ation problemsfor what onerns the astrophysial aspets. Giving properly a series of input(training or learning phase), the network an give the most probable output.4.1.3 StrutureA neural network is haraterized by three fundamental elements:
• The arhiteture or network topology, that is the partiular way inwhih layers are interonneted and through whih they reeive in-put and output; the onnetion between two generi neurons oursthrough a link alled weight.
• The ativation or transfer funtion hosen for the neurons, whih, inanalogy with biologial neuron, represents the answer modality to ex-ternal stimuli. Generally the same funtion is hosen for all neurons ofthe layers omposing the network, but this is no a strit bond, but anarhitetural strategy.
• The algorithm used during the learning phase of the network.These three harateristis an be thought as the highest level of vision ofa neural network model. It is important to say that the method, or themethods, must be de�ned unequivoally, beause by this proess dependsthe ability whereby the network learns and progressively improves the re-sponse. In the neural networks ontext, the learning proess an be seen asthe problem to update network arhiteture and onnetion weights, so thatthe network itself an e�iently perform its spei� task. In general, dur-ing the learning phase, the network �xes the weights values that the input



50 4. Mahine learning with Neural Networkson�gurations onnetions must have. Its performanes improve progres-sively by updating the weights over time, by the repeated presentation ofon�gurations belonging to the same lass.It is neessary to distinguish at least three di�erent learning typologies (themost important ones, but there exist also other ones). In partiular, one anhave:
• Supervised learning: based on a training set inluding typial input ex-amples with the orresponding outputs. The network is trained with aproper algorithm, whih uses the a priori knowledge to modify weightsand other parameters of the network itself, so as to minimize the pre-vision error related to the sample used for training. If the trainingphase is suessful, the network learns how to reognize the unknownrelation that onnets the input variables with the output ones, andso it beomes apable to make previsions also where the output is notknown a priori. In other words, the �nal target of supervised learningis the prevision of the output value for every valid input value, basingjust on a relatively small number of orrespondene examples (that isto say, input-output ouples).
• Unsupervised learning: based on training algorithms that modify net-work weights referring exlusively to a set of data that inludes justinput variables. These algorithms try to group input data and to�nd proper lasses that result to be representative of the data them-selves, making use of topologial or probabilisti methods. Unsuper-vised learning is also used to develop ompression data tehniques.
• Reinforement learning: in this ase an algorithm aims to �nd a er-tain modus operandi, starting from an observational proess on exter-nal environment; every ation has a onsequene on environment, andit produes a feedbak that guides the algorithm itself in the learningproess. This lass of problems postulates an agent, endowed with per-eption power, whih explores an environment in whih it undertakesa series of ations. The environment itself furnishes an inentive ordisinentive as response, as appropriate. Algorithms for reinforementlearning ultimately try to determine a poliy inlined to maximize in-entives reeived by the agent during its exploration of the problem.Reinforement learning di�ers from supervised one beause there werenot presented input-output ouples of known examples, and one doesnot proeed to the expliit orretion of suboptimal ations. Further-more, the algorithm is foused on real time performane, that impliesa balane between the exploration of unkwown situations and exploita-tion of urrent knowledge.In the present work we shall use only supervised methods.



4.1 Neural networks 514.1.4 Multilayer PereptronThe Multilayer Pereptron (MLP) is the most ommonly used arhiteturefor pratial appliations of neural networks. Generally a MLP is onstitutedby an input neuron layer, one or more hidden layers, eah one omposed by aertain number of neurons, and an output layer, onstituted by as many neu-rons as the response variables are. The di�erent neurons are interonnetedby weights, that is to say parameters whih are estimated during the trainingphase using the so alled learning set. Pratially MLP networks with justone hidden layer are often used, beause they furnish satisfatory results andare omputationally less expensive than networks with more layers.The MLP realizes a omplex non linear mapping between input and outputof the network. Denote with x = {x1, x2, ..., xd} the N input values. The�rst layer generates a series of linear ombinations of the input values, withthe aim to obtain a set of intermediate ativation variables a(1)j suh that:
a
(1)
j =

d
∑

i=1

w
(1)
ji xi + b

(1)
j , j = 1, ...,M (4.1)where every a

(1)
j variable is assoiated to a single neuron of the M units ofthe hidden layer. The w(1)

ji values represent the elements of the weight matrixof the �rst layer, while the b
(1)
j are the bias parameters (whih onsider asystematial error or a seletion e�et) assoiated to the hidden layer units.So the a

(1)
j variables are transformed into the non linear ativation funtionof the hidden layer. For example, if the used funtion is the hyperbolitangent, the output values from the hidden neurons are:

zj = tanh(a
(1)
j ), j = 1, ...,M (4.2)Then the zj values are transformed again by the seond layer of weights andbiases to obtain a seond layer of ativation values a(2)k , given by the formula:

a
(2)
k =

M
∑

j=1

w
(1)
kj zj + b

(2)
k , k = 1, ..., c (4.3)where c is the number of the output units. Finally, the output ativationfuntion is applied to these values, through whih the �nal values yk, where

k = 1, ..., c, are obtained. Depending on the nature of the onsidered prob-lem, one an have:
• regression problems, with a linear ativation funtion, i.e. yk = a

(2)
k ;

• lassi�ation problems, with a gaussian ativation funtion, indepen-dently applied to everyone of the output neurons, i.e.:
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yk =

1

1 + exp (−a
(2)
k )

(4.4)The main training algorithm of a MLP is the bakpropagation, based ona orretion error rule. Essentially, bakpropagation onsists in two steps,forward and bakward respetively, through the network layers. In the �rststep, the forward one, an input vetor is applied to the network inputs,propagating layer by layer. Finally, an output is generated, orrespondingto the atual response of the network itself. Contrarily, in the suessivestep, bakward, weights are adjusted through the error orretion law. Ina more spei� manner, the network answer is subtrated to the values ofa orret-known values' sample, denoted with t = {t1, t2,...,tc}, so that anerror signal is produted and propagated through the network. Obviouslythe signal error form an be de�ned in many di�erent ways, depending fromthe problem we are onsidering. In partiular, one an have two fundamentalases:
• for regression problems, a quadrati sum error funtion is adopted:

E =
1

2

N
∑

n=1

c
∑

k=1

{yk(xn;w)− tnk}
2 ; (4.5)

• for lassi�ation problems, a ross-entropy error funtion is often pre-ferred:
E = −

∑

n

c
∑

k=1

{tnk ln y
n
k + (1− tnk) ln (1− ynk )} . (4.6)Weights are then adjusted in suh a manner that the output of the networkapproahes to the desired values in a statistial sense and the proedure isrepeated until the result varies only in a negligible way. In our ase wewill use a more e�ient variant of the bakpropagation algorithm, alledquasi-newtonian method.4.1.5 MLPQNAMLPQNA stands for the traditional neural network MLP model imple-mented with a Quasi Newton Approximation (QNA) as learning rule. Thenetwork used for our experiments is o�ered by the DAMEWARE infrastru-ture [10℄ - [4℄ - [5℄ - [6℄ - [7℄. In the ase of the QNA learning rule imple-mentation, the algorithm used is an adapted version of the lassial Newtonmethod for optimization problems. The Newton method is the general basisfor a whole family of so alled Quasi-Newtonian methods. The QNA is an



4.1 Neural networks 53optimization of the learning rule, also beause the implementation is basedon a statistial approximation of the Hessian matrix of the error, througha yli gradient alulation. The learning rule of our MLP is the QuasiNewton Approximation, whih di�ers from the Newton Algorithm in termsof the alulation of the Hessian of the error funtion. In fat Newtonianmodels are variable metri methods used to �nd loal maxima and minimaof funtions and, in the ase of MLPs they an be used to �nd the stationary(i.e. the zero gradient) point of the learning funtion.We know that the lassial Newton method uses the Hessian of a funtionin the following way. The step of the method is de�ned as a produt of aninverse Hessian matrix and a funtion gradient. If the funtion is a positivede�nite quadrati form, we an reah the funtion minimum in one step. Inase of an inde�nite quadrati form (whih has no minimum), we will reahthe maximum or saddle point. In short, the method �nds the stationarypoint of a quadrati form. In pratie, we usually have funtions whih arenot quadrati forms and, however, the Newton method an onverge bothto a minimum and a maximum. More generally, the Hessian of a funtion isnot always available and in many ases it is far too omplex to be omputed.More often we an only alulate the funtion gradient whih an be used toderive the Hessian via N onsequent gradient alulations. The gradient inevery point w is in fat given by:
∇E = H × (w − w∗) (4.7)where w orresponds to the minimum of the error funtion, whih satis�esthe ondition:
w∗ = w −H−1 ×∇E (4.8)The vetor H−1∇E is known as Newton diretion.Quasi Newton methods solve this problem as follows: they use a positive def-inite approximation instead of a Hessian. If the Hessian is positive de�nite,we make the step using the Newton method. If the Hessian is inde�nite,we modify it to make it positive de�nite, and then perform a step usingthe Newton method. In pratie, it QNA is an optimization of the learningrule based on a statistial approximation of the Hessian by yli gradientalulation whih, as already mentioned, is at the base of the lassial BakPropagation method.The QNA instead of alulating the H matrix and then its inverse, uses aseries of intermediate steps of lower omputational ost to generate a se-quene of matries whih result more and more aurate approximations of

H−1. During the exploration of the parameter spae, in order to �nd theminimum error diretion, QNA starts in the wrong diretion. This diretionis hosen beause at the �rst step the method has to follow the error gradi-ent and so it takes the diretion of steepest desent. However, in subsequent



54 4. Mahine learning with Neural Networkssteps, it inorporates information from the gradient. By using the seondderivatives, QNA is able to avoid loal minima and to follow more preiselythe error funtion trend, revealing a "natural" apability to �nd the absoluteminimum error of the optimization problem.The following features are implemented in the MLPQNA present in DAME-WARE, and, during this thesis work we will widely use them:
• only bath learning mode is available (i.e. the network error is alu-lated at the end of the submission of the omplete training dataset);
• strit separation between lassi�ation and regression funtionality modes;
• for lassi�ation mode, the Cross Entropy method is available to om-pare output and target network values. It is possible to alternativelyuse standard MSE rule, that is mandatory for regression mode;
• K-fold ross validation method to improve training performanes andto avoid over�tting problems;
• resume training from past experiments, by using the weights stored inan external �le at the end of the training phase;
• onfusion matrix alulated and stored in an external �le for bothlassi�ation and regression modes (in the last ase an adapted versionis provided). It is useful after training and test sessions to evaluatemodel performanes.The MLP network topology parameters and QNA training rule parametersare the following:
• input neurons: the number of neurons assigned to the input layer. Itwill orrespond to the number of feature seleted for the experiment,as will be desribed in Chapter 5;
• hidden: the number of hidden layers seleted and the orrespondentnumber of hidden neurons;
• output: the number of output neurons. In all our experiments it willbe always �xed to 1, beause we will only do binary lassi�ations;
• W-step: one of the two stopping riteria. The algorithm stops if ap-proximation error step size is less than this value. A step value equal tozero means to use the parameter MaxIts as unique stopping riterion;
• Restarts: number of restarts of hessian approximation from randompositions, performed at eah iteration;
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• Deay: regularization fator for weight deay. The term dec∗||net_w||2is added to the error funtion, where net_w is the total number ofweights in the network. When properly hosen, the generalization errorof the network is highly improved. This is a fundamental parameter;
• MaxIts: max number of iterations of hessian approximation. If zerothe step parameter is used as stopping riterion;
• CVAL: the k parameter for Cross Validation.In partiular, for what onern this last point, we already mentioned CrossValidation in the ase of the attribute seletion for the random forest method,in Chapter 3. More generally it is an automatized proess used to avoidover�tting on the training set. It ours when a statistial model desribesrandom error or noise instead of the underlying relationship. Generally,over�tting appears when a model is exessively omplex, suh as having toomany parameters relative to the number of observations. A model whihhas been over�t will generally have poor preditive performane, as it anexaggerate minor �utuations in the data. In partiular, over�tting ourswhen a model begins to memorize training data rather than learning togeneralize from trend.Therefore, as we said, Cross Validation is one of the tehniques that an beused to avoid this phenomenon. In our ase, it was done by performing 10di�erent training runs with the following proedure:1. The training set is split into 10 random subsets, eah one omposed by10% of the dataset.2. At eah training run the 90% of the dataset is applied for training andthe exluded 10% for validation. The number of runs is �xed to the kvalue.The analysis of the results of our experiments are based on the so alledonfusion matrix. From a onfusion matrix de�ned as showed in Tab. 4.1 itis possible to derive the following parameters (in apital letters there is theextended name of the parameter, in brakets the label that will be used intables):
• TOTAL EFFICIENCY (E�): ratio between the number of orretlylassi�ed objets and the total number of objets in the data set.

Eff =
N11 +N22

N11 +N12 +N21 +N22
(4.9)

• PURITY OF A CLASS (Pur1 and Pur2): ratio between the numberof orretly lassi�ed objets of a lass and the number of objets



56 4. Mahine learning with Neural NetworksOUTPUT- CLASS 1 CLASS 2TARGET CLASS 1 N11 N12CLASS 2 N21 N22Table 4.1: Struture of the onfusion matrix as obtained from theMLPQNA.lassi�ed in that lass, also known as e�ieny of a lass.
Pur1 =

N11

N11 +N21
(4.10)

Pur2 =
N22

N12 +N22
(4.11)

• COMPLETENESS OF A CLASS (Comp1 and Comp2): ratio betweenthe number of orretly lassi�ed objets in that lass and the totalnumber of objets of that lass in the data set.
Comp1 =

N11

N11 +N12
(4.12)

Comp2 =
N22

N21 +N22
(4.13)

• CONTAMINATION OF A CLASS (Cont1 and Cont2): it is the dualof the purity, namely it is the ratio of mislassi�ed objet in a lassand the number of objets lassi�ed in that lass.
Cont1 = 1− Pur1 =

N21

N11 +N21
(4.14)

Cont2 = 1− Pur2 =
N12

N12 +N22
(4.15)These parameters make possible to desribe ompletely the distribution ofthe patterns after the proess of lassi�ation training and test.



Chapter 5The DAMEWAREinfrastrutureThe data burst that in the reent years is hanging the way to performastrophysial researh, requires a new generation of software tools, largelyautomati, salable and highly reliable. A great importane has been a-quired from theThe DAMEWARE (Data Mining & Exploration Web Appliation REsoure)infrastruture is born with the aim to perform the so alled Knowledge Dis-overy in Databases (KDD), enabling a learning paradigm to treat massivedata sets by the development of new algorithms of lower omputational om-plexity. In this way it is possible to infer knowledge from data and validatethe obtained results. It was an innovative, general purpose, Web-based, VO(Virtual Observatory) ompliant, and distributed data mining infrastruturespeialized in massive data sets exploration with mahine learning methods.Nowadays it has evolved to beome a general purpose platform able to �ndappliations also in other domains of human knowledge and researh.One of the main features of DAME is its usability and salability, onsideringthe fat that KDD is a omplex proess. In fat, we must onsider that onean �nd good results only on a trial and error base by omparing outputs ofdi�erent methods and di�erent experiments with the same method, with alengthy �ne tuning phase that ould result hard to a not experiened user,requiring a good knowledge of the mathematis underlying the methods, ofthe omputing infrastrutures and of the omplex work�ows whih need tobe implemented. For these reasons, through the use of the Web applia-tion paradigm and of an extensive and user friendly doumentation, DAMErepresents the �rst attempt to bring the KDD models to users hiding mostof their omplexity behind an hybrid distributed well designed omputinginfrastruture.Obviously it is important to remember that by making an intensive use ofbakground knowledge it is possible to redue the amount of data that are57



58 5. The DAMEWARE infrastruturerequired by a spei� problem during the learning phase.Using a simple browser, DAME o�ers several tools for data analysis, suhas lustering, lassi�ation, regression, feature extration et., together withmodels and algorithms. No software needs to be installed on the loal ma-hine of the user, on�guring and exeuting experiments on a virtualizedomputing infrastruture. Moreover, it is possible to extend the originallibrary of available tools, by adding plug-in and exeuting ode through asimple guided proedure, without any restrition about the native program-ming language.5.1 Design and arhitetureDAME was oneived to provide the sienti� ommunity with an extensible,integrated environment for data mining and exploration. With this aim, ithad to:
• support the VO standards and formats, in partiular for data interop-erability;
• to abstrat the appliation deployment and exeution, so to providethe VO with a general purpose omputing platform exploiting moderntehnologies.An important aspet that must be onsidered is the a-synhronous aess.In fat, most available web based data mining servies run synhronously, soexeuting jobs during a single HTTP transation. This is obviously simpler,but it does not �t well with long-run tasks, beause all the entities in thehain of ommand must remain up for the duration of the ativity, losing itif anyone stops.For what onern the main struture of the web servie (see Fig. 5.1), in theDAME data mining infrastruture the hoie of any mahine learning mode,a supervised or unsupervised one, is always aompanied by the funtionalitydomain, that is to say the mode to explore the available data (regression,lassi�ation, lustering, et.).The ombination of the hosen data mining model and funtionality makespossible to do experiments, for whih a use ase must be seleted: one mayhave training, test, validation and run use ases, in order to perform, respe-tively, learning, veri�ation, validation and exeution phases. Most modelsprovide also a full use ase, that exeutes all listed ases automatially as asequene.From the tehnologial point of view, DAMEWARE onsists of �ve mainomponents: Front End (FE), Framework (FW), Registry and Data Base(REDB), Driver (DR) and Data Mining Models (DMM).



5.1 Design and arhiteture 59Model Name Category FuntionalityMLPBP Multi Layer Pereptron Supervised Classi�ation, regressionwith Bak PropagationFMLPGA Fast MLP trained by Geneti Algorithm Supervised Classi�ation, regressionMLPQNA MLP with Quasi Newton Approximation Supervised Classi�ation, regressionMLPLEMON MLP with Levenberg-Marquardt Supervised Classi�ation, regressionOptimization NetworkSVM Support Vetor Mahine Supervised Classi�ation, regressionRandomForest Random Forest Algorithm Supervised Classi�ation, regressionESOM Evolving Self Organizing Maps Unsupervised ClusteringK-Means Unsupervised ClusteringSOFM Self Organizing Feature Maps Unsupervised ClusteringSOM Self Organizing Maps Unsupervised ClusteringPPS Probabilisti Prinipal Surfaes Unsupervised Feature ExtrationTable 5.1: Data mining models and funtionalities available in the DAME-WARE framework. Column 1: aronym; olumn 2: extended name; olumn3: ategory; olumn 4: funtionality.

Figure 5.1: The general software arhiteture of DAMEWARE (Cavuoti[12℄).



60 5. The DAMEWARE infrastrutureThe DAME design arhiteture is implemented following the standard LAR(Layered Appliation Arhiteture) strategy, whih leads to a software sys-tem based on a layered logial struture, where di�erent layers ommuniatewith eah other via simple and well-de�ned rules:
• Data Aess Layer (DAL): the persistent data management layer, re-sponsible of the data arhiving system, inluding onsisteny and reli-ability maintenane.
• Business Logi Layer (BLL): the ore of the system, responsible ofthe management of all servies and appliations implemented in theinfrastruture, inluding information �ow ontrol and supervision.
• User Interfae (UI): responsible of the interation mehanisms betweenthe BLL and the users inluding data and ommand I/O and viewsrendering.The main onepts that lay behind the distributed data mining appliationsimplemented in the DAME Suite are based on three issues:
• virtual organization of data: this is an extension of a basi feature ofthe VO;
• hardware resoure-oriented: this is obtained by using omputing in-frastruture, like grid, whih enable parallel proessing of tasks, usingidle apaity, with the aim to obtain large number of instanes runningfor short periods of time;
• software servie-oriented: this is the base of usual loud omputingparadigm. The data mining appliations implemented runs on topof virtual mahines seen at the user level as servies (spei�ally webservies), standardized in terms of data management and working �ow.The hardware infrastruture of DAMEWARE, instead, is based on two sub-networks addressable from an unique aess point, the website, whih pro-vides an embedded aess to the user to all DAME web appliations andservies. The integrity of the system is guaranteed by a registration proe-dure, whih gives the possibility to aess all failities from just one aount.Depending on the omputing and storage power requested by the job andby the proessing load urrently running on the network, an internal meh-anism redirets the jobs to a job-queue in a pre-emptive sheduling sheme.The interation with the infrastruture is ompletely asynhronous and aspeialized software omponent has the responsibility to store o�-line job re-sults in the user storage workspaes, that an be retrieved and downloadedin subsequent aesses. This hybrid arhiteture makes possible to exeutesimultaneous experiments that gathered all together bring the best results.



5.1 Design and arhiteture 61Instead, from the software point of view, DAME is based on the followingfeatures:
• modularity: software omponents with standard interfaing, easy tobe replaed;
• standardization: basially, in terms of information I/O between userand infrastruture as well as between software omponents;
• hardware virtualization: i.e. independent from the hardware deploy-ment platform (single or multi proessor, grid et.);
• interoperability: by following VO requirements;
• expandability: beause many parts of the infrastruture require to beinreased and updated along its lifetime;
• asynhronous interation: there is not a synhronous interation be-tween the end user and the lient server mehanisms, so the user isnot onstrained to remain onneted after launhing an experiment inorder to wait for the end of exeution;
• language-independent programming: this basially onerns the API(Appliation Programming Interfae) forming the data mining modellibraries and pakages. Although most of the available models and al-gorithms were internally implemented, this is not onsidered as manda-tory. The suite provided a Java based standard wrapping system toahieve the standard interfae with multi-language APIs;
• distributed omputing: the omponents an be deployed on the samemahine as well as on di�erent networked omputers;
• pluggable: with the new plugin proedure users an extend the datamining model library integrated into the web app, by simply downloadand run a Java appliation, whih through a driven proedure generatesoure ode to be integrated into the web app software infrastruture.
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Chapter 6DataIn this thesis we used data from a single synopti survey, the CRTS. Thishoie ame after omparing several data sets from di�erent surveys and thefundamental parameters haraterizing them, as is possible to see in Tab.6.1 and 6.2.The survey resulted as the most suitable for our purpose was the CRTS, so,as said before, the atalogs have been reated from this survey. Relativelysmall synopti surveys like CRTS, today, an be onsidered both as sienti�and tehnologial preursors and testbeds for the biggest surveys of the nextfuture, suh as LSST or SKA.6.1 Catalina Real Time Transient SurveyThe Catalina Real Time Transient Survey (Tab. 6.1) makes use of existingsynopti telesopes and image data resoures from the Catalina Sky Survey(CSS). CSS uses three wide-�eld telesopes: the 0.68 m Catalina Shmidt atCatalina Station, AZ, the 0.5 m Uppsala Shmidt (Siding Spring Survey -SSS), at Siding Spring Observatory, NSW, Australia, and the Mt. LemmonSurvey (MLS), a 1.5 m re�etor loated at Mt. Lemmon, AZ. For eahtelesope, a amera with a single, ooled, 4k x 4k bak-illuminated, un�lteredCCD is used. The ombined CSS+SSS+MLS data streams an over up to
≈ 2000 deg2 per night to a limiting magnitude of V ≈ 19 − 20 mag, plusa smaller area (≈ 200 deg2 per night) to a limiting magnitude of V ≈ 21.5mag.The CRTS overs the total area of ≈ 33000 deg2, exluding the Galatiplane within |b| < 10 − 15, down to ≈ 19 − 21 mag per exposure, withinreasing time baselines from 10 min to 8 years; there are now typially
≈ 300 − 400 exposures per pointing, and oadded images deeper than ≈ 23mag.The CRTS has deteted astrophysial transients and variable objets outsidethe Solar System performing searhes in the atalog domain and by the use63



64 6. Data

Survey CRTS PQCoverage 33000 deg2 150000 deg2Coverage per night 2200 deg2/night 500 deg2/nightField of View 8 deg2 9.4 deg2Delination −75 < dec < 70 −25 < dec < 25RA / /Galati latitude |b| > 15 /Nr of passes/�eld/night 4 From 5 to 25f_open 0.7 /E�etive olleting area 2.326 m2
1 m2t_exp 20− 30 se 150 sec/cosδOverall instrument e�ieny 0.7 0.4Full Width Half Maximum 3 2Merit �gure 5470 /Limiting magnitude 21.5 (V) 21.5 (r)Transient deteted 7500 (CSDR2) 4800 (15% on�rmed)Time baseline From 10 min to 6 yrs From hours to yearsPubli data release CSDR2 Publi data release 1.0Number of objets 500 million /Magnitude interval 11.5 < V < 21.5 /Referene for data [19℄ [16℄Inluded surveys CSS, MLS, SSS /Table 6.1: Some useful parameters of CRTS and Palomar Quest (PQ)surveys.



6.1 Catalina Real Time Transient Survey 65

Survey SDSS II PTFCoverage 300 deg2 1/2 of the entire skyCoverage per night / 1000 deg2/nightField of View 3 ∗ 3 deg2 7.78 deg2Delination −1.25 < dec < 1.25 /RA −60 < ra < 60 /Galati latitude b < 0 /Nr of passes/�eld/night / 2f_open / 0.7E�etive olleting area 4 m2
1.131 m2t_exp 54 se 60 seOverall instrument e�ieny 0.4 0.7Full Width Half Maximum 1.5 2Merit �gure / 4820Limiting magnitude 22.5 21Transient deteted 580 1860Time baseline / From 1 min to 5 daysPubli data release DRSN1 /Number of objets 230 million /Magnitude interval / /Referene for data [38℄ [29℄ - [28℄Inluded surveys / /Table 6.2: Some useful parameters of SDSS II and Palomar TransientFatory (PTF) surveys.



66 6. Dataof image subtration. Soures that show signi�ant hanges in brightness, orwhih appear for the �rst time where previously no soures where deteted,are identi�ed. The ontrast threshold is set high (�ux hanges of at least
≈ 1 mag and ≈ 5σ), with the aim to �nd the most dramati, and also mostinteresting, transients.The survey has deteted ≈ 7500 unique, high-amplitude, transients, inlud-ing at least 1800 SN, at least 1000 CVs (the majority of them previouslyunatalogued), over 2500 of blazars/OVV AGN, hundreds of �are stars,et. It was reently made available for download the seond data release(CSDR21), ontaining about 500 million light urves. Photometri data areobtained using SExtrator.It is possible to hoose di�erent searh options into the database2. It ispossible to perform searhes around a single loation (giving Ra and De, thename of the seleted objet or the ID) or around multiple loations, loading adata �le ontaining ID, Ra, and De (with a limit of 100 loations). Moreoverit is possible to perform a searh for period. For every atalog extrated,one an selet the table and the data formats. The database is organized indi�erent atalogs, desribed in the following.Master objets are the soures deteted in oadds (Master frames) from20 CSS images. Objets deteted in individual images are linked to theseobjets based on their position. The mathing radius is a funtion of seeingand telesope resolution. Information about all master images is plaed inthe MasterFrame, whereas the photometry of the objets is in MasteratCSS(MasteratMLS and MasteratSSS for MLS and SSS oadd soures).The individual objet atalogs inlude all the detetions from the North andSouth grid �elds of CSS. Eah detetion is linked to a master soure andplaed in the photometry atalog (Photat). Soures with no math to mas-ter objets are put in the separate Orphan objet atalog (OrphanatCSS).Orphan objets inlude real soures suh as asteroids as well as other tran-sients. Other spurious single detetions are also inluded. However, someobjets have been removed based on quality �ags. Information ommon toan image is plaed in the frame atalog (FrameatCSS).A fundamental feature of the CRTS is its fully open poliy: in fat all de-teted transients are immediately published, with no proprietary period atall, bringing enormous bene�ts to the entire astronomial ommunity andmaximizing the sienti� returns by enouraging follow-up by other groups.6.2 Final atalogWe prepared a atalog with data from the CRTS database, from whih thephotometri features desribed in the paragraph 3.3 were extrated using1http://nesssi.ar.alteh.edu/DataRelease/2http://nesssi.ar.alteh.edu/DataRelease/shema.html



6.2 Final atalog 67the CTSCS web-servie, with 1619 patterns and 29 olumns (name, ra, de,25 photometri features and lass). These data will be used to train theMLPQNA. The atalog is omposed by the following lasses (on the rightthere is the label used in the atalog and in brakets the number of patternsfor eah lass is reported):
• Catalismi Variables - CV (461);
• Supernovae - SN (536);
• Blazar - Bl (124);
• Ative Galati Nulei - AGN (140);
• Flare Stars - Fl (66);
• RR Lyrae - RRL (292).
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Chapter 7Classi�ation experimentsThis hapter desribes the entral part of this thesis. The experimental strat-egy followed in the development of the work is presented and the desriptionof the experiments, with the tables presenting the detailed results obtained.7.1 Experimental strategyBefore desribing in details the experiments, we will summarize the adoptedstrategy and the various steps in the preparation of the atalogs. First of allour work foused only on two-lass lassi�ation, sine it is an exploratorywork and this is the simplest type of lassi�ation. Only some of the availablephotometri features were seleted for the training in the di�erent ases. Infat, for eah experiment, a new atalog was prepared, by seleting only asubset of features plus the binary �ags representing the target lassi�ationvalues. Then, in eah experiment the atalog was randomly split in twoparts, one for training and one for test, ontaining 80% and 20% of theobjets respetively, using the random row shu�e funtion available withinDAMEWARE, in order to ensure a proper overage of the parameter spae.In Tab. 7.1 an example of suh a atalog is presented. All the atalogs inthe following will be based on the same riteria.We used the following strategy to proeed with the experiments:1. A �rst series of experiments was performed in order to �nd the bestinitial on�guration of the MLPQNA lassi�er. The lassi�ation isbetween the two lasses CV and ALL (AGN + SN + Fl + Bl - RRLwere removed to be added again in late experiments).2. To understand what were the best working group of features for thelassi�ation of the previous lasses, we performed a pruning of the fea-tures. We started from a nuleus of features, hosen heuristially, andthen we added the other features, one by one, reursively, seleting theone that gave the best results. Then we repeated the same operation69



70 7. Classi�ation experimentsamplitude beyond1std fpr_mid50 fpr_mid65 std target1.5 0.571429 0.61319 0.806252 1.082759 10.47817 0.33333 0.2247 0.41031 0.29104 01.33274 0.45454 0.71078 0.83724 0.95925 01.36 0.310954 0.279479 0.42138 0.50272 1Table 7.1: Example of few reords in one of the atalogs used for theexperiment, with some features seleted and the target parameter indiatingthe right lassi�ation for all training and test pattern.starting from a di�erent nuleus, hosen by the inspetion of featureshistograms, �nally omparing the results. The main purpose of thismethod was to see what ould be the ideal ombination of features forthis lassi�ation.3. Using the two nulei and the best setup previously obtained, we hangedthe type of lassi�ation, by performing experiments that we shall allfor EXTRA-GALACTIC vs GALACTIC (AGN + Bl vs CV + SN+ Fl), to see if there are improvements with respet to the previousseparation. This de�nition omes from the fat that we grouped to-gether AGN with BL La objets (i.e. extra-galati objets), againstCV+SN+Fl. The inlusion of SN in the latter being due that eventhough they are mainly observed in external galaxies, they still arestars and therefore of a ompletely di�erent ategory with respet toative galati nulei. The idea, in fat, is to explore di�erent types oflassi�ation to test the method in di�erent situations.4. Finally we did experiments adopting the same groups of features usedin Donalek [17℄, to ompare the results obtained with di�erent las-si�ers. In this ase the atalog used was the same of the artile [17℄,with the lassi�ation of the two lasses SN vs ALL (AGN + Bl + CV+ Fl + RRL).Following this strategy we aimed of exploring the performanes of the method,identifying its strength and its weakness, by onsidering also its results withinthe ontext of a wider framework of transient lassi�ation, starting from rawdata up to the �nal lassi�ation.Therefore: for eah experiment (in the ases of the pruning operations, onlyfor the best ones), we repeated the experiment with the same on�gura-tion, but on a new atalog, in whih the two lasses have been preventivelybalaned one eah other. We notied that there is always a great lak ofbalane between the lasses onsidered (it will be lear when we will reportthe number of the patterns omposing the di�erent lasses). So we properly



7.1 Experimental strategy 71

Figure 7.1: Histogram showing a omparison between the e�ieny valuesduring the two phases of training and test in some of the experiments done.Only experiments 6 and 7 uses CVAL.(randomly) ut the atalogs, by leaving the larger lass with about the 5%of patterns more than the smaller one. In this way, we ould study the de-pendene of the results from the number of patterns in the two lasses, andfrom the group of features used.Finally, before fousing our attention on the experiments, we shall antiipatesome of the results obtained, in the subsequent histograms, where we reportthe values of the various parameters obtained from the onfusion matrix fortraining and test phases of more than 20 experiments.The aim is to verify if there is ompatibility between the two values and ifthe lassi�er is working properly.The histograms are reported from Fig. 7.1 to Fig. 7.7 in the next pages.We an see that, exept for some ases, there is a good agreement betweenthe results of the training and test phases. For the ases where this is nottrue, with a variation from 10% to 20%, we have notied that this happensmainly in the �rst experiments, based on CV lassi�ation (the most am-biguous one), and done with groups of features and MLPQNA struture notyet �xed at all. So we think this ould be a good explanation for thesestrong variations, that in the last experiments pratially disappeared. No-tie that, among these experiments, only number 6 and 7 use the k-fold CrossValidation.



72 7. Classi�ation experiments

Figure 7.2: Histogram showing a omparison between the ompletenessvalues of the �rst lass (Catalismi Variables, AGN + Blazar, or Super-novae, depending from the experiments that will be presented in the nextparagraph and that were hosen to over all the experimental phase) duringthe two phases of training and test in some of the experiments done. Onlyexperiments 6 and 7 uses CVAL.

Figure 7.3: Histogram showing a omparison between the ompletenessvalues of the seond lass (ALL the other lasses opposite to the �rst lasseslisted in Fig 7.2, depending from the experiments that will be presented inthe next paragraph and that were hosen to over all the experimental phase)during the two phases of training and test in some of the experiments done.Only experiments 6 and 7 uses CVAL.
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Figure 7.4: Histogram showing a omparison between the purity values ofthe �rst lass (Catalismi Variables, AGN + Blazar, or Supernovae, depend-ing from the experiments that will be presented in the next paragraph andthat were hosen to over all the experimental phase) during the two phasesof training and test in some of the experiments done. Only experiments 6and 7 uses CVAL.

Figure 7.5: Histogram showing a omparison between the purity values ofthe seond lass (ALL the other lasses opposite to the �rst lasses listed inFig. 7.4, depending from the experiments that will be presented in the nextparagraph and that were hosen to over all the experimental phase) duringthe two phases of training and test in some of the experiments done. Onlyexperiments 6 and 7 uses CVAL.



74 7. Classi�ation experiments

Figure 7.6: Histogram showing a omparison between the ontaminationvalues of the �rst lass (Catalismi Variables, AGN + Blazar, or Super-novae, depending from the experiments that will be presented in the nextparagraph and that were hosen to over all the experimental phase) duringthe two phases of training and test in some of the experiments done. Onlyexperiments 6 and 7 uses CVAL.

Figure 7.7: Histogram showing a omparison between the ontaminationvalues of the seond lass (ALL the other lasses opposite to the �rst lasseslisted in Fig. 7.6, depending from the experiments that will be presentedin the next paragraph and that were hosen to over all the experimentalphase) during the two phases of training and test in some of the experimentsdone. Only experiments 6 and 7 uses CVAL.



7.2 Experiments 75Hidden Deay Wstep E� Pur1 Pur2 Comp1 Comp2layers (%) (%) (%) (%) (%)Test1 1 0.01 0.001 78 75 80 65 86Test2 1 0.001 0.001 73 68 75 56 83Test3 2 0.01 0.001 74 70 75 55 85Test4 2 0.001 0.001 73 69 75 54 85Table 7.2: Table showing the di�erent settings of the MLPQNA and theresults obtained in perentage of objets. Class 1 is referred to CV (461patterns), while lass 2 to is referred to ALL the others (866 patterns). Thevalues of Restart and MaxIts parameters are �xed respetively to 60 and
10000 and the number of input neurons is �xed to 5.7.2 ExperimentsIn this paragraph we shall report the detailed desription of the experimentsdone, following the strategy previously depited in paragraph 7.1. We didthree di�erent lassi�ations: CV vs ALL, EXTRA-GALACTIC vs GALAC-TIC and SN vs ALL.7.2.1 Feature spae identi�ationIn this paragraph we desribe the realization of the �rst point of our strategy.After the �rst test experiments, that we will not report here, we foused onthe goal to �nd the best MLPQNA on�guration, by seleting a nuleusof �ve features (Nuleus 1 from now) and working only on lassi�ation ofCatalismi Variables lass (lass 1) versus ALL the others (lass 2 - SN +Bl + AGN + Fl, with RRL lass removed).We had 461 CV and 866 ALL the other patterns. The seleted features are:

• amplitude;
• beyond1std;
• perent_amplitude;
• skew;
• kurtosis.These features were seleted by the heuristi riteria disussed before. Weobtained the results showed in Tab. 7.2.



76 7. Classi�ation experimentsN Feature E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont26 linear_trend 79.70 67.68 86.83 75.28 81.92 24.72 18.087 med_buf_range 80.83 69.77 86.11 70.59 85.63 29.41 14.368 pair_slope_trend 83.46 81.63 84.52 75.47 88.75 24.53 11.25Table 7.3: Table showing the results of the pruning operation for the 1Hidden Layer on�guration. All the values are in perentage of objets.Only the best feature added is reported for every value of N (the number ofinput features). Class 1 refers to CV (461 patterns), lass 2 refers to ALL(866 patterns).N Feature E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont26 linear_trend 78.19 66.67 85.03 72.53 81.14 27.47 18.867 med_buf_range 82.33 70.93 87.78 73.49 86.34 26.51 13.668 fpr_mid65 81.95 80.64 82.66 71.43 88.82 28.57 11.18Table 7.4: Table showing the results of the pruning operation for the 2Hidden Layers on�guration. All the values are in perentage of objets.Only the best feature added is reported for every value of N (the number ofinput features). Class 1 refers to CV (461 patterns), lass 2 refers to ALL(866 patterns).7.2.2 Catalismi Variables vs ALL lassi�ationTo perform the seond point of the strategy previously explained, in the fol-lowing we used the MLPQNA with the �rst and third on�guration, shownin Tab. 7.2, beause they learly obtained the best results. Then, we deidedto perform a pruning of the remaining features, with the aim to minimizee�ets of orrelation and to identify the best group of features for CV las-si�ation (CV: lass 1 - ALL the others: lass 2). We reursively added allthe other features to the initial nuleus, one by one, and seleted the mostsigni�ant. In Tab. 7.3 - 7.4 we report the results of the experiments onlyfor the best feature.At this point, we repeated the experiments for the two best setups (Test 1and 3) and for the pruning, using the best features seleted, as shown inTab. 7.3 - 7.4, with the presriptions indiated in paragraph 7.1, using abalaned atalog. In fat, we notied that in most ases there is a largedi�erene between the values of ompleteness for the two lasses, and thisproblem ould be resolved only by balaning the two lasses. In Tab. 7.5 wereport the results of these experiments.We notie that, exept in the ase of the nuleus 1, there is always a balaningof the ompleteness values, with respet to the previous experiments, but wedid not see any improvement in the total e�ieny, probably due to theredued number of patterns. However, these experiments did not help us to



7.2 Experiments 77N HL E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont25 (Nuleus1) 1 72.25 61.96 81.82 76.00 69.83 24.00 30.175 (Nuleus1) 2 68.06 58.69 76.77 70.13 66.67 29.87 33.336 1 83.77 85.57 81.91 83.00 84.61 17.00 15.386 2 80.10 79.38 80.85 81.05 79.17 18.95 20.837 1 80.63 82.22 79.21 77.89 83.33 22.10 16.677 2 70.68 73.33 68.32 67.35 74.19 32.65 25.818 1 79.58 74.04 86.21 86.52 73.53 13.48 26.478 2 83.25 84.44 82.18 80.85 85.57 19.15 14.43Table 7.5: Table showing the results in perentage with the balaned at-alog CV vs ALL. All the experiments were done using both the topologywith one and two hidden layers. We added the best features seleted by theprevious pruning for every ase (the one showed in Tab. 7.3 - 7.4). Class 1refers to CV (461 patterns), lass 2 refers to ALL (490 patterns).hoose between the 1 or 2 hidden layers topology and, moreover, by repeatingsome experiments, we notied a strong variation in the results (of 3 − 4%in terms of e�ieny). We supposed that the reason for this behavior ouldarise by an ill de�ned seletion of features.Therefore we tried to selet a new nuleus (Nuleus 2) of features, by in-speting their histograms, without dividing the patterns in lasses (e.g. byonsidering the whole atalog), and hoosing the most regular ones. In thisway we obtained a new nuleus omposed by the following features:
• amplitude;
• beyond1std;
• fpr_mid50;
• fpr_mid65;
• std.In Fig. 7.8 we show the histograms of the seleted features.Then we performed a new series of experiments using this nuleus. Eahexperiment was repliated three times, in order to avoid systemati trends.We an observe that the e�ieny variation between the experiments is re-dued, leading to more stable results, by not using CVAL and by freezingthe on�guration of the MLPQNA to a single hidden layer.After that, we performed a pruning with some features (seleted for theirregularity properties by the histograms), by identifying the best one (forinstane, pair_slope_trend). In Tab. 7.6 we report the results.Also in this ase, we deided to repeat the experiments with a balanedatalog. In Tab. 7.7 we report the results obtained.
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Nuleus2 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 75.94 57.83 84.15 62.34 81.48 37.66 18.52Exp2 77.07 57.83 85.79 64.86 81.77 35.13 18.23Exp3 75.19 53.01 85.24 61.97 80.00 38.03 20.006 Features E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 77.44 64.83 84.00 67.82 82.12 32.18 17.88Exp2 76.31 61.54 84.00 66.67 80.77 33.33 19.23Exp3 76.31 70.33 79.43 64.00 83.73 36.00 16.26Table 7.6: Results in perentage of the experiments on the new nuleusof features, obtained by histogram analysis, and the new pruning to add asixth feature. Only the best feature is reported (pair_slope_tren). Class1 refers to CV (461 patterns), lass 2 refers to ALL (866 patterns). Theon�guration adopted is the one of Test 1 of Tab. 7.2.

Nuleus2 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 71.20 67.02 75.26 72.41 70.19 27.59 29.81Exp2 71.20 56.83 85.57 79.10 66.93 20.89 33.06Exp3 69.11 65.96 72.16 69.66 68.63 30.34 31.376 Features bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 67.54 68.82 66.33 65.98 69.15 34.02 30.85Exp2 70.68 72.04 69.39 69.07 72.34 30.93 27.66Exp3 70.68 66.67 74.49 71.26 70.19 28.73 29.81Table 7.7: Table showing the results in perentage with the balaned ata-log CV vs ALL for the Nuleus2. In the six features ase, we added the bestfeature seleted by the previous pruning (pair_slope_trend). Class 1 refersto CV (461 patterns), lass 2 refers to ALL (490 patterns).



7.2 Experiments 79
(a) amplitude (b) beyond1std
() fpr_mid50 (d) fpr_mid65

(e) stdFigure 7.8: Histograms of the features of the Nuleus 2 over all the atalog:(a) amplitude, (b) beyond1std, () fpr_mid50, (d) fpr_mid65, (e) std.In this ase there is not a substantial improvement in the results, probablybeause there is a stronger dependene on this group of features (i.e or-relation phenomena between the nuleus used and the lassi�ation CV vsALL). Furthermore, we deided to stop the pruning at this point beause wedid not notie a substantial improvement by adding the sixth feature, andalso CV experiments, trying a new lass separation.7.2.3 EXTRA-GALACTIC vs GALACTIC lassi�ationAs �xed in point 3 of the experimental strategy of paragraph 7.1, we deidedto proeed with a new lassi�ation, in whih the lassi�er had to separatebetween two new lasses: EXTRA-GALACTIC (Bl + AGN - lass 1) andGALACTIC (CV + SN + Fl - lass 2) objets. From this point we shalluse only the on�guration with one hidden layer and without using CVAL,whih seems to indue instability in the results, probably due to the verylimited number of input patterns.We had 264 galaxies (124 Bl and 140 AGN) and 1063 stars (461 CV, 536



80 7. Classi�ation experimentsNuleus1 Nuleus2amplitude amplitudebeyond1std beyond1stdperent_amplitude fpr_mid50skew fpr_mid65kurtosis stdTable 7.8: The two main nulei of features obtained from the previousanalysis, that were used in the experiments.Nuleus1 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 83.46 61.40 89.47 61.40 89.47 38.60 10.53Exp2 84.21 56.14 91.87 65.31 88.48 34.69 11.52Exp3 84.59 57.89 91.87 66.00 88.89 34.00 11.11Nuleus2 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 85.34 65.57 91.22 68.96 89.90 31.03 10.10Exp2 87.22 67.21 93.17 74.54 90.52 25.45 9.48Exp3 89.47 70.49 95.12 81.13 91.55 18.87 8.45Table 7.9: Results in perentage of the EXTRA-GALACTIC vs GALAC-TIC experiments for the two nulei of Tab. 7.8. The experiments are re-peated for three times with the same network on�guration (the one usedfor Test 1 in Tab. 7.2, without ross validation). Class 1 refers to EXTRA-GALACTIC (264 patterns) objets, Class 2 refers to GALACTIC (1063 pat-terns) objets.SN and 66 Fl). As in the previous experiments, we used the two estab-lished nulei of features and eah experiment was repliated three times. Wereapitulate the omposition of the two nulei in Tab. 7.8.The results obtained are reported in Tab. 7.9. We notied a great improve-ment in the lassi�ation proess with this method, so we were enouragedto proeed �rst with the experiments using a balaned atalog (the resultsfor ompleteness however show a great di�erene per lass also in this ase),and then with a pruning operation on the Deay parameter.We reall that this is one of the internal model parameters, indiating theweight regularization deay. If aurately hosen, there ould be an impor-tant improvement of the generalization error of the trained neural network,with also an aeleration of training.In fat there is a strong dependene of the Deay from the spei� ase weare onsidering, the number and type of features, and so on.For what onerns the experiments with balaned atalog, we obtained theresults reported in Tab. 7.10. These results show a balaning in both ases,but in the �rst ase there is a global worsening in the results, while in theseond ase there is a smaller e�et whih however still leads to a good



7.2 Experiments 81Nuleus1 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 74.31 79.49 71.43 60.78 86.21 39.21 13.79Exp2 77.98 71.79 81.43 68.29 83.82 31.71 16.18Exp3 73.39 76.92 71.43 60.00 84.74 40.00 15.25Nuleus2 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 83.49 78.57 88.68 88.00 79.66 12.00 20.34Exp2 80.73 78.57 83.02 83.02 78.57 16.98 21.43Exp3 81.65 82.14 81.13 82.14 81.13 17.86 18.87Table 7.10: Results in perentage of the experiments EXTRA-GALACTIC(lass 1 - 264 patterns) vs GALACTIC (lass 2 - 280 patterns) for the twodi�erent Nulei, with the balaned atalog, using the same network on�g-uration of Tab. 7.9 (in partiular the Deay parameter remains �xed to0.01).Nuleus1 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 86.09 52.63 95.21 75.00 88.05 25.00 11.95Exp2 86.09 52.63 95.21 75.00 88.05 25.00 11.95Exp3 86.09 52.63 95.21 75.00 88.05 25.00 11.95Nuleus2 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 89.85 73.77 94.63 80.36 92.38 19.64 7.62Exp2 89.85 72.13 95.12 81.48 91.98 18.52 8.02Exp3 89.85 72.13 95.12 81.48 91.98 18.52 8.02Table 7.11: Results in perentage of the EXTRA-GALACTIC vs GALAC-TIC experiments for the two nulei of Tab. 7.8, after the pruning operationon the Deay parameter. Only the best results, with the seleted Deayvalue of 0.5, are reported. The experiments are repeated for three timeswith the same network on�guration. Class 1 refers to EXTRA-GALACTIC(264 patterns) objets, Class 2 refers to GALACTIC (1063 patterns) objets.
result. Again we an identify this behavior in the dependene from the groupof features used. Conerning instead the pruning of the Deay parameter,we obtained that the best value is 0.5, with the results for the two nulei,respetively, reported in Tab. 7.11.We proeeded again by balaning the lasses, with the goal to obtain re-sults with less di�erene in the ompleteness values. The results are showedin Tab. 7.12. This shows the improvement, together with the great balaningbetween lasses, for the seond nuleus. Therefore in the subsequent exper-iments we will use the seond nuleus, and a 0.5 Deay value, beause thisis the on�guration that gives the best results.



82 7. Classi�ation experimentsNuleus1 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 76.15 79.49 74.28 63.26 86.87 36.73 13.33Exp2 77.06 79.49 75.71 64.58 86.88 35.42 13.11Exp3 76.15 79.49 74.28 63.26 86.87 36.73 13.33Nuleus2 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 89.91 87.50 92.45 92.45 87.50 7.55 12.50Exp2 90.82 89.28 92.45 92.59 89.09 7.41 10.91Exp3 90.82 89.28 92.45 92.59 89.09 7.41 10.91Table 7.12: Results in perentage of the experiments EXTRA-GALACTIC(lass 1 - 264 patterns) vs GALACTIC (lass 2 - 280 patterns) for the twodi�erent nulei, with the balaned atalog and the Deay value set to 0.5Nuleus2 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 79.70 72.75 84.97 78.09 80.74 21.90 19.25Exp2 81.20 76.99 84.31 78.38 83.22 21.62 16.77Exp3 81.20 76.99 84.31 78.38 83.22 21.62 16.77Table 7.13: Results in perentage of the SN vs ALL experiments for theNuleus 2 of Tab. 7.8. The Deay parameter is �xed to the value of 0.5.Class 1 refers to SN (536 patterns), Class 2 refers to ALL the others (791patterns).7.2.4 Supernovae experimentsFinally, as stated in the fourth point of paragraph 7.1, we ontinued ourwork by performing experiments for Supernovae (Class 1), versus ALL otherlasses (Class 2). In this series of experiments we used the best MLPQNAstruture previously �xed. For the �rst group of experiments we used thenuleus that gave us the best results (Nuleus2 - Tab. 7.8) obtaining the re-sults reported in Tab. 7.13 (we had 536 SN and 791 ALL the other patterns).Proeeding instead with the usual balaning of the atalog, we obtained theresults showed in Tab. 7.14.Nuleus2 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 77.37 76.41 78.26 76.41 78.26 23.58 21.74Exp2 77.37 76.41 78.26 76.41 78.26 23.58 21.74Exp3 78.28 79.24 77.39 76.36 80.18 23.64 19.82Table 7.14: Results in perentage of the SN vs ALL experiments for theNuleus 2 of Tab. 7.8 with a balaned atalog. The Deay parameter is �xedto the value of 0.5. Class 1 refers to SN (536 patterns), Class 2 refers to ALLthe others (566 patterns).



7.2 Experiments 83This leads to a better balaning of the ompleteness values but also to theworsening of the overall results. After that, we deided to make a ompar-ison with the results of Donalek [17℄, whih worked on the same types oflassi�ations and with the same atalog, but using di�erent lassi�ers, i.e.K-nearest-neighbor (KNN) and Deision Trees (DT). Therefore we addedagain the sixth lass ontaining RR Lyrae (536 SN and 1083 ALL the otherpatterns) to our atalog, in order to obtain the same atalog as in the artileonsidered. We then performed the experiments with our MLPQNA model,but using some groups of features hosen by various feature seletion au-tomated methods, from Donalek [17℄. In Donalek [17℄ the feature seletionmethod are:
• Fast Relief Algorithm (reliefF): simple but e�ient proedure to esti-mate the quality of attributes aording to how well their values dis-tinguish between istanes;
• Fisher Disriminant Ratio (fdr): it an be used to rank a number offeatures with respet to their lass-disriminatory power;
• Correlation-based Feature Seletion (fs): it is a method whih seletsfeatures that have low redundany and results strongly preditive of asingle lass, onsidering that features strongly preditive of a lass arehighly orrelated with that lass and unorrelated with eah other;
• Fast Correlation Based Filter (fbf): it is a supervised �lter basedfeature seletion algorithm, similar to fs;
• Multi Class Feature Seletion (mfs): it is an unsupervised featureseletion method based on the spetral analysis of the data.In Tab. 7.15 we report the groups of features used by Donalek [17℄ for thevarious method. By assuming the same groups of features as in Donalek[17℄, we obtained the results reported in Tab. 7.16. We indiated also theolumn with the mislassi�ed objets, to make a omparison with the resultsobtained in the artile previously indiated (Tab. 7.17).As it an be seen our results are omparable to those obtained by Donalek[17℄, espeially in the ase of the fs/fbf and fdr methods (we report justthese detailed results here, in the following we will furnish results for all thedi�erent methods of feature seletion in a omparing table - Tab. 8.1), butwe must however note a rather large di�erene between the ompletenessvalues.Therefore we repeated the usual proedure, obtaining the results reportedin Tab. 7.18. We obtained good results in the last ase only (fdr group offeatures). Then we deided to proeed with a new pruning on the Deayparameter for the two best groups previously indiated (bs/fbf and fdrmethods), with the goal to improve our results. The pruning resulted in an



84 7. Classi�ation experimentsreliefF fs/fbf mfs fdramplitude beyond1std max_slope fpr_mid50beyond1std linear_trend perent_amplitude linear_trendfpr_mid80 perent_amplitude pdfp pdfpskew kurtosis skewstd kurtosismagratio stdTable 7.15: The di�erent groups of features used for the experiments asin Donalek [17℄. These groups were determined via di�erent automatedmethods for feature seletion.ReliefF E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 77.16 22.84 60.91 85.51 68.37 80.97 31.63 19.03Exp2 77.47 22.53 66.36 83.18 66.97 82.79 33.03 17.21Exp3 77.47 22.53 58.18 87.38 70.33 80.26 29.67 19.74fs/fbf E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.88 15.12 54.74 97.38 89.65 83.83 10.34 16.16Exp2 85.49 14.51 56.84 97.38 90.00 84.47 10.00 15.53Exp3 85.49 14.51 56.84 97.38 90.00 84.47 10.00 15.53mfs E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 64.51 35.49 29.46 83.02 47.83 69.02 52.17 30.98Exp2 64.51 35.49 29.46 83.02 47.83 69.02 52.17 30.98Exp3 64.51 35.49 29.46 83.02 47.83 69.02 52.17 30.98fdr E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.88 15.12 71.17 92.02 82.29 85.96 17.71 14.03Exp2 85.80 14.20 71.17 93.43 84.95 86.15 15.05 13.85Exp3 86.11 13.89 70.27 94.37 86.67 85.90 13.33 14.10Table 7.16: Results in perentage of the experiments with the di�erentgroups of features of Tab. 7.15. The olumn Mislass indiates the perent-age of mislassi�ed objet, as the omplement of the e�ieny parameter.Class 1 refers to SN (536 patterns), Class 2 refers to ALL the others (1083patterns). The Deay parameter is �xed to the value of 0.5 for all the ex-periments. Feature Seletion Strategy KNN Loss DT LossReliefF 22% 15%CFS 24% 17%FCBF 24% 17%MCFS 32% 19%FDR 22% 16%Table 7.17: Perentage of mislassi�ed objets, obtained by Donalek [17℄,using two di�erent lassi�ers.



7.2 Experiments 85ReliefF bal. E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 76.47 23.53 78.38 74.54 75.65 77.36 24.35 22.64Exp2 76.47 23.53 78.38 74.54 75.65 77.36 24.35 22.64Exp3 78.28 21.72 81.08 75.45 76.92 79.81 23.08 20.19fs/fbf bal. E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 78.73 21.27 58.09 97.41 95.31 71.97 4.69 28.02Exp2 78.73 21.27 59.05 96.55 93.94 72.26 6.06 27.74Exp3 78.73 21.27 59.05 96.55 93.94 72.26 6.06 27.74mfs bal. E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 64.70 35.30 76.58 52.73 62.04 69.05 37.96 30.95Exp2 64.70 35.30 76.58 52.73 62.04 69.05 37.96 30.95Exp3 64.70 35.30 76.58 52.73 62.04 69.05 37.96 30.95fdr bal. E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 83.71 16.29 80.58 86.44 83.84 83.61 16.16 16.39Exp2 82.35 17.65 80.58 83.89 81.37 83.19 18.63 16.81Exp3 84.61 15.39 81.55 87.29 84.85 84.43 15.15 15.57Table 7.18: Results in perentage of the experiments with the di�erentgroups of features of Tab. 7.15, after balaning atalogs. The olumn Mis-lass indiates the perentage of mislassi�ed objet, as the omplement ofthe e�ieny parameter. Class 1 refers to SN (536 patterns), Class 2 refersto ALL the others (566 patterns). The Deay parameter is �xed to the valueof 0.5 for all the experiments.overall improvement of the results, by using di�erent best Deay values forthe two di�erent group of features, respetively, 0.05 for the fs/fbf groupand 0.005 for the fdr one. The results are reported in Tab. 7.19 - 7.20.In the �rst ase, we ould notie an improvement of about 2-3%, while inthe seond ase the improvement is smaller. Moreover, by balaning theatalog also in this ase and by repeating the experiments, using the respe-tive best values of Deay previously obtained, we found the values reportedin Tab. 7.21 - 7.22.With the aim to understand if the worsening of the overall results is due tothe redution of the number of patterns in the balaned ases, we repeatedthe experiments for the fs/fbf and fdr groups of features with a reduedatalog (randomly ut), ontaining the same total number of objets for thebalaned ase (1102 patterns), but without balaning the two lasses. So wehad 372 SN (lass 1) and 730 ALL the others (lass 2). We repeated theexperiments in the two ases with Deay parameter �xed to 0.5, and withthe best respetive best values of Deay obtained after the pruning. Theresults are reported in Tab. 7.23 - 7.24.We annot notie a worsening of the results, as in the balaned experiments,but o� ourse the results obtained show the previous strong �utuation inthe values of ompleteness for the two lasses. But we an say that, at leastin these ases, there is not a strong dependene from the number of patterns.



86 7. Classi�ation experimentsDeay 0.5 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.88 15.12 54.74 97.38 89.65 83.83 10.34 16.16Exp2 85.49 14.51 56.84 97.38 90.00 84.47 10.00 15.53Exp3 85.49 14.51 56.84 97.38 90.00 84.47 10.00 15.53Deay 0.05 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 87.34 12.66 67.37 95.63 86.49 87.60 13.51 12.40Exp2 87.65 12.35 67.37 96.07 87.67 87.65 12.33 12.35Exp3 87.65 12.35 67.37 96.07 87.67 87.65 12.33 12.35Table 7.19: Best results in perentage of the pruning experiments for thefs/fbf group of features of Tab. 7.15. The olumn Mislass indiatesthe perentage of mislassi�ed objet, as the omplement of the e�ienyparameter. Class 1 refers to SN (536 patterns), Class 2 refers to ALL theothers (1083 patterns). Previous results for Deay 0.5 are also reported foronveniene of the reader.Deay 0.5 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.88 15.12 71.17 92.02 82.29 85.96 17.71 14.03Exp2 85.80 14.20 71.17 93.43 84.95 86.15 15.05 13.85Exp3 86.11 13.89 70.27 94.37 86.67 85.90 13.33 14.10Deay 0.005 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 86.11 13.89 78.38 90.14 80.55 88.89 19.44 11.11Exp2 86.11 13.89 78.38 90.14 80.55 88.89 19.44 11.11Exp3 86.11 13.89 79.28 89.67 80.00 89.25 20.00 10.75Table 7.20: Best results in perentage of the pruning experiments for thefdr group of features of Tab. 7.15. The olumn Mislass indiates the per-entage of mislassi�ed objet, as the omplement of the e�ieny parameter.Class 1 refers to SN (536 patterns), Class 2 refers to ALL the others (1083patterns). Previous results for Deay 0.5 are also reported for onvenieneof the reader.Deay 0.5 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 78.73 21.27 58.09 97.41 95.31 71.97 4.69 28.02Exp2 78.73 21.27 59.05 96.55 93.94 72.26 6.06 27.74Exp3 78.73 21.27 59.05 96.55 93.94 72.26 6.06 27.74Deay 0.05 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 77.37 22.63 64.76 88.79 83.95 73.57 16.05 26.43Exp2 78.28 21.72 64.76 90.52 86.08 73.94 13.92 26.06Exp3 79.64 20.36 66.67 91.38 87.50 75.18 12.50 24.82Table 7.21: Best results in perentage of the pruning experiments for thefs/fbf group of features of Tab. 7.15, using balaned atalogs. The olumnMislass indiates the perentage of mislassi�ed objet, as the omplementof the e�ieny parameter. Class 1 refers to SN (536 patterns), Class 2 refersto ALL the others (566 patterns). Previous results for Deay 0.5 are alsoreported for onveniene of the reader.
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Deay 0.5 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 83.71 16.29 80.58 86.44 83.84 83.61 16.16 16.39Exp2 82.35 17.65 80.58 83.89 81.37 83.19 18.63 16.81Exp3 84.61 15.39 81.55 87.29 84.85 84.43 15.15 15.57Deay 0.005 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 82.35 17.65 82.52 82.20 80.19 84.35 19.81 15.65Exp2 81.45 18.55 75.73 86.44 82.98 80.31 17.02 19.68Exp3 78.73 21.27 83.49 74.58 74.14 83.81 25.86 16.19Table 7.22: Best results in perentage of the pruning experiments for thefdr group of features of Tab. 7.15, using balaned atalogs. The olumnMislass indiates the perentage of mislassi�ed objet, as the omplementof the e�ieny parameter. Class 1 refers to SN (536 patterns), Class 2 refersto ALL the others (566 patterns). Previous results for Deay 0.5 are alsoreported for onveniene of the reader.
Deay 0.5 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 87.78 12.22 70.89 97.18 93.33 85.71 6.67 14.28Exp2 87.78 12.22 70.89 97.18 93.33 85.71 6.67 14.28Exp3 87.78 12.22 70.89 97.18 93.33 85.71 6.67 14.28Deay 0.05 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 87.78 12.22 75.95 94.37 88.23 87.58 11.76 12.42Exp2 87.33 12.67 77.21 92.56 85.91 88.00 14.08 12.00Exp3 88.23 11.77 75.95 95.07 89.55 87.66 10.45 12.34Table 7.23: Results in perentage for the redued atalog with the fs/fbfgroup of features of Tab. 7.15. The redued atalog has the same totalnumber of objets of the balaned ase (1102 patterns), but the lasses, 372SN (lass 1) and 730 ALL the others (lass 2), are not balaned. The olumnMislass indiates the perentage of mislassi�ed objet, as the omplementof the e�ieny parameter. The values used for the Deay parameter arethe initial one of 0.5 and the best one (0.05) obtained for this group afterthe pruning operation.
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Deay 0.5 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.61 15.39 68.42 93.10 83.87 84.90 16.13 15.09Exp2 82.80 17.20 64.47 92.41 81.67 83.23 18.33 16.77Exp3 83.71 16.29 67.10 92.41 82.26 84.28 17.74 15.72Deay 0.005 E� Mislass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.61 15.39 71.05 91.72 81.82 85.81 18.18 14.19Exp2 83.26 16.74 69.74 90.34 79.10 85.06 20.89 14.93Exp3 82.35 17.65 71.05 88.27 76.06 85.33 23.94 14.67Table 7.24: Results in perentage for the redued atalog with the fdrgroup of features of Tab. 7.15. The redued atalog has the same totalnumber of objets of the balaned ase (1102 patterns), but the lasses, 372SN (lass 1) and 730 ALL the others (lass 2), are not balaned. The olumnMislass indiates the perentage of mislassi�ed objet, as the omplementof the e�ieny parameter. The values used for the Deay parameter arethe initial one of 0.5 and the best one (0.005) obtained for this group afterthe pruning operation.



Chapter 8ConlusionsAs disussed in the introdution, Time Domain Astronomy, or TDA, isamong the most hallenging and rapidly evolving �elds of Astrophysis.TDA, in fat, is ruial both to better understand old phenomena (suhas stellar variability, ative galati nulei, supernovae) and to disover newones. From a pratial point of view, TDA presents formidable tehnologialhallenges whih have already hanged, and even more so will do in the fu-ture, the methods, problems and goals of everyday astronomial pratie. Aswe said in the introdution, the future of observational astrophysis will beperformed mainly by extrating the useful information from huge datasetsprodued by a new generation of instruments. As a results of this hangingsenario, astronomers will need to automatize as muh as possible the pro-edures for data analysis and for the interpretation of the data. This thesisadopted this new perspetive and foused on the use of a neural networkto lassify transients as a �rst step towards produing a framework wheredi�erent lassi�ers will work in ollaborative manner on the same data toobtain a lassi�ation of variable objets reliable, aurate and reproduible.This thesis made use of the DAMEWARE infrastruture, that representsa ruial tehnologial improvement in the onstrution of an environmentwhere everyone an work on data, with powerful instruments, in a simple,standardized and aessible way.We performed three types of experiments (all binary lassi�ations): Cat-alismi Variables versus all other lasses, EXTRA-GALACTIC (AGN +Blazars) versus GALACTIC (Supernovae + Catalismi Variables + Flarestars), Supernovae versus all other lasses.These experiments were done with the aim to test di�erent types of lassi�-ations to verify the behavior of the neural network on the di�erent lassesinvolved. We also varied the groups of features used, to analyze the de-pendene of the lassi�ation performanes on them. Finally, with the lastseries of experiments, Supernovae versus ALL, we ompared our results tothose obtained by Donalek [17℄, who worked on the same dataset but using89



90 8. Conlusionsdi�erent lassi�ers and di�erent automated methods of feature seletion.More in detail, the results obtained during the �rst set of experiments, (Cata-lismi Variables vs ALL), even after the pruning operation, produed resultswhih are the worst ones, probably due to the wrong balaning of the twolasses. However these experiments allowed us to de�ne a good topology forthe MLPQNA and provided some nulei of features whih beame the start-ing point for the subsequent work. This operation also resolved the problemof the �utuations between the training and test phases, as it is showed inthe histograms from Fig. 7.1 to Fig. 7.7.In the EXTRA-GALACTIC vs GALACTIC experiments, despite the fatthat the patterns were not balaned, the results were muh better, verylikely beause the distintion between the two lasses has a deeper physialmeaning, whih was re�eted in di�erent temporal behaviors.Finally, in the experiments regarding Supernovae vs ALL, using the samegroups of features as in Donalek [17℄, we notied an improvement with respetto the experiments done with our seletion of features. The results obtainedwith two of these groups of features are omparable and we deided to tryto improve them by a pruning on the Deay parameter. The pruning leadto a substantial improvement in the �rst ase, a smaller one in the seondase; on�iting results whih were aused by a dependene of the best Deayvalue on the di�erent groups of seleted features.In Tab. 8.1 we ompare our results and those obtained in [17℄. These en-ouraging values show that the MLPQNA an be onsidered a good tool fortransient lassi�ation, espeially in view of the fat that this result must beonsidered only preliminary and an be largely improved in the future.Furthermore, we notied that, by balaning the lasses in the training set,in most ases, we obtained a dereasing di�erene between the ompletenessvalues for the two lasses, but also a general worsening of all the parameterswith respet to the not-balaned ase. This is likely due to the reduednumber of patterns after the balaning. In some ases, by repeating thesame experiments, we notied also an inrease in the �utuations. We alsoperformed experiments with a redued, but non balaned, atalog, with theaim to verify whether there was a dependene of the results on the numberof patterns in order to try to understand the worsening of the overall results.These experiments, performed only for our best ases (fs/fbf and fdr),dislaimed this hypothesis, at least in the ase SN vs ALL. This aspet,however, will require further analysis.Despite of this fat, we an onsider as the most robust the results obtainedby balaning the training data, whih produed better lassi�ation in thetwo lasses (as demonstrated by the redued di�erene between omplete-ness values). The balane, though not improving our results, allowed usto evaluate the strong dependene of the lassi�ation proess and of theMLPQNA behavior on the number of patterns and on the groups and num-ber of features used. The results obtained in the balaned ase are reported



91Feature seletion KNN DT MLPQNA MLPQNA bal. MLPQNA red.strategy (%) (%) (%) (%) (%)reliefF 22 15 23 23 /fs/fbf 24 17 12 22 12mfs 32 19 35 35 /fdr 22 16 14 19 16Table 8.1: Comparison between the results obtained by Donalek [17℄ withtwo di�erent lassi�ers and those obtained by us with the MLPQNA andusing the same group of features. The perentage indiates the number ofmislassi�ed objets (average on the three experiments) as a omplement ofthe e�ieny. We report also the balaned results, but it is lear that theseare not omparable with the results of [17℄, that are not balaned, and theresults with the redued atalog, as reported in Tab. 7.23 - 7.24. We reallalso that in the two ases of reliefF (Fast Relief Algorithm) and mfs (Multi-Class Feature Seletion) groups of features, the results are for a Deay valueof 0.5, beause we did not perform the pruning operation. The redued ase,instead, was done only for fs/fb (Correlation-based Feature Seletion/FastCorrelation Based Filter) and fdr (Fisher Disriminat Ratio) ases (our bestases), to verify the existene of a dependene from the number of patternsthat ould explain the worsening of the overall results in the balaned ases.in Tab. 8.1, though they annot be onsidered omparable with the resultsobtained in Donalek [17℄, beause these were not performed using a balanedtraining set.The �nal purpose of the lassi�ation proess with neural networks, togetherwith the omparison with other methods, as we said before, must be seenin the framework depited by the lassi�ation shema of Fig. 8.1. Wefoused just on a small subset of this lassi�ation problem, exempli�edin Fig. 8.1, whih will require a muh more omplex hierarhi work�ow.Starting from raw data, it aims on ahieving a preise lassi�ation, usingdi�erent methods and feature seletion algorithms, that, also with the helpof external knowledge, in the next future, will make possible to realize aomplete automatized lassi�ation proess.
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Figure 8.1: Classi�ation shema with di�erent lassi�ers (Donalek [18℄). Aweighted average of the results obtained by di�erent methods an representa simple way to obtain the �nal lassi�ation, with the help of some externalknowledge.
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