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Chapter 1Introdu
tion
The rising era of synopti
 imaging surveys has opened the ex
iting 
hapter oftime-domain astrophysi
s: one of the fastest growing areas of astrophysi
alresear
h. A number of important phenomena 
an, in fa
t, be studied onlyin this domain, while new and previously unknown phenomena expe
t to bedis
overed. The purpose of this thesis is the 
lassi�
ation of astrophysi
altransients in synopti
 surveys, using data mining te
hniques and methods.The exploration of the temporal domain in sear
h of variable obje
ts andtransients has known a 
onstant expansion during the last few years, im-pa
ting on all bran
hes of astrophysi
al resear
h. With the term variablewe refer to sky obje
ts whose luminosity presents a more or less a

entuatevariation in time. As we shall see in what follows, the understanding of theunderlying physi
al me
hanisms responsible for the variability represents a
ru
ial aspe
t in explaining a great variety of phenomena, from Supernovae(SN), to variable stars and A
tive Gala
ti
 Nu
lei (AGN), in
luding some ofthe most energeti
 events in the Universe, and the produ
ed data volumeshave begun to over
ome what is possible to visually inspe
t even for largeteams of astronomers, and also 
rowds of "
itizen s
ientists" are not su�-
ient to the task. So, an in
reasingly 
entral role of software and hardwareframeworks is needed in order to supply the traditional roles of humans inthe real-time loop. In this not so futuristi
 s
enario, data need to be au-tomati
ally transported, pro
essed, 
alibrated, and ingested into databaseswithout human intervention.Ea
h step of su
h data �ow presents many 
hallenges: from the dis
overy tothe dete
tion, to 
lassi�
ation and, possibly, to the automati
 setup of follow-ups for the most interesting and pe
uliar variable obje
ts. This requires toemploy signi�
ant resour
es, in parti
ular for what 
on
erns the observingtime and the te
hnologies used. This will be
ome even more 
ogent in thenear future when a new generation of instruments (su
h as LSST - Large Syn-7
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tionopti
 Survey Teles
ope1, SKA - Square Kilometer Array2, et
.) will produ
ean in
reasingly large amounts of 
omplex data every night. For these instru-ments a massive appli
ation of intelligent and automati
 multi-dis
iplinarymethods, en
losed under the umbrella of Astroinformati
s (that 
an be 
on-sidered as a new s
ienti�
 matter, standing in the more general family 
alledX-informati
s), will be an absolute must and in fa
t, Astroinformati
s inparti
ular and X-informati
s in general, 
on�gure as the "fourth paradigm"of s
ienti�
 resear
h (the others are experimentation, theory and simulation- [27℄). In other words, Information Te
hnologies (IT), Data Mining (DM)and Ma
hine Learning (ML) methods need to be
ome an indispensable partof the game.A 
entral role, in this sense, has been a
quired by the Virtual Observatoryinfrastru
ture. It is a proje
t that has the aim to 
reate a new way to 
on-stru
t astrophysi
al resear
h. It is developed in an international frameworkfrom national resear
h agen
ies and expanded 
ollaborations. The majoraim of the proje
t is to make possible to resear
hers and students a simplea

ess to data ar
hives, resour
es and appli
ations through the web. Pro-grams that are needed for data analysis are available in pre-
ompiled pa
kets(for example viewing instruments, statisti
al analysis, regression and all that
an be useful to extra
t knowledge from astronomi
 data). Therefore, theVirtual Observatory is the result of 
onvergen
e of resear
h interests andinformati
s and information te
hnologies.The appli
ation of these methodologies to the dis
overy and 
lassi�
ation oftransients (whi
h is the main target of the present work) 
an be approa
hedfrom two di�erent points of view: (i) online treatment of data and (ii) o�inedata analysis. In fa
t, in some 
ases it is important to qui
kly re
ognize thetransient 
andidates and to perform a rapid follow-up almost in real time,while, in other 
ases, o�ine pro
essing may be required to a
hieve a deeperunderstanding of the data.In this work we shall fo
us on o�ine 
lassi�
ation of variable obje
ts, makinguse of ma
hine learning approa
hes, in parti
ular the MLPQNA method([9℄ - [8℄), and analyzing alternative ones like the random forest method([21℄ - [20℄ - [42℄). We will use intensively some statisti
al methods like theLomb-S
argle [39℄, and we shall make extensive use of the Calte
h TimeSeries Chara
terization Servi
e, a web servi
e devoted to the derivation ofphotometri
 features asso
iated with light 
urves. Most of the work willbe performed using the DAMEWARE (Data Mining & Exploration WebAppli
ation REsour
e) infrastru
ture. The �nal purpose is to perform astep for a more pre
ise 
lassi�
ation based on several methods that in thenext future will allow a fully automatized 
lassi�
ation of variable obje
tsand transients. In this way, as it has been said before, it shall be possible to1http://www.lsst.org/lsst/2https://www.skateles
ope.org/
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h a better 
omprehension of the known phenomena and to dis
over newones yet unknown.1.1 Time Domain Astronomy: the pastSin
e the early days, time domain astronomy (hereafter TDA) has enor-mously grown, in
luding all wavelength ranges and many di�erent parts ofastrophysi
s. In fa
t, in the history of Astronomy, studies of transient phe-nomena have always played a key role. In this paragraph we shall outlinejust a few among the most relevant fa
ts that helped to develop modernTDA. First of all let us introdu
e the distin
tion between photometri
 andastrometri
 transients.It is known that astrometry is the bran
h of Astronomy that involves pre
isemeasurements of positions and movements of stars and other 
elestial bod-ies. Photometry, instead, 
on
erns with measuring the �ux, or intensity ofan astronomi
al obje
t ele
tromagneti
 radiation, parti
ularly refering overdi�erent wavelength bands of radiation. Therefore, we 
an de�ne astro-metri
 transients those obje
ts whose variability is due to 
hanges in theirpositions on the sky. This is the 
ase, for example, of asteroids, 
omets, et
.Conversely, photometri
 transients 
an be de�ned as those obje
ts whosevariability is due to variations in the luminosity of the obje
t 
aused eitherby intrinsi
 or extrinsi
 phenomena. To the �rst family belong obje
ts inwhi
h the variability is 
aused by physi
al variations in its stru
ture whi
hmodify also the luminosity �ux. It 
ould be the 
ase of supernovae, AGN,
ata
lismi
 variables, and so on. Extrinsi
 variables are instead obje
ts wherethe variability is indu
ed by other phenomena, su
h as for instan
e e
lipsingvariables.Modern Astrophysi
s was born with the �rst systemati
 study of a transient.In fa
t, in 1782 the English amateur astronomer John Goodri
ke observedthe variable star Algol (Beta Persei). We have to re
all that, in the an
ientera, the stati
 sidereal universe was outside s
ienti�
 investigation, be
auseit was 
onsidered un
hangeable. Goodri
ke noti
ed the strange variabilityof Algol3 and proposed several me
hanisms to explain it, as the presen
e ofshape e�e
ts (non spheri
al simmetry) or the passage of a dark body in frontof the star. This fa
t brought to the attention of the s
ienti�
 
ommunitythe variability of the universe and we 
an say that it gave life for the �rsttime to Astrophysi
s, as a dis
ipline that studies the physi
al me
hanismsand the 
auses of astronomi
al phenomena.Meanwhile, in 1774 Charles Messier had published the Catalogue des Neb-uleuses et des Amas d'Etoiles nowadays known as theMessier Catalog, whi
h3We wish to stress that Algol is a quite bright obje
t 
learly visible by naked eye andpresents a strong variability. The fa
t that none before Goodri
ke seems to have expli
itlynoted the phenomenon tells a lot about the strenght of the Aristoteli
 dogma.
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an be 
onsidered as an involuntary by-produ
t of transient astronomy. Infa
t, he was a "
omet hunter" and he 
ompiled his 
atalog of nebulae withthe aim to better disentangle new 
omets (astrometri
 transients) from neb-ulae (stationary obje
ts).At the beginning of the 20th 
entury, Henrietta Swan Levitt, one of thehuman 
omputers hired by Edward Charles Pi
kering at the Harvard Col-lege Observatory, by studying variable stars, dis
overed the Cepheid Period-Luminosity relation. This 
onstituted a key result whi
h enabled the mea-surement of gala
ti
 distan
es. We will return on this fundamental dis
overyin the following.In 1936 Fritz Zwi
ky and Walter Baade had a

ess to what we now 
on-sider the �rst example of dedi
ated hardware for transient astronomy: the
18” S
hmidt Teles
ope at the Palomar Observatory (Fig. 1.1). Using thisinstrument, Zwi
ky began to workout the �rst supernovae surveys, and to-gether with Baade, they 
oined the term "supernova" itself, 
onsidered astransitions from normal stars into neutron stars [1℄. So they started huntingfor supernovae, founding a total of 120 obje
ts. Moreover, Baade proposedthe use of supernovae as standard 
andles, to estimate distan
e in spa
e. Theinstrument was also used to dis
over nearly 50 
omets, the most famous ofwhi
h was the Shoemaker-Levy 9 
omet, dis
overed in 1993, whi
h 
ollidedwith Jupiter in 1994.In more re
ent years the Calan/Tololo Survey was performed, a supernovasurvey ran from 1989 to 1995 at the University of Chile and the Cerro TololoInter-Ameri
an Observatory to measure a Hubble diagram out to redshifts of0.1. It led to the dis
overy of 32 Ia supernovae, whi
h were used as a

uratestandard 
andles for measuring distan
es, bringing to pre
ise measurementsof the Hubble Constant H0 and to the eviden
e of the a

elerated expansionof the Universe and the hypothesis of the presen
e of dark energy or of a
osmologi
al 
onstant dominating the mass/energy of the Universe itself.Modern transient surveys 
an o�er information only on phenomena whi
hvary signi�
antly on time s
ales between 1 days and ≈ 10 years (ideal forsupernovae, but a large portion of the Universe operates at a mu
h slowerrate, so we 
ould strongly expand our knowledge if we 
ould extend the timerange of our available data) the so 
alled DASCH proje
t (Digital A

ess to aSky Century � Harvard) was performed. The aim of this quest is to digitizeover 100 years of histori
al photographi
 plates at Harvard [24℄.Harvard College Observatory was founded in 1839 and soon moved to theforefront of astronomy resear
h, housing the 15-in
h "Great Refra
tor",whi
h resulted to be the largest teles
ope in the U.S. between 1847 and1867. In the late 1800s, the observatory began imaging large portions ofthe sky with teles
opes positioned all around the world, and these photo-graphi
 plates were examined by the already mentioned human 
omputersas we previously said when we spoke about the period-luminosity relationfor Cepheid. So, Harvard's 
olle
tion of photographi
 plates 
ontinued to
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Figure 1.1: The 18" S
hmidt teles
ope at the Palomar Observatory.grow until the early 1990s, i.e. until when most teles
opes had repla
ed pho-tographi
 plates with CCDs. Nowadays the ar
hive 
ontains about 500.000photographi
 plates, obtained between 1885 and 1993, 
overing, with dif-ferent frequen
y and sampling, the entire sky. Most lo
ations were imagedfrom hundreds to thousands of times in a 100 year window. Therefore, theproje
t mainly 
onsists in digitizing the plates, dete
ting sour
es and mea-suring their magnitudes, and �nally produ
ing the 100-year light 
urve forevery obje
t. The 100-year temporal 
overage, 
ompared with < 10 years of
overage by PTF (Palomar Transient Fa
tory4) and CRTS (Catalina Real-Time Transient Survey5) and the several epo
hs of SDSS (Sloan Digital SkySurvey6), and many other surveys, will enable new studies of long-time s
alephenomena, as it 
an be seen by the 
omparison in Fig. 1.2.The overall 
on
lusion is that by expanding TDA surveys to time-s
ales thatare 1 o 2 orders of magnitude longer than those rea
hed by 
urrent or plannedmodern surveys, a range of fundamental 
lasses of obje
ts 
an be studied asindividual obje
ts in well-de�ned samples7.4http://www.ptf.
alte
h.edu/iptf5http://
rts.
alte
h.edu/6http://www.sdss.org/7One of the purposes is to 
reate a histori
al knowledge (Histori
al TDA), taking a stepba
k and looking to the past, also in the opti
s of the in
oming new proje
ts previouslypresented. This also gives the idea of the always in
reasing interest of the astronomi
al
ommunity in the wide �eld of TDA.
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Figure 1.2: Representative 
lasses of variables and transients vs their re
ur-ren
e time that 
an be measured for a 
omplete sample with DASCH (right)vs PTF, CRTS, Pan-STARRS-1 and LSST (dashed box, left) or jointly (over-lap region).1.2 Time Domain Astronomy: the presentTDA is opening a totally new dis
overy spa
e, extending to the time axisthe Observable Parameter Spa
e (or OPS). In general the parameter spa
eis de�ned as the set of all possible 
ombinations of values for all the di�erentparameters 
ontained in a parti
ular mathemati
al or physi
al model. Sodi�erent 
on�gurations of the parameters spa
e produ
e di�erent behaviorsof the model. In astrophysi
s, the set of the parameters is usually obtainedfrom photometri
 or spe
tros
opi
 observables, and from statisti
al patterns.It is known from the history of s
ien
e and from literature that every timea te
hnology enables us to open a new portion of the OPS, new types of ob-je
ts and phenomena are usually dis
overed. Therefore, adding the temporaldimension to the parameter spa
e has allowed and will allow the dis
overy ofnew phenomena and a better 
hara
terization of the old ones, with a major
omprehension of some physi
al phenomena (Fig. 1.3).At the present time, the overall des
ription that emerges is the one depi
tedby the semanti
 tree of Fig. 1.4, from whi
h a �rst 
lassi�
ation of vari-able obje
ts in extrinsi
 and intrinsi
 ones 
an be dedu
ed, as previouslyexplained. As we shall see in more details in the next 
hapter, extrinsi
obje
ts 
an be asteroids or e
lipsed, mi
rolensed and rotating stars, whileintrinsi
 obje
ts are eruptive, 
ata
lysmi
, pulsating and se
ular stars, orAGN.
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Figure 1.3: The plot, from Harwit [25℄, shows how our knowledge of theparameter spa
e has in
reased trough the years, both in wavelength and timeresolution of the phenomena. It is interesting to noti
e that new phenomena(marked with di�erent symbols) are always at the edges of the 
olored ar-eas, making 
lear that they were a result of a new te
hnology, opening newwindows in the OPS.Therefore, TDA allows to ta
kle a broad range of di�erent physi
al phenom-ena. In fa
t, we have to 
onsider that some phenomena 
an be studied onlyin the time domain, for example various 
osmi
 explosions, a

retion and rel-ativisti
 phenomena. We 
an safely state that TDA regards essentially every�eld of astronomy, from the Solar System to 
osmology, and from stellarstru
ture and evolution to extreme relativisti
 phenomena.It is needed to emphasize that the data and event dis
overy rates are expe
tedto in
rease dramati
ally, from 0.1 TB and ≈ 10−102 events per night now, to
30 TB and 105−107events per night in the LSST era, and that the availablefollow-up fa
ilities would be simply overwhelmed, and will result absolutelyunable to rea
t to all potentially interesting events. The traditional manualapproa
h will simply not s
ale to the next generation of surveys, espe
iallyif we are interested in �nding the rarer transients. So, the main 
hallengeis to a
hieve the dynami
al, real-time 
hara
terization and 
lassi�
ation oftransient events, and the subsequent optimal de
ision for their follow-up.In Fig. 1.5 it is possible to see an example of how su
h 
oordination works,for a single event whi
h was observed in the Crab Nebula. This episodeillustrates brilliantly how the availability of instruments that survey largeareas of the sky, 
ombined with the ability to pro
ess the data in real time,has opened new perspe
tives in TDA.Moreover, not only ele
tromagneti
 signals are involved, if we 
onsider thatneutrino and 
osmi
 ray astronomy are ready to explode and gravitationalwave astronomy is at its �rst steps.The 
ommunity is growing toward this
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Figure 1.4: Semanti
 tree of astronomi
al variables and transients (seeEyer [23℄).
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Figure 1.5: Timetable of the Astronomer's Telegram releases on a CrabNebula �are in universal time, within 1 month after dis
overy on 22 Septem-ber 2010 (see [2℄).kind of "multimessenger astronomy". But now it is 
lear that the hugevolume of data to be sear
hed for transients and the multitude of possiblede
isions to be taken will soon make it impossible to rely on human 
apabili-ties to rapidly 
olle
t and dis
riminate time-
riti
al information. E�orts aretherefore being put into developing 
ommon standards for the implementa-tion of fully automated near real-time systems.The study of the presented phenomenology implies two di�erent operationalmodes:
• O�ine TDA: understanding of the variable universe from the hugeamounts of light 
urves produ
ed by modern surveys and stored in thedigital ar
hives.
• Online TDA: dete
ting and 
hara
terizing in real time photometri
transients.
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Chapter 2Phenomenology of transientsIn this 
hapter we shall provide the reader with more details about the 
las-si�
ation based on the semanti
 tree of Fig. 1.4, presented in the previous
hapter and we shall furnish a des
ription of the main phenomena and phys-i
al pro
ess regarding the obje
ts mainly involved in the development of thisthesis work.2.1 The semanti
-tree based 
lassi�
ationFirst of all one must say that it is possible to distinguish transients from sim-ple variable obje
ts using the de�nition taken from CRTS: transient obje
tsare those whi
h show a magnitude variability of ∆m > 2 mag.Looking at the semanti
 tree (Fig. 1.4), the �rst obvious division is, asit was already said previously, between astrometri
 and extrinsi
 ones andphotometri
 or intrinsi
 ones. We re
all that astrometri
 transients are thosephenomena that show a variability indu
ed by variations of their position inthe sky with time, so it is not 
onne
ted to physi
al properties of the obje
ts.Instead photometri
 transients 
onsist in those phenomena that owe theirvariability to a real 
hange of the luminosity of the obje
t itself, 
aused byintrinsi
 variations of its physi
al state and/or parameters.2.1.1 Astrometri
 and extrinsi
 transientsAstrometri
 and extrinsi
 transients 
an be then divided mainly in two 
at-egories.
• Asteroids: the 
auses of their extrinsi
 variability 
an be identi�ed inrotational or e
lipsing pro
esses.
• E
lipsing, rotating and mi
rolensed stars: In an e
lipsing system astar 
an 
hange its brightness due to an asteroid o

ultation, to aplanetary transit or to the intera
tion with another star. In the latter17
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ase we speak of E
lipsing Binaries. These systems are formed byphysi
ally bound stars, having an orbital plane whi
h lies near theline-of-sight of the observer. The 
omponents periodi
ally e
lipse ea
hother, 
ausing a de
rease in the apparent brightness of the system,with the period of the e
lipse that 
an range from minutes to years.In parti
ular, the 
ase of planetary transit underlies for the sear
h ofextrasolar planets. This is one of the most a
tive and intriguing �eld ofthe modern astrophysi
al resear
h, and it is performed mainly with themethods of TDA. Rotating stars, instead, show small 
hanges in lightthat may be due to dark or bright spots on the stellar surfa
es. Finally,mi
rolensing is a phenomenon due to the gravitational lens e�e
t, that
an be used to dete
t obje
ts ranging from the mass of a planet tothe mass of a star, if obs
ured by another massive obje
ts, as in theusual lensing phenomenon for galaxies. Mi
rolensing phenomena 
anbe monitored over time through the dete
tion of their light 
urves.2.1.2 Intrinsi
 transientsIntrinsi
 transients 
an again be divided in the two major sub
lasses.
• Variable stars: for what 
on
ern stars, we 
an 
onsider the sub
ate-gories of eruptive, 
ata
lysmi
 and pulsating variables, depending onwhi
h phenomenon is at the origin of their variability, and stars dis-playing a se
ular evolution, whi
h are usually stars in the post-AGB(Asymptoti
al Giant Bran
h) of the H-R diagram (Hertzsprung-Russell[26℄ - [37℄). The entire work des
ribed in this thesis in entirely basedon intrinsi
 transients, so in the following paragraphs we will des
ribethese 
lasses in mu
h more detail.
• Galaxies: in the spe
i�
, galaxies that show marked variability phe-nomena are 
lassi�ed as AGN (A
tive Gala
ti
 Nu
lei).Spe
i�
ally, for what 
on
ern stars:
• Eruptive variables: these stars su�er very large variations in brightnessdue to violent pro
esses and �ares o

urring in their 
hromospheresand 
oronae. The light 
hanges are often a

ompanied by shell eventsor mass out�ow in the form of stellar winds of variable intensity andby intera
tion with the surrounding interstellar medium. We re
all,as example of eruptive variables, the Wolf-Rayet and the R CoronaeBorealis stars. R Coronae Borealis variables are luminous, hydrogen-poor, 
arbon-ri
h, supergiant star whi
h spend most of their life timeat maximum light, o

asionally fading even by nine magnitudes at ir-regular intervals. Wolf-Rayet stars are very luminous hot PopulationI stars with e�e
tive temperatures between 30000 and 50000 K. They
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ation 19are 
hara
terized by very high mass-loss rate (≈ 10−5 M⊙yr
−1). Theyshow light variations with amplitudes of several hundredths of a mag-nitude and time s
ales from millise
onds to years. Therefore, eruptivestars are substantially evolved stars that have left the main sequen
eand are pro
eeding step by step towards the last phases of their life.

• Cata
lysmi
 variables: are usually 
lose binary systems in whi
h themost massive 
omponent is a white dwarf and the 
ompanion a mainsequen
e star. In most 
ases mass is transferred from the 
ompanionto the white dwarf through a surrounding a

retion disk. This a
-
reted material feeds various types of phenomena, in
luding o

asionaleruptions and jets. Components of this 
lass of obje
ts are:� Novae: these systems are 
onstituted by a white dwarf and amain-sequen
e low mass star that has �lled his Ro
he lobe. A
lassi
al nova 
an show an in
rease of brightness from 7 to 15magnitude in a range of 1 to several hundred days.� Dwarf Novae: these systems are 
onstituted by a white dwarf anda red dwarf star 
ooler of our Sun. They experien
e semi-regularoutbursts with a typi
al times
ale ranging from weeks to yearsand a range of 4-5 magnitudes.� Symbioti
 Stars: these are intera
ting binary systems 
omposedof an evolved red giant and a hot 
ompanion star that 
ould bea main sequen
e star, a white dwarf, or a neutron star. Mostsymbioti
s have orbital periods of a few years while other orbitover several de
ades.But the most famous type of 
ata
lysmi
 variables of 
ourse remainthe Supernovae, to whi
h we shall dedi
ate the next paragraph, due totheir importan
e in our work.
• Pulsating variables: stars 
hara
terized by periodi
 variations of its lu-minosity. Stellar pulsations 
an be radial, if the expansion has spheri
alsymmetry, or non-radial, and in this 
ase the shapes of the stars 
an beasymmetri
ally distorted. Pulsations 
an o

ur at various frequen
ies,with the lowest allowed frequen
y 
alled fundamental mode, and thehigher frequen
ies 
alled overtones. For ea
h os
illation mode, thesewaves have at least one node, where the matter remains steady, at the
enter of the star and an antinode, where the velo
ity of the gases ismaximum, at the surfa
e.The prin
ipal 
ategories of pulsating stars are observed to lay in theso 
alled Instability Strip (see Fig. 2.3), a nearly verti
al region of theH-R diagram, whi
h de�nes a range of luminosities, 
olors and periods,over whi
h pulsation is a stable mode for the star.



20 2. Phenomenology of transientsWe shall analyze the theory of pulsation in more detail in a subsequentparagraph.An important thing to be noti
ed is that, in this s
hema, there are somepoints of 
onta
t between the two great 
ategories of intrinsi
 and extrinsi
transients. In fa
t, some types of stars that show eruptive phenomena, 
ouldhave also an extrinsi
 variability due to rotational e�e
ts.2.2 SupernovaeWith the term supernova it is intended the 
atastrophi
 explosion o

urringin the last stages of the life of a massive star, whi
h is 
apable to eje
t amass of ≈ 10− 100 M⊙, with velo
ities of about 0.01− 0.1 
. The explosion
ommonly feeds the external environment and the interstellar medium withthe heavy elements that were produ
ed in the interior of the star. The burstof radiation in a supernova often brie�y outshines the luminosity of the entirehost galaxy, before fading from view over several weeks or months.Supernovae are, without any doubt, among the most spe
ta
ular 
elestialobje
ts ever observed by humans and for sure one of the most energeti
 phe-nomena in the Universe. The oldest known supernova was the one observedin 185 AD. Supernovae in 386 and 393 AD are re
orded only in Chinesereports with no pre
ise information about their positions. The brightest Su-pernova ever seen was the one exploded in 1006 AD, whi
h rea
hed a visualmagnitude of -7.5 mag. It was des
ribed by observers in China, Egypt, Iraq,Japan, Switzerland. However, the most famous supernova is probably theone seen in 1054, whi
h produ
ed an expanding shell of gas and dust todayknown as the Crab Nebula (see Fig. 2.1). This SN shone brighter thanVenus and remained visible for 23 days also during daylight. Another super-nova was observed in the 1181 AD by Chinese and Japanese astronomers inthe 
onstellation of Cassiopeia. In the same 
onstellation, another famoussupernova was observed by the Danish astronomer Ty
ho Brahe in the 1572AD, 
onstituting the basis for most of his su

essive resear
h. Finally, thelast 
on�rmed supernova exploded in the Milky Way was the one observedby Kepler in 1604.For what 
on
ern the previous listed supernovae, all of them have left be-hind the so-
alled Supernova remnants, and be
ause no supernova has beenobserved in our Galaxy during the teles
opi
 era, everything we know aboutthese phenomena 
omes from these remnant and from supernovae in othergalaxies.The features of the opti
al spe
tra at maximum light and the 
hara
teristi
sof light 
urves de�ne the various 
ategories of supernovae. The �rst divi-sion was performed by R. Minkowski in 1941 [32℄, who de�ned two main
ategories, type I and type II. The former di�er from the latter for the la
kof hydrogen emission line, H, in type I. Type I Supernovae have then been
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Figure 2.1: The Crab Nebula resulting from the explosion of the Supernova1054. In its 
enter there is the so-
alled Crab Pulsar, a neutron star of about10 km of diameter.subdivided in three further 
lasses: type Ia, Ib and I
, depending on theirspe
tral 
hara
teristi
s. The �rst one shows the absorption line of the SiIIλ6355 (however we shall see next that Ia Supernovae are originated by a
ompletely di�erent pro
ess). Ib show the absorption line of He Iλ5876 to-gether with Cal
ium and Oxygen emission lines, while I
 do not show any ofthe previous absorption lines. Type II Supernovae are also divided in typeII-L (linear) and type II-P (plateau), depending from the shape of the result-ing light 
urve after the explosion, whi
h 
an respe
tively present a steadyde
line or a slower de
line followed by a normal de
ay.Type Ia Supernovae were found in all kind of galaxies, ellipti
als, spirals andirregulars, and this is an eviden
e of the fa
t that their progenitors must belong-lived stars, be
ause in ellipti
als there is no ongoing stellar formation.They show the presen
e of 
hara
teristi
 elements in their spe
trum, su
h asmagnesium, sili
on, sulphur, 
al
ium and iron. Type Ib, I
 and II instead,seem to explode respe
tively in stellar formation zones of the arms of spi-ral galaxies and in H II region of spiral dis
s or in irregular galaxies, thusindi
ating that their progenitors must be short-lived, hen
e massive, stars.2.2.1 Core Collapse SupernovaeA

ording to what has been said in the previous paragraph, we 
an nowunderstand that type Ib, I
 and II have a 
ommon origin as Core CollapseSupernovae, while type Ia must be 
onsidered as 
ompletely di�erent phe-
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Figure 2.2: Shell stru
ture of the interior of an evolved star that willundergo a supernova explosion.nomena. In fa
t, the former ones are originated from the 
ollapse of a mas-sive, evolved stellar 
ore. In parti
ular, type II Supernovae must be starswith masses between 8 − 40 M⊙. Instead, stars with a bigger initial mass,like Wolf-Rayet, loose their envelopes bringing to Ib and I
 Supernovae.These stars pass through the burning phases of hydrogen, helium, 
arbon,neon, oxygen, and sili
on, �nally produ
ing an iron 
ore (Fig. 2.2). At thispoint, be
ause the nu
lear binding energy per nu
leon has its maximum foriron, no energy 
an be released by nu
lear fusion of this element. Due to thepro
ess known as photodisintegration, photons at the very high temperaturespresent in the iron 
ore are 
apable to destroy heavy nu
lei. Meanwhile, thefree ele
trons that 
ontribute to support the star through the ele
tron degen-era
y pressure, in these 
riti
al 
onditions, are 
aptured by heavy elementsand by protons produ
ed through photodisintegration. Then the 
ore startsto 
ollapse.The 
ollapse is halted by the repulsive 
omponent of the strong nu
learfor
e, when the 
ore has rea
hed about twi
e the density of atomi
 nu
lei,
≈ 4 − 5 × 1014 g/cm3. But the sudden halt of the 
ollapsing 
ore produ
ea rebound me
hanism, and sho
k waves form, dire
ted toward the surfa
eof the star. The sho
k waves, together with the enormous for
e generatedby neutrinos, whi
h at the opa
ity 
aused by the impressive pressure 
annotes
ape as usually, propagate through the still 
ollapsing layers of the star,leading to the supernova explosion. A huge amount of energy is released andthe outer layers, 
ontaining heavy metals, together with the remaining outerenvelope of hydrogen, are expelled.



2.3 Pulsating variables and theory of pulsation 232.2.2 Type Ia SupernovaeRegarding type Ia Supernovae, there are still un
ertainties about the pro-
ess that originates these kind of phenomena. The most a

epted hypothesisis that the formation of these supernovae happens in binary systems 
on-stituted by a 
arbon-oxygen white dwarf and an evolved star. The 
auseof the explosion 
an be found in the a

reting material on the white dwarffrom the 
ompanion star, during its red giant phase, until the white dwarfitself rea
hes its Chandrasekhar limit. At this point, in the most a

reditedmodels, the degenera
y pressure is no longer able to support the star againstgravity, and the star starts to 
ontra
t, soon rea
hing pressure and temper-ature 
onditions su�
ient to ignite 
arbon fusion. What happens next isnot well understood, but probably the sho
k waves produ
ed by the explo-sion ignites a de�agration that 
ompletely disrupt the star, without leavingany remnant. Part of the material be
omes 56Ni and the remaining lighterelements like Si and C.The typi
al light 
urve 
an be divided in four phases, all explainable 
onsid-ering the energy released in the de
ay from 56Ni to 56Fe. We 
an identify:
• rise time: the period in whi
h the supernova rises very fast to itsmaximum;
• maximum phase;
• se
ond maximum: a pronoun
ed se
ond maximum has been observedin redder light 
urves about from 20 to 40 days after the �rst maximum;
• late de
line: about after 50 days the light 
urves rea
hes a steadyde
line phase, exponential in luminosity.Ia Supernovae rea
h their maximum about 2 or 3 weeks after the explosion,are brighter of one magnitude then the type II and all of them have the samepeak luminosity. For these reasons they 
an be good standard 
andles, andif it would possible to measure the absolute magnitude of the supernova,regardless its distan
e, we 
ould obtain a measure of the Hubble 
onstant.In fa
t, in 1993, Phillips [34℄ dis
overed a linear relationship between thede
line rate parameter of the light 
urve, ∆m15 (the di�eren
e between themagnitude at maximum light and the magnitude after �fteen days), and theabsolute peak magnitude of the supernova. This 
orrelation makes possibleto greatly improve the pre
ision of distan
e estimation of Ia Supernovae,using them for the determination of 
osmologi
al parameters.2.3 Pulsating variables and theory of pulsationThe theory of radial stellar pulsation is based on the assumption that thisis generated by small perturbations around the hydrodynami
al equilibrium
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Figure 2.3: Position of some pulsating variables and of the Instability Stripin the H-R diagram
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es on the Instability Strip, see Fig. 2.3),whi
h 
an grow to observed amplitudes (linear stability analysis of stellarstru
ture). The �rst step is to 
onsider the stellar stru
ture equations:
∂2r
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(2.4)In these equations r is the distan
e from the 
enter of the star, Mr repre-sents the mass at radius r, L is the luminosity, T the temperature and Pthe pressure. The energy density ǫ and the opa
ity κ are fun
tions of thedensity ρ and the temperature T , and if we 
onsider an equilibrium state,the previous equations be
ome:
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= ǫ0 (2.7)Therefore, to solve the problem of stellar pulsation, the variables 
onsidered
an be expressed in terms of an equilibrium quantity and a small perturba-tion: r → r0 + δr, P → P0 + δP , ρ → ρ0 + δρ, L → L0 + δL. Putting
ζ = δr/r0, so that r = r0(1 + ζ), we 
an furthermore write a generi
 La-grangian quantity f , as f = f0(1 + δf/f0). We will pro
eed assuming that,in 
ase of small perturbations, |ζ| << 1 and |δf/f0| << 1 and negle
ting allthe terms of from se
ond order. With these assumptions, the equations 2.1- 2.4 
an be redu
ed to a single equation in ζ:
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Γ1 = (d lnP/d ln ρ)ad and Γ3 = (d ln T/d ln ρ)adare the adiabati
 exponents of pressure and temperature. Considering onlysolutions of the form:

ζ(r, t) = ξ(r)eiωt (2.9)where ξ(r) is a 
omplex fun
tion of the only spatial variable and ω is afrequen
y. Therefore, in the 
ase of adiabati
 os
illations, from Eq. 2.8 weobtain:
−

1

r4ρ

d

dr

[

Γ1Pr4
dξ
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−
1
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{

d

dr
[(3Γ1 − 4)P ]

}

ξ = ω2ξ (2.10)This is an eigenvalue equation whi
h admits dis
rete solution 
hara
terizedby eigenfun
tions ζk, where every k is a node with ζk = 0, and eigenvalues ωk.
ω0 is the fundamental mode, while the other frequen
ies are the overtones.Obviously, the solution of su
h equation requires spe
ial 
onditions at the
enter and at the surfa
e of the star.The driving me
hanism whi
h sustains the pulsation must be found in theopa
ity of the star. It was suggested by Eddington [22℄ that 
ertain layers ofthe star, during the 
ompression phase due to pulsation, might be
ome quiteopaque to radiation. But the in
rease of the opa
ity generates an a

umula-tion of heat under these layers, whi
h brings to an in
rease of pressure andan expansion of the star. At this point, there is a new de
rease of opa
ityand pressure, the star 
ontra
ts again and a new 
y
le begins. In 1980, J.P.Cox [14℄ found that the me
hanism proposed by Eddington 
an su

essfullyoperate in the partially ionization zones of the pulsating star.2.3.1 Types of pulsating variablesThe parameters that permits to distinguish between the various types ofpulsating variables are the pulsation period, mass and evolutionary status ofthe star, besides the 
hara
teristi
s of the pulsation itself.

• RR Lyrae stars: short period (1 hour to 30 hours), pulsating, bluegiant stars, usually of spe
tral 
lass A. The amplitude of variation isusually from 0.3 to 2 magnitudes.
• δ S
uti: their variations in luminosity are due to both radial and nonradial pulsations of their surfa
e. Flu
tuations in brightness are 
om-prised between 0.003 and 0.9 magnitudes in V, over a period of a fewhours. They 
an be A0 to F5 type giant or main sequen
e stars.
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• RV Tauri: yellow supergiants with 
hara
teristi
 light variation whi
halternates deep and shallow minima. The period between two deepminima ranges usually between 30 to 150 days and the variation inmagnitude 
an be up to 3. Some of these stars show also long-term
y
li
 variations from hundreds to thousands of days. The spe
tral
lass often ranges from G to K.
• Pulsating white dwarf: their luminosity variations are due to non radialgravity wave pulsations. The variations are small (1% - 30%) and theperiods are 
omprised from hundreds to thousands of se
onds.
• Long period variables: pulsating red giants or supergiants in whi
hvariations o

ur over long times
ales of months or years. We 
an dis-tinguish the two major sub
lasses of Mira and Semiregular variables.
• Irregular variable stars: red supergiants white little or no periodi
ityat all.But the most famous example of pulsating stars remain Cepheid variables.These are massive stars, with spe
tral type that 
an 
hange during pulsation,from F at maximum luminosity to G or K at minimum. Pulsation is mainlyradial. It is possible to identify four 
lasses of Cepheid variables:
• Classi
al Cepheids: also 
alled type I Cepheids, fundamental modepulsators with periods that vary from 1 to 70 days.
• Beat Cepheids: they display the presen
e of two or more simultane-ously operating pulsation modes, generally the fundamental and the�rst overtone, with periods between 2 and 7 days.
• S Cepheids: probably �rst-overtone pulsators, with periods in the samerange of Beat Cepheids.
• W Virginis: population II Cepheids, they are fundamental mode pul-sators with periods between 1 and 30 days.Cepheids exhibit strong 
orrelations between their periods, luminosity and
olors, but not for amplitudes, whi
h do not seem to 
orrelate with otherobservables. In the next paragraph we will analyze this in more detail.2.3.2 Period-Luminosity relationIn 1912 Henrietta Swan Leavitt, an Ameri
an astronomer and human 
om-puter of Edward Pi
kering at the Harvard Observatory, dis
overed a linear
orrelation between the apparent magnitude and the logarithm of the pe-riod for a sample of stars, in the spe
i�
 Classi
al Cepheids, in the Large
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Figure 2.4: Period-luminosity relations of 
lassi
al (grey points) and typeII Cepheids (
olor symbols) in the Large Magellani
 Cloud, as taken byOGLE. As the "luminosity" the reddening-free Wesenheit index [13℄ wasused, de�ned as WI = I − 1.55(V − I) − DM , where I and V are meanluminosities of Cepheids in these passbands, and DM = 18.5 mag is thedistan
e modulus of the Large Magellani
 Cloud.Magellani
 Cloud (LMC). However, the relation is valid also for the abso-lute magnitude, be
ause all the stars of the LMC 
an be 
onsidered at thesame distan
e. The relation dis
overed by Leavitt was 
alled the "Period-Luminosity relation", and 
an be expressed as:
M = a+ b ∗ log10 P (2.11)An example of the Period-Luminosity relation is reported in Fig. 2.4. On
eit has been properly 
alibrated, this relation allows us to derive, from themeasured period of a Cepheid, its absolute magnitude and so its distan
emodule. Obviously, one has to take into a

ount the e�e
ts of interstellarreddening, whi
h will produ
e systemati
 errors that 
ould be reported intothe distan
e s
ale.2.4 A
tive Gala
ti
 Nu
leiGalaxies hosting A
tive Gala
ti
 Nu
lei (Fig. 2.5), that 
ontain all AGNsub
lasses su
h as Blazars, Seyfert Galaxies, Quasars and so on, are also
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Figure 2.5: The a
tive radiogalaxy M87 as seen by Hubble Spa
e Teles
ope,with its 
hara
teristi
 5000-light-year-long jet. It is thought to be produ
edby the syn
hrotron radiation of the parti
les a

elerated from the 
entralengine.usually variable. AGN, however, are very parti
ular variables. In fa
t theyemit strongly over a wide range of wavelengths, from X-ray to radio. ManyAGN vary in brightness by huge amounts over relatively short times
ales,su
h as months, days, or even hours. AGN are 
onveniently divided in twomain 
lasses, radio-loud and radio-quiet, depending on whether or not theyemit in the radio portion of the ele
tromagneti
 spe
trum respe
tively.Nowadays, the di�erent types of AGN and their physi
al properties havefound explanation in a uni�ed model that bases the a
tivity of these obje
tson a 
entral engine 
onstituted by a supermassive bla
k hole on whi
h thedynami
al e termodynami
al properties of the entire galaxy are based. Itresults evident that the strong emission 
oming from AGN 
ould be explainedonly 
onsidering a

retion onto a supermassive bla
k hole (in the range of
106 − 1010 M⊙). In fa
t, we must remember that gravitational a

retion isthe most e�
ient known way of using mass to get energy, mu
h more e�
ientthan nu
lear fusion.The uni�ed model proposes that di�erent types of AGN are a single typeof physi
al obje
t observed under di�erent 
onditions, as showed in Fig.2.6. The 
urrently a

epted idea is that this models are "orientation-baseduni�ed models", meaning that the apparent di�eren
es between the varioustypes of obje
ts arise simply be
ause of their di�erent orientations to theobserver. Moreover, it has been proposed that, 
on�rmed the presen
e of asupermassive bla
k hole in the nu
leus of almost all galaxies, the AGN phase



30 2. Phenomenology of transientsis just a step in the evolutionary history of a galaxy.However, on
e �xed the division in radio-quiet and radio-loud AGN, it ispossible to identify the following sub
ategories.Radio-quiet AGN
• Low-ionization nu
lear emission-line regions (LINERs): weak nu
learemission-line regions. It is still debated if the are truly AGN.
• Seyfert galaxies: these obje
ts show opti
al range nu
lear 
ontinuumemission, narrow and o

asionally broad emission lines, o

asionallystrong nu
lear X-ray emission and sometimes a weak small-s
ale radiojet. They are divided into two types known as Seyfert 1 and 2: Seyfert1 show strong broad emission lines while Seyfert 2 do not, and Seyfert1 are more likely to show strong low-energy X-ray emission. The hostgalaxies of Seyferts are usually spiral or irregular galaxies.
• Radio-quiet quasars/QSOs: 
hara
terized by a very high redshift, quasarswere originally "quasi-stellar" in opti
al images as they had opti
al lu-minosities that were greater than that of their host galaxy. They showstrong opti
al 
ontinuum emission, broad and narrow emission lines,and strong X-ray 
ontinuum emission. The host galaxies of quasars
an be spirals, irregulars or ellipti
als.Radio-loud AGN
• Radio-loud quasars: they behave exa
tly like radio-quiet quasars, withthe addition of emission from a jet. Thus, they show strong opti
al
ontinuum emission, broad and narrow emission lines, and strong X-ray emission, together with nu
lear and often extended radio emission.
• Blazars, i.e. BL La
 obje
ts and OVV (opti
al violent variable) quasars:their variable emission is believed to originate in a relativisti
 jet ori-ented 
lose to the line of sight. Both 
lasses are distinguished by rapidlyvariable, polarized opti
al, radio and X-ray emission. BL La
 obje
tsshow no opti
al emission lines, broad or narrow, so that their redshifts
an only be determined from features in the spe
tra of their host galax-ies. The emission-line features may be intrinsi
ally absent or simplyswamped by the additional variable 
omponent. OVV quasars behavemore like standard radio-loud quasars with the addition of a rapidlyvariable 
omponent.
• Radio galaxies: these obje
ts show nu
lear and extended radio emis-sion. Their other AGN properties are heterogeneous, but their hostgalaxies, whatever their emission-line type, are essentially always ellip-ti
als.
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Figure 2.6: Uni�
ation by viewing angle. From bottom to top: down thejet - Blazar, at an angle to the jet - Quasar/Seyfert 1 Galaxy, at 90 degreesfrom the jet - Radio galaxy / Seyfert 2 Galaxy.
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Chapter 3Automated 
lassi�
ation oftransientsFor what 
lassi�
ation is 
on
erned, the main aspe
t that must be takeninto a

ount is that nowadays data volumes have begun to surpass what ispossible to visually inspe
t by even large teams of astronomers and volunteer
itizen s
ientists. This implies an in
reasingly more 
entral role of softwareand hardware frameworks to substitute humans in the real-time loop. Dataneed to be automati
ally transported, pro
essed, photometered and insertedinto databases almost without human intervention.Of 
ourse, autonomous dis
overy of transients and variables is a big 
hal-lenge. Threshold 
uts in photometri
 quality, 
hanges in apparent magni-tudes, mat
hed �ltering, et
., 
an be very e�e
tive tools to dis
over newevents, but other types of variables and transients 
ould be not easily re-
overed from these kinds of approa
hes. Furthermore, previous ma
hine-learning based dis
overy have been optimized on domain-spe
i�
 dis
overy,leaving apart the multitude of other variables not of dire
t interest for aparti
ular proje
t.The 
hallenge is to 
on�ate the pro
ess of dis
overy with 
lassi�
ation, usingdi�erent ma
hineries and methods working on the same problem with variousapproa
hes. In this view, the advantages of a 
omputational approa
h, ratherthan human-
entri
, be
ome 
lear:
• ma
hines, properly trained, are faster than humans both in dis
overyand 
lassi�
ation of 
andidates/events; at least in theory they allowfor operations at arbitrarily high data rates;
• more e�
ient use of follow-up (e.g. spe
tros
opi
, photometri
, et
.)fa
ilities;
• experimentations with new dis
overy and 
lassi�
ation s
hema requirelittle more than re-running new 
odes on existing data;33
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Figure 3.1: S
heme of 
lassi�
ation for variable and periodi
 stars by Du-bath [21℄
• ma
hine-learned 
lassi�
ation is reprodu
ible and very often determin-isti
;
• the reprodu
ibility allows for 
alibration of the un
ertainties of 
las-si�
ation probability statements, giving assuran
es that 
lassi�
ationsare robust as the survey pro
eeds.In this framework, there may still be a vital role for humans in the real-timeloop, in the 
ase of ambiguous 
lassi�
ations or un
ertain follow-up pathsfor a parti
ular sour
e, but the main idea is that the whole pro
ess must notbe guided by humans.3.1 Periodi
 obje
ts 
lassi�
ationAs it has already been mentioned, this thesis fo
uses on o�ine 
lassi�
ationand therefore real-time issues are not 
ru
ial. The study of their periodi
ityrepresents the baseline for a deeper analysis of transients. The traditionaland most logi
 approa
h 
onsists in three main steps (see Dubath [21℄).During the �rst one it tries to separate variable obje
ts from the ones thatdo not show variability. Then the se
ond part the method 
onsiders theperiodi
ity of the obje
ts and measures their period. Finally, in the thirdpart, one 
an pro
eed to the 
lassi�
ation of the periodi
 obje
ts (see Fig.3.1 - 3.2 for the s
heme).
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Figure 3.2: Modi�ed s
heme for a most general 
lassi�
ation of variableand periodi
 obje
ts.To determine the variability in a 
ertain data sample, it is possible to usemany 
riteria. We analyze the one due to Stetson [42℄. This 
riterion employsan index used to determine the probability that a given obje
t presents a
ertain variability degree, so determining the p-value of the distribution. Were
all that the p-value is de�ned as the probability, under the assumption ofa 
ertain hypothesis, of obtaining a result equal or more extreme than whatwas a
tually observed (Fig. 3.3). The index provides the prin
ipal measureof 
on�den
e that the variability is real, and not due to noise. In fa
t noise
an be 
onfused for a variable sour
e if not 
orre
tly dealt with.These are two expressions of the Stetson index:
I =

√

1

n(n− 1)

∑

(
bi − b

σb,i
)(
vi − v

σv,i
) (3.1)

J =

∑
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(3.2)where:
Pk = δi(k)δj(k) (3.3)

δ =

√

n

n− 1

v − v

σv
(3.4)In this expressions bi and vi are the apparent magnitudes obtained for the
andidate obje
t in two observations 
losely spa
ed in time, σb,i and σv,i
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Figure 3.3: Example of a p-value 
omputation. The p-value is the area ingreen under the 
urve, past the observed data point.are the standard errors of those magnitudes, b and v are the weighted meanmagnitudes in the two �lters, and n is the number of observation pairs. wkinstead is a weight and δ is a magnitude residual of a given observation fromthe average of all observations in the same bandpass, s
aled by the standarderror.The J value is a more robust version of the same index, whi
h, 
ombinedwith the distribution kurtosis, gives:
K =

1/N
∑

|δi|
√

1/N
∑

δi
2

(3.5)where the index i runs over all N observations available without regard topairing. Then one 
an show that, in the limit where the total range ofvariation is vastly larger than the σ's of the individual observations, and fora Gaussian magnitude distribution K →
√

2/π = 0.798. Hen
e the �nalversion of the index 
an be written as:
L = (

JK

0.798
)(

∑

w

wall

) (3.6)where the fa
tor∑w/wall, with wall being the total weights an obje
t wouldhave if su

essfully measured in all frame pairs, takes into a

ount possibleproblems of dete
tion of the same obje
t if it results to be absent from one ormore frames. In this way, those 
andidates that were su

essfully measuredthe most times will also be the �rst to be followed up. A value of L 
an be
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t in the �eld having some minimum total weight,and stars ex
eeding some threshold value of L may be subje
ted to periodsear
hes and light 
urve �ts.After the potentially variable obje
ts have been identi�ed, the se
ond steprequires to disentangle periodi
 from non periodi
 obje
ts. One possibilityis to evaluate the periodogram fun
tion through the Lomb-S
argle method[39℄:
Px(ω) =

1

2
(
[
∑

Xj cosω(tj − τ)]2
∑

cos2ω(tj − τ)
) + (

[
∑

Xj sinω(tj − τ)]2
∑

sin2 ω(tj − τ)
) (3.7)This fun
tion is a dis
rete expression of the power spe
trum of the signal,and the periods are taken as the peak frequen
y of the distribution.3.2 An automated 
lassi�
ation methodThere are many automated methods that 
an be used to a
hieve the �nal
lassi�
ation. In this paragraph, we want to des
ribe brie�y one of them,the Random Forest method, that has also been used by Donalek [17℄, whi
hwe adopted as a template for 
omparison. Then, in the next 
hapter, we willfo
us on 
lassi�
ation based on neural networks.Firstly developed by Leo Breiman and Adele Cutler ([3℄ - [20℄), a randomforest is a 
lassi�er 
onsisting of a 
olle
tion of tree-stru
tured 
lassi�ers

{h(x,Θk), k = 1, ...} where the {Θk} are independent identi
ally distributedrandom ve
tors and ea
h tree 
ast a unit vote for the most popular 
lass atinput x. The algorithm is de�ned as follows (see Fig. 3.4):1. A bootstrap obje
t sample is obtained, by building it substituting ob-je
ts from the training set, with the same size as the original set, butwith some obje
ts represented multiple times, while others left out(Out of Bag stars, OOB from now - the same number of the obje
tedused multiple times are omitted and will be used to estimate the pre-di
tion error).2. The tree is re
ursively grown by partitioning the bootstrap sample intosubgroups having always more and more homogeneous type 
ontents.At ea
h node, mtry divisions into two groups are 
onsidered, ea
h usingone attribute from a randomly sele
ted set ofmtry attributes. The bestsplit is sele
ted and the pro
ess is then repeated for the 
hild nodes.3. Finally, a maximum tree is 
onstru
ted, i.e., a tree with terminal nodes
ontaining only a single type of obje
ts.Large numbers of trees are built and ea
h tree provides a predi
ted type foran obje
t. The most probable type is the most frequent one in the sample of
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tions from the di�erent trees. The error rate and 
onfusion matrix 
anbe built by 
omparing the predi
ted with the a
tual types. The attributeimportan
e is given by the di�eren
e in 
lassi�
ation error averaged over alltrees obtained by the OOB sample, permuting the attributes to infer abouttheir importan
e.The pro
edure to build a list of the most important, not too 
orrelated,attributes is as follows (Fig. 3.5):1. A ranked list of attributes, from the most to the least important, isbuilt using a 20000-tree random forest with the full attribute set.2. The most important attribute is sele
ted and all other attributes witha Spearman 
orrelation 
oe�
ient (Spearman [41℄) above 80% are dis-
arded.
ρxy =

σxy
σxσy

(3.8)3. A new ranked attribute list is built by re-running a random forest withthe sele
ted and the remaining attributes.4. The se
ond most important attribute is sele
ted and all other attributeshighly 
orrelated with any of the �rst two are dis
arded, repeating thesame pro
edure.5. The pro
ess is iterated, obtaining a full ranked list of not too 
orrelatedattributes.The importan
e value de
reases in the list, but never rea
hes zero, so it isimportant to understand where to 
ut the list.In order to redu
e the number of attributes, it is used the following algorithm:1. The data sample is partitioned for a 10-fold 
ross validation (CVAL bynow).2. On ea
h CVAL training set, a ranked list of attributes is establishedusing the random forest importan
e measures.3. On ea
h CVAL training set, a model is trained on all attributes andused to predi
t types for the CVAL test set. The CVAL error rate isre
orded and the pro
ess is repeated after removing the least importantattribute. Iterating by removing one attribute at a time and stoppingwhen only 2 attributes are left, a ve
tor of CVAL error rates is obtained.4. A mean error ve
tor is 
omputed by taking the mean of the 10 valuesobtained for ea
h attribute subset.
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Figure 3.4: Simpli�ed s
heme that summarizes the prin
iples of the randomforest method.5. Steps 1 to 4 are repeated 20 times. The mean value and the stan-dard deviation of the 20 CVAL mean errors are 
omputed for ea
hattribute number, 
ombining the results of the 
lassi�
ation experi-ments a
hieved with a spe
i�
 attribute number.The optimum number of attributes 
an then be inferred by the plot resultingfrom this pro
edure. Finally it is possible to pro
eed with 
lassi�
ation anddetermine the 
onfusion matrix.3.3 Photometri
 featuresThe pro
ess of 
lassi�
ation relies upon the ability to re
ognize and quantifythe di�eren
es between light 
urves. To build a supervised ma
hine-learning
lassi�er, many instan
es of light 
urves are required for ea
h 
lass of interest.These labeled instan
es are used in the training and testing pro
esses. Sin
ethe data are, in general, not sampled at regular intervals, nor are all instan
esof a 
ertain 
lass observed with the same number of epo
hs and S/N ratio,the identi�
ation of the di�eren
es dire
tly from the time-series data is both
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Figure 3.5: An example of a ranked list of 14 most important, not too 
or-related attributes, from Dubath [20℄. The Spearman 
orrelation 
oe�
ientof any of the above attributes pairs is smaller than the 80%. The attributeimportan
e is measured with the random forest OOB mean de
rease a

u-ra
y.
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Figure 3.6: Using the CTSCS a set of photometri
 features is extra
tedfrom ea
h light 
urve forming a feature ve
tor. Here a light 
urve of aCata
lysmi
 Variable from CRTS is shown.
on
eptually and 
omputationally 
hallenging.Instead, we homogenize the data by transforming ea
h light 
urve into aset of real-number line features using statisti
al and model-spe
i�
 �ttingpro
edures (Fig. 3.6). These features 
an be identi�ed, for example, withthe attributes used for the random forest method, as said in the previousparagraph.The features needed for our purpose were 
al
ulated by raw light 
urves usingthe web servi
e "Calte
h Time Series Chara
terization Servi
e"1 (CTSCS).With the help of this web servi
e it was possible to determine the 31 non-periodi
 features ([35℄ - [15℄) for a data sample taken from the CatalinaReal-Time Transient Survey (CRTS). Moreover, it is possible to upload alsoa user de�ned 
atalog. Furthermore there exist a number of features that
an be determined from the Lomb-S
argle method. In the next paragraphwe list the above features, with a brief des
ription for ea
h of them.3.3.1 Des
ription of the featuresAs said before, it is possible to divide features in periodi
 and non-periodi
ones. The formers are extra
ted using the Lomb-S
argle method, while thelatter are statisti
al parameters derived from the light 
urve analysis.
• Amplitude: arithmeti
 average between maximum and minimum1http://nirgun.
alte
h.edu:8000/s
ripts/des
ription.html#data_input
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amplitude =

magmax −magmin

2
(3.9)

• Beyond1std: fra
tion of photometri
 magnitudes (≤ 1) that areabove or under a 
ertain standard deviation from the weighted average(by photometri
 errors).
beyond1std = P (|mag −mag| > σ) (3.10)

• Flux Per
entage Ratio: The per
entile is the value of a variableunder whi
h there is a 
ertain per
entage of observations. The �uxper
entile Fn,m was de�ned to be the di�eren
e between the �ux valuesat per
entiles n and m, and the following �ux per
entile ratios wereused:
fpr_mid20 = F40,60/F5,95

fpr_mid35 = F32.5,67.5/F5,95

fpr_mid50 = F25,75/F5,95

fpr_mid65 = F17.5,82.5/F5,95

fpr_mid80 = F10,90/F5,95

• Linear Trend: slope of the light 
urve in the linear �t, that is to saythe b parameter in the following linear relation.
mag = a ∗ t+ b (3.11)
linear_trend = b (3.12)

• Maximum Slope: the maximum di�eren
e obtained measuring mag-nitudes at su

essive instants.
maximum_slope = max(|

(magi+1 −magi)

(ti+1 − ti)
|) =

∆mag

∆t
(3.13)
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• Median Absolute Deviation: median of the deviation of �uxes fromthe median �ux.

med_abs_dev = mediani(|xi −medianj(xj)|) (3.14)
• Median Bu�er Range Per
entage: fra
tion of observations thatare within 10% of the median �ux.

med_buf_range_per = P (|xi −medianj(xj)| < 0.1 ∗medianj(xj))(3.15)
• Pair Slope Trend: per
entage of the last 30 
ouples of 
onse
utivemeasures of �uxes that show positive slope.

pair_slope_trend = P (xi+1 − xi > 0, i = n− 30, ..., n) (3.16)
• Per
ent Amplitude: maximum per
entage di�eren
e between max-imum or minimum �ux and the median.

percent_amplitude = max(|xmax −median(x)|, |xmin −median(x)|)(3.17)
• Per
ent Di�eren
e Flux Per
entile: Di�eren
e between the se
ondand the 98th per
entile �ux, 
onverted in magnitudes. It is 
al
ulatedby the ratio F5,95 on median �ux.

pdfp =
(mag95 −mag5)

median(mag)
(3.18)

• QSO - NOT QSO: the χ2/qso and χ2/non-qso statisti
s and their sig-ni�
an
e levels from the quasar variability metri
 of Butler and Bloom[11℄. These parameters, obtained from a fun
tion of time modeledusing a 
ovarian
e matrix, make possible to determine a probabilitydistribution for an obje
t to be or not to be a quasar.
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• Skew: the skewness is an index of the asymmetry of a distribution. Itis given by the ratio between the 3rd order momentum and the varian
e
ube.

skew =
µ3

σ3
(3.19)

• Small Kurtosis: the kurtosis represents the departure of a distribu-tion by normality and it is given by the ratio between the 4th ordermomentum and the varian
e square. For small kurtosis it is intendedthe reliable kurtosis on a small number of epo
hs.
kurtosis =

µ4

σ2
(3.20)

• Standard deviation: standard deviation of the �uxes.
• Stetson J-K: the Stetson variability index, whi
h des
ribes variabilityfor Cepheids by p-value determination, as des
ribed in Chapter 3.
• Lomb-S
argle Periodogram: the period obtained by the peak fre-quen
y of the Lomb-S
argle periodogram (S
argle [39℄), as des
ribedin Chapter 3. There are also a faster version of the algorithm, thatdetermines the top �ve periods and their false-peak probabilities, andthe Generalized Lomb-S
argle Periodogram (see Ze
hmeister [43℄), thatinstead determines the �rst �ve periods obtaining them from a gener-alization of the Lomb-S
argle method, using appropriate weights.
• Self Correlation: the 
orrelation fun
tion expresses the statisti
al
orrelation between random variables in di�erent points of spa
e andtime. If 
orrelation fun
tions between variables representing the samequantity measured in two di�erent points are 
onsidered, we speakabout an auto
orrelation fun
tion.

ρX,Y = corr(X,Y ) =
cov(X,Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
(3.21)

C(s, t) = corr(X(s),X(t)) (3.22)
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• Stru
ture Fun
tion: the �rst order stru
ture fun
tion obtained usingthe square di�erential.

sf = f(|magi −magj |
2, |ti − tj|) (3.23)

• Deboss
her Frequen
y Statisti
s: the frequen
y statisti
 analysisdes
ribed by Deboss
her et al. [15℄, that is to say the slope of the lineartrend, the �rst three frequen
ies and their �rst four harmoni
s (ampli-tude and phase for ea
h of them) and the ratio between the varian
e ofthe light 
urve before and after the subtra
tion of a harmoni
 �t withthe �rst frequen
y.
• R Cor Bor: the fra
tion of magnitudes that is below 1.5 magnitudesrespe
t to the median.

rcorbor = P (mag > (median(mag) + 1.5)) (3.24)
• AOV: the period a

ording to the analysis of varian
e method ofS
hwarzenberg-Czerny [40℄.
• Magnitude Ratio: an index used to estimate if the obje
t spendsmost of the time above or below the median.

mag_ratio = P (mag > median(mag)) (3.25)
• Phase Dispersion Minimization: the period obtained by the min-imization of the varian
e of data with respe
t to the medium light
urve.
• Fast χ: this te
hnique uses Fourier series trun
ated at the H harmoni
to model the periodi
 fun
tion. The quality of data is obtained fromthe Fourier 
oe�
ients' χ2 together with the frequen
y f.
• Periodi
 features: these are a series of features obtained by light
urves using the generalized Lomb-S
argle method. The light 
urvesare modeled as follows:

yi(t|fi) = ai sin(2πfit) + bi cos(2πfit) + bi,0 (3.26)To determine periodi
 variations then it is possible to do a minimiza-tion of the square sum:
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χ2 =

∑

[dk − yi(tk)]
2/σ2

k (3.27)So one 
an de�ne the generalized periodogram:
Pf (f) =

(N − 1)

2

χ2
0 − χ2

m(f)

χ2
0

(3.28)where:
χ2
0 =

∑

[dk − µ]2/σ2
k (3.29)

µ =
∑

[dk/σ
2
k]/

∑

1/σ2
k (3.30)Then a �t of light 
urves is done using the sum of a linear term plus asum of sinusoids:

y(t) = ct+
∑∑

yi(t|ifi) (3.31)The features used are so obtained:
Ai,j =

√

a2i,j + b2i,j (3.32)
PHi,j = tan−1(bi,j, ai,j) (3.33)

fi (3.34)Finally, other four features are used, obtained by the ratio of the pre-vious features and the o�set 
.



Chapter 4Ma
hine learning with NeuralNetworksAs already mentioned in the introdu
tion, this thesis work tries to 
lassifytransients using a ma
hine learning approa
h based on the use of neuralnetworks.4.1 Neural networksA neural network is an analysis instrument modeled on the human brainstru
ture, inserted in an informati
s devi
e. It 
an be 
onstituted both bysoftware and/or by dedi
ated hardware. Its purpose is to simulate a heavilyinter
onne
ted 
omputational stru
ture, 
onsisting of many relatively simpleindividual pro
ess elements, the neurons, whi
h make simple 
al
ulations onthe input signal, then passing the output one to another neuron. Theseelementary obje
ts are usually organized in groups or layers. Layers 
angenerally re
eive input signals (input layers), emit output signals (outputlayers), or be ina

essible to both types of signals, having only 
onne
tionswith other layers (hidden layers).4.1.1 Biologi
al foundationsIn almost all living organisms there are 
omplex organizations of neural
ells, with 
on�gurations de�ned by external environment, memorization andrea
tion to stimuli. Human brain represents the most extraordinary produ
tof biologi
al evolution, due to his 
apa
ity to elaborate information. Withthe aim to do these operations, biologi
al networks use a massive number ofsimple 
omputational elements, neurons, highly inter
onne
ted so as to varytheir 
on�guration in response to external stimuli: in this sense we 
an speakabout learning and arti�
ial models trying to 
at
h this distin
tive featureof biology. 47



48 4. Ma
hine learning with Neural NetworksGenerally a neuron is 
onstituted from three prin
iple parts: soma (
ellbody), axon (the unique output neuron line, bran
hing o� in thousandsof lines) and dendrite (input neuron line, re
eiving input signals by otheraxons through synapses). The 
ell body makes a weighted sum (integration)of input signals. If the result ex
eeds a 
ertain threshold value, then theneuron is a
tivated and an a
tion potential is produ
ed and sent to theaxon. If the result does not ex
eed the threshold value, the neuron remainsin the rest state. An arti�
ial neural network re
eives external signals on aninput nodes' layer (elaboration units), ea
h one 
onne
ted with numerousinternal nodes, organized in more layers. Every node elaborates the re
eivedsignals and transmits the result to the nodes in the subsequent nodes layer.4.1.2 History and utilizationThe wide variety of neural networks models 
annot leave aside from its basi

onstituent, the arti�
ial neuron proposed by W.S. M
Cullo
h and W. Pittsin 1943 [31℄, whi
h outlines a linear threshold 
ombiner, with multiple inputbinary data and a single output binary data. An appropriate number ofthese elements, 
onne
ted to form a network, is 
apable to 
al
ulate simpleboolean fun
tions.In 1958, F. Rosenblatt [36℄ introdu
es the �rst neural network s
hema, 
alledper
eptron, whi
h is the pre
ursor of 
urrent neural networks, for identi�
a-tion and 
lassi�
ation of shapes, with the aim to furnish an interpretationof biologi
al systems general organization. So, the probabilisti
 model ofRosenblatt looks at the analysis, in mathemati
al sense, of fun
tions su
h asinformation storing and their in�uen
e on models' identi�
ation. It 
onsti-tutes a 
ru
ial improvement with respe
t to the binary model of M
Cullo
hand Pitts, be
ause the synapti
 weights are variable and therefore the per-
eptron is 
apable to learn.Rosenblatt's work stimulate a great number of studies and resear
hes and
auses strong interest and expe
tations on s
ienti�
 
ommunity, whi
h un-derwent a stop in 1969, when Marvin Minsky and Seymour A. Papert [33℄show the operative limits of simple two layers networks based on per
eptron,demonstrating the impossibility to resolve many 
lasses of problems: in fa
t,this type of neural network is not quite powerful for 
al
ulating the XOR(ex
lusive or) fun
tion.The mathemati
al 
ontext to train Multilayer Per
eptron networks (MLP)was established by the Ameri
an mathemati
ian Paul Werbos in his do
tor-ate thesis in 1974. One of the best known and e�
ient methods for neuralnetworks training is the so 
alled error ba
kpropagation algorithm, proposedin 1986 by Rumelhart, Hinton and Williams, that systemati
ally modi�esweights of 
onne
tions between nodes, bringing the network response alwaysnearer to the one desired. The ba
kpropagation (BP) algorithm is a learningte
hnique by examples, 
onstituting a generalization of the per
eptron learn-



4.1 Neural networks 49ing algorithm developed by Rosenblatt in the Sixties. Through this te
hniqueit was possible, as it has already been said, treating just appli
ations 
har-a
terized as linearly separable boolean fun
tions. The new algorithm, whi
hallowed to over
ome per
eptron limitations and to resolve the problem of nonlinear separability (so 
al
ulating the XOR fun
tion), marked the de�nitiverevival of neural networks, as showed also by the great variety of 
ommer
ialappli
ations.Neural networks are usually used in 
ontexts where data 
ould be partiallywrong or where does not exist analyti
al models to fa
e the problem. Typi
alutilizations are in opti
al 
hara
ter re
ognition software (OCR), in fa
ialre
ognition systems, and more generally in systems that treat data subje
tedto errors or rumor. Neural networks are also one of the most used instrumentin Data Mining analysis. They are also used as predi
tive instrument in�nan
ial or weather analysis. In last years their importan
e has enormouslygrown also in bioinformati
 and astrophysi
s, in whi
h they are used forresear
hing fun
tional and stru
tural models in proteins and nu
lei
 a
ids inthe �rst 
ase and, as previously said, in regression and 
lassi�
ation problemsfor what 
on
erns the astrophysi
al aspe
ts. Giving properly a series of input(training or learning phase), the network 
an give the most probable output.4.1.3 Stru
tureA neural network is 
hara
terized by three fundamental elements:
• The ar
hite
ture or network topology, that is the parti
ular way inwhi
h layers are inter
onne
ted and through whi
h they re
eive in-put and output; the 
onne
tion between two generi
 neurons o

ursthrough a link 
alled weight.
• The a
tivation or transfer fun
tion 
hosen for the neurons, whi
h, inanalogy with biologi
al neuron, represents the answer modality to ex-ternal stimuli. Generally the same fun
tion is 
hosen for all neurons ofthe layers 
omposing the network, but this is no a stri
t bond, but anar
hite
tural strategy.
• The algorithm used during the learning phase of the network.These three 
hara
teristi
s 
an be thought as the highest level of vision ofa neural network model. It is important to say that the method, or themethods, must be de�ned unequivo
ally, be
ause by this pro
ess dependsthe ability whereby the network learns and progressively improves the re-sponse. In the neural networks 
ontext, the learning pro
ess 
an be seen asthe problem to update network ar
hite
ture and 
onne
tion weights, so thatthe network itself 
an e�
iently perform its spe
i�
 task. In general, dur-ing the learning phase, the network �xes the weights values that the input
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on�gurations 
onne
tions must have. Its performan
es improve progres-sively by updating the weights over time, by the repeated presentation of
on�gurations belonging to the same 
lass.It is ne
essary to distinguish at least three di�erent learning typologies (themost important ones, but there exist also other ones). In parti
ular, one 
anhave:
• Supervised learning: based on a training set in
luding typi
al input ex-amples with the 
orresponding outputs. The network is trained with aproper algorithm, whi
h uses the a priori knowledge to modify weightsand other parameters of the network itself, so as to minimize the pre-vision error related to the sample used for training. If the trainingphase is su

essful, the network learns how to re
ognize the unknownrelation that 
onne
ts the input variables with the output ones, andso it be
omes 
apable to make previsions also where the output is notknown a priori. In other words, the �nal target of supervised learningis the prevision of the output value for every valid input value, basingjust on a relatively small number of 
orresponden
e examples (that isto say, input-output 
ouples).
• Unsupervised learning: based on training algorithms that modify net-work weights referring ex
lusively to a set of data that in
ludes justinput variables. These algorithms try to group input data and to�nd proper 
lasses that result to be representative of the data them-selves, making use of topologi
al or probabilisti
 methods. Unsuper-vised learning is also used to develop 
ompression data te
hniques.
• Reinfor
ement learning: in this 
ase an algorithm aims to �nd a 
er-tain modus operandi, starting from an observational pro
ess on exter-nal environment; every a
tion has a 
onsequen
e on environment, andit produ
es a feedba
k that guides the algorithm itself in the learningpro
ess. This 
lass of problems postulates an agent, endowed with per-
eption power, whi
h explores an environment in whi
h it undertakesa series of a
tions. The environment itself furnishes an in
entive ordisin
entive as response, as appropriate. Algorithms for reinfor
ementlearning ultimately try to determine a poli
y in
lined to maximize in-
entives re
eived by the agent during its exploration of the problem.Reinfor
ement learning di�ers from supervised one be
ause there werenot presented input-output 
ouples of known examples, and one doesnot pro
eed to the expli
it 
orre
tion of suboptimal a
tions. Further-more, the algorithm is fo
used on real time performan
e, that impliesa balan
e between the exploration of unkwown situations and exploita-tion of 
urrent knowledge.In the present work we shall use only supervised methods.



4.1 Neural networks 514.1.4 Multilayer Per
eptronThe Multilayer Per
eptron (MLP) is the most 
ommonly used ar
hite
turefor pra
ti
al appli
ations of neural networks. Generally a MLP is 
onstitutedby an input neuron layer, one or more hidden layers, ea
h one 
omposed by a
ertain number of neurons, and an output layer, 
onstituted by as many neu-rons as the response variables are. The di�erent neurons are inter
onne
tedby weights, that is to say parameters whi
h are estimated during the trainingphase using the so 
alled learning set. Pra
ti
ally MLP networks with justone hidden layer are often used, be
ause they furnish satisfa
tory results andare 
omputationally less expensive than networks with more layers.The MLP realizes a 
omplex non linear mapping between input and outputof the network. Denote with x = {x1, x2, ..., xd} the N input values. The�rst layer generates a series of linear 
ombinations of the input values, withthe aim to obtain a set of intermediate a
tivation variables a(1)j su
h that:
a
(1)
j =

d
∑

i=1

w
(1)
ji xi + b

(1)
j , j = 1, ...,M (4.1)where every a

(1)
j variable is asso
iated to a single neuron of the M units ofthe hidden layer. The w(1)

ji values represent the elements of the weight matrixof the �rst layer, while the b
(1)
j are the bias parameters (whi
h 
onsider asystemati
al error or a sele
tion e�e
t) asso
iated to the hidden layer units.So the a

(1)
j variables are transformed into the non linear a
tivation fun
tionof the hidden layer. For example, if the used fun
tion is the hyperboli
tangent, the output values from the hidden neurons are:

zj = tanh(a
(1)
j ), j = 1, ...,M (4.2)Then the zj values are transformed again by the se
ond layer of weights andbiases to obtain a se
ond layer of a
tivation values a(2)k , given by the formula:

a
(2)
k =

M
∑

j=1

w
(1)
kj zj + b

(2)
k , k = 1, ..., c (4.3)where c is the number of the output units. Finally, the output a
tivationfun
tion is applied to these values, through whi
h the �nal values yk, where

k = 1, ..., c, are obtained. Depending on the nature of the 
onsidered prob-lem, one 
an have:
• regression problems, with a linear a
tivation fun
tion, i.e. yk = a

(2)
k ;

• 
lassi�
ation problems, with a gaussian a
tivation fun
tion, indepen-dently applied to everyone of the output neurons, i.e.:
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yk =

1

1 + exp (−a
(2)
k )

(4.4)The main training algorithm of a MLP is the ba
kpropagation, based ona 
orre
tion error rule. Essentially, ba
kpropagation 
onsists in two steps,forward and ba
kward respe
tively, through the network layers. In the �rststep, the forward one, an input ve
tor is applied to the network inputs,propagating layer by layer. Finally, an output is generated, 
orrespondingto the a
tual response of the network itself. Contrarily, in the su

essivestep, ba
kward, weights are adjusted through the error 
orre
tion law. Ina more spe
i�
 manner, the network answer is subtra
ted to the values ofa 
orre
t-known values' sample, denoted with t = {t1, t2,...,tc}, so that anerror signal is produ
ted and propagated through the network. Obviouslythe signal error form 
an be de�ned in many di�erent ways, depending fromthe problem we are 
onsidering. In parti
ular, one 
an have two fundamental
ases:
• for regression problems, a quadrati
 sum error fun
tion is adopted:

E =
1

2

N
∑

n=1

c
∑

k=1

{yk(xn;w)− tnk}
2 ; (4.5)

• for 
lassi�
ation problems, a 
ross-entropy error fun
tion is often pre-ferred:
E = −

∑

n

c
∑

k=1

{tnk ln y
n
k + (1− tnk) ln (1− ynk )} . (4.6)Weights are then adjusted in su
h a manner that the output of the networkapproa
hes to the desired values in a statisti
al sense and the pro
edure isrepeated until the result varies only in a negligible way. In our 
ase wewill use a more e�
ient variant of the ba
kpropagation algorithm, 
alledquasi-newtonian method.4.1.5 MLPQNAMLPQNA stands for the traditional neural network MLP model imple-mented with a Quasi Newton Approximation (QNA) as learning rule. Thenetwork used for our experiments is o�ered by the DAMEWARE infrastru
-ture [10℄ - [4℄ - [5℄ - [6℄ - [7℄. In the 
ase of the QNA learning rule imple-mentation, the algorithm used is an adapted version of the 
lassi
al Newtonmethod for optimization problems. The Newton method is the general basisfor a whole family of so 
alled Quasi-Newtonian methods. The QNA is an
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ause the implementation is basedon a statisti
al approximation of the Hessian matrix of the error, througha 
y
li
 gradient 
al
ulation. The learning rule of our MLP is the QuasiNewton Approximation, whi
h di�ers from the Newton Algorithm in termsof the 
al
ulation of the Hessian of the error fun
tion. In fa
t Newtonianmodels are variable metri
 methods used to �nd lo
al maxima and minimaof fun
tions and, in the 
ase of MLPs they 
an be used to �nd the stationary(i.e. the zero gradient) point of the learning fun
tion.We know that the 
lassi
al Newton method uses the Hessian of a fun
tionin the following way. The step of the method is de�ned as a produ
t of aninverse Hessian matrix and a fun
tion gradient. If the fun
tion is a positivede�nite quadrati
 form, we 
an rea
h the fun
tion minimum in one step. In
ase of an inde�nite quadrati
 form (whi
h has no minimum), we will rea
hthe maximum or saddle point. In short, the method �nds the stationarypoint of a quadrati
 form. In pra
ti
e, we usually have fun
tions whi
h arenot quadrati
 forms and, however, the Newton method 
an 
onverge bothto a minimum and a maximum. More generally, the Hessian of a fun
tion isnot always available and in many 
ases it is far too 
omplex to be 
omputed.More often we 
an only 
al
ulate the fun
tion gradient whi
h 
an be used toderive the Hessian via N 
onsequent gradient 
al
ulations. The gradient inevery point w is in fa
t given by:
∇E = H × (w − w∗) (4.7)where w 
orresponds to the minimum of the error fun
tion, whi
h satis�esthe 
ondition:
w∗ = w −H−1 ×∇E (4.8)The ve
tor H−1∇E is known as Newton dire
tion.Quasi Newton methods solve this problem as follows: they use a positive def-inite approximation instead of a Hessian. If the Hessian is positive de�nite,we make the step using the Newton method. If the Hessian is inde�nite,we modify it to make it positive de�nite, and then perform a step usingthe Newton method. In pra
ti
e, it QNA is an optimization of the learningrule based on a statisti
al approximation of the Hessian by 
y
li
 gradient
al
ulation whi
h, as already mentioned, is at the base of the 
lassi
al Ba
kPropagation method.The QNA instead of 
al
ulating the H matrix and then its inverse, uses aseries of intermediate steps of lower 
omputational 
ost to generate a se-quen
e of matri
es whi
h result more and more a

urate approximations of

H−1. During the exploration of the parameter spa
e, in order to �nd theminimum error dire
tion, QNA starts in the wrong dire
tion. This dire
tionis 
hosen be
ause at the �rst step the method has to follow the error gradi-ent and so it takes the dire
tion of steepest des
ent. However, in subsequent
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hine learning with Neural Networkssteps, it in
orporates information from the gradient. By using the se
ondderivatives, QNA is able to avoid lo
al minima and to follow more pre
iselythe error fun
tion trend, revealing a "natural" 
apability to �nd the absoluteminimum error of the optimization problem.The following features are implemented in the MLPQNA present in DAME-WARE, and, during this thesis work we will widely use them:
• only bat
h learning mode is available (i.e. the network error is 
al
u-lated at the end of the submission of the 
omplete training dataset);
• stri
t separation between 
lassi�
ation and regression fun
tionality modes;
• for 
lassi�
ation mode, the Cross Entropy method is available to 
om-pare output and target network values. It is possible to alternativelyuse standard MSE rule, that is mandatory for regression mode;
• K-fold 
ross validation method to improve training performan
es andto avoid over�tting problems;
• resume training from past experiments, by using the weights stored inan external �le at the end of the training phase;
• 
onfusion matrix 
al
ulated and stored in an external �le for both
lassi�
ation and regression modes (in the last 
ase an adapted versionis provided). It is useful after training and test sessions to evaluatemodel performan
es.The MLP network topology parameters and QNA training rule parametersare the following:
• input neurons: the number of neurons assigned to the input layer. Itwill 
orrespond to the number of feature sele
ted for the experiment,as will be des
ribed in Chapter 5;
• hidden: the number of hidden layers sele
ted and the 
orrespondentnumber of hidden neurons;
• output: the number of output neurons. In all our experiments it willbe always �xed to 1, be
ause we will only do binary 
lassi�
ations;
• W-step: one of the two stopping 
riteria. The algorithm stops if ap-proximation error step size is less than this value. A step value equal tozero means to use the parameter MaxIts as unique stopping 
riterion;
• Restarts: number of restarts of hessian approximation from randompositions, performed at ea
h iteration;
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• De
ay: regularization fa
tor for weight de
ay. The term dec∗||net_w||2is added to the error fun
tion, where net_w is the total number ofweights in the network. When properly 
hosen, the generalization errorof the network is highly improved. This is a fundamental parameter;
• MaxIts: max number of iterations of hessian approximation. If zerothe step parameter is used as stopping 
riterion;
• CVAL: the k parameter for Cross Validation.In parti
ular, for what 
on
ern this last point, we already mentioned CrossValidation in the 
ase of the attribute sele
tion for the random forest method,in Chapter 3. More generally it is an automatized pro
ess used to avoidover�tting on the training set. It o

urs when a statisti
al model des
ribesrandom error or noise instead of the underlying relationship. Generally,over�tting appears when a model is ex
essively 
omplex, su
h as having toomany parameters relative to the number of observations. A model whi
hhas been over�t will generally have poor predi
tive performan
e, as it 
anexaggerate minor �u
tuations in the data. In parti
ular, over�tting o

urswhen a model begins to memorize training data rather than learning togeneralize from trend.Therefore, as we said, Cross Validation is one of the te
hniques that 
an beused to avoid this phenomenon. In our 
ase, it was done by performing 10di�erent training runs with the following pro
edure:1. The training set is split into 10 random subsets, ea
h one 
omposed by10% of the dataset.2. At ea
h training run the 90% of the dataset is applied for training andthe ex
luded 10% for validation. The number of runs is �xed to the kvalue.The analysis of the results of our experiments are based on the so 
alled
onfusion matrix. From a 
onfusion matrix de�ned as showed in Tab. 4.1 itis possible to derive the following parameters (in 
apital letters there is theextended name of the parameter, in bra
kets the label that will be used intables):
• TOTAL EFFICIENCY (E�): ratio between the number of 
orre
tly
lassi�ed obje
ts and the total number of obje
ts in the data set.

Eff =
N11 +N22

N11 +N12 +N21 +N22
(4.9)

• PURITY OF A CLASS (Pur1 and Pur2): ratio between the numberof 
orre
tly 
lassi�ed obje
ts of a 
lass and the number of obje
ts
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hine learning with Neural NetworksOUTPUT- CLASS 1 CLASS 2TARGET CLASS 1 N11 N12CLASS 2 N21 N22Table 4.1: Stru
ture of the 
onfusion matrix as obtained from theMLPQNA.
lassi�ed in that 
lass, also known as e�
ien
y of a 
lass.
Pur1 =

N11

N11 +N21
(4.10)

Pur2 =
N22

N12 +N22
(4.11)

• COMPLETENESS OF A CLASS (Comp1 and Comp2): ratio betweenthe number of 
orre
tly 
lassi�ed obje
ts in that 
lass and the totalnumber of obje
ts of that 
lass in the data set.
Comp1 =

N11

N11 +N12
(4.12)

Comp2 =
N22

N21 +N22
(4.13)

• CONTAMINATION OF A CLASS (Cont1 and Cont2): it is the dualof the purity, namely it is the ratio of mis
lassi�ed obje
t in a 
lassand the number of obje
ts 
lassi�ed in that 
lass.
Cont1 = 1− Pur1 =

N21

N11 +N21
(4.14)

Cont2 = 1− Pur2 =
N12

N12 +N22
(4.15)These parameters make possible to des
ribe 
ompletely the distribution ofthe patterns after the pro
ess of 
lassi�
ation training and test.



Chapter 5The DAMEWAREinfrastru
tureThe data burst that in the re
ent years is 
hanging the way to performastrophysi
al resear
h, requires a new generation of software tools, largelyautomati
, s
alable and highly reliable. A great importan
e has been a
-quired from theThe DAMEWARE (Data Mining & Exploration Web Appli
ation REsour
e)infrastru
ture is born with the aim to perform the so 
alled Knowledge Dis-
overy in Databases (KDD), enabling a learning paradigm to treat massivedata sets by the development of new algorithms of lower 
omputational 
om-plexity. In this way it is possible to infer knowledge from data and validatethe obtained results. It was an innovative, general purpose, Web-based, VO(Virtual Observatory) 
ompliant, and distributed data mining infrastru
turespe
ialized in massive data sets exploration with ma
hine learning methods.Nowadays it has evolved to be
ome a general purpose platform able to �ndappli
ations also in other domains of human knowledge and resear
h.One of the main features of DAME is its usability and s
alability, 
onsideringthe fa
t that KDD is a 
omplex pro
ess. In fa
t, we must 
onsider that one
an �nd good results only on a trial and error base by 
omparing outputs ofdi�erent methods and di�erent experiments with the same method, with alengthy �ne tuning phase that 
ould result hard to a not experien
ed user,requiring a good knowledge of the mathemati
s underlying the methods, ofthe 
omputing infrastru
tures and of the 
omplex work�ows whi
h need tobe implemented. For these reasons, through the use of the Web appli
a-tion paradigm and of an extensive and user friendly do
umentation, DAMErepresents the �rst attempt to bring the KDD models to users hiding mostof their 
omplexity behind an hybrid distributed well designed 
omputinginfrastru
ture.Obviously it is important to remember that by making an intensive use ofba
kground knowledge it is possible to redu
e the amount of data that are57
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turerequired by a spe
i�
 problem during the learning phase.Using a simple browser, DAME o�ers several tools for data analysis, su
has 
lustering, 
lassi�
ation, regression, feature extra
tion et
., together withmodels and algorithms. No software needs to be installed on the lo
al ma-
hine of the user, 
on�guring and exe
uting experiments on a virtualized
omputing infrastru
ture. Moreover, it is possible to extend the originallibrary of available tools, by adding plug-in and exe
uting 
ode through asimple guided pro
edure, without any restri
tion about the native program-ming language.5.1 Design and ar
hite
tureDAME was 
on
eived to provide the s
ienti�
 
ommunity with an extensible,integrated environment for data mining and exploration. With this aim, ithad to:
• support the VO standards and formats, in parti
ular for data interop-erability;
• to abstra
t the appli
ation deployment and exe
ution, so to providethe VO with a general purpose 
omputing platform exploiting modernte
hnologies.An important aspe
t that must be 
onsidered is the a-syn
hronous a

ess.In fa
t, most available web based data mining servi
es run syn
hronously, soexe
uting jobs during a single HTTP transa
tion. This is obviously simpler,but it does not �t well with long-run tasks, be
ause all the entities in the
hain of 
ommand must remain up for the duration of the a
tivity, losing itif anyone stops.For what 
on
ern the main stru
ture of the web servi
e (see Fig. 5.1), in theDAME data mining infrastru
ture the 
hoi
e of any ma
hine learning mode,a supervised or unsupervised one, is always a

ompanied by the fun
tionalitydomain, that is to say the mode to explore the available data (regression,
lassi�
ation, 
lustering, et
.).The 
ombination of the 
hosen data mining model and fun
tionality makespossible to do experiments, for whi
h a use 
ase must be sele
ted: one mayhave training, test, validation and run use 
ases, in order to perform, respe
-tively, learning, veri�
ation, validation and exe
ution phases. Most modelsprovide also a full use 
ase, that exe
utes all listed 
ases automati
ally as asequen
e.From the te
hnologi
al point of view, DAMEWARE 
onsists of �ve main
omponents: Front End (FE), Framework (FW), Registry and Data Base(REDB), Driver (DR) and Data Mining Models (DMM).
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hite
ture 59Model Name Category Fun
tionalityMLPBP Multi Layer Per
eptron Supervised Classi�
ation, regressionwith Ba
k PropagationFMLPGA Fast MLP trained by Geneti
 Algorithm Supervised Classi�
ation, regressionMLPQNA MLP with Quasi Newton Approximation Supervised Classi�
ation, regressionMLPLEMON MLP with Levenberg-Marquardt Supervised Classi�
ation, regressionOptimization NetworkSVM Support Ve
tor Ma
hine Supervised Classi�
ation, regressionRandomForest Random Forest Algorithm Supervised Classi�
ation, regressionESOM Evolving Self Organizing Maps Unsupervised ClusteringK-Means Unsupervised ClusteringSOFM Self Organizing Feature Maps Unsupervised ClusteringSOM Self Organizing Maps Unsupervised ClusteringPPS Probabilisti
 Prin
ipal Surfa
es Unsupervised Feature Extra
tionTable 5.1: Data mining models and fun
tionalities available in the DAME-WARE framework. Column 1: a
ronym; 
olumn 2: extended name; 
olumn3: 
ategory; 
olumn 4: fun
tionality.

Figure 5.1: The general software ar
hite
ture of DAMEWARE (Cavuoti[12℄).



60 5. The DAMEWARE infrastru
tureThe DAME design ar
hite
ture is implemented following the standard LAR(Layered Appli
ation Ar
hite
ture) strategy, whi
h leads to a software sys-tem based on a layered logi
al stru
ture, where di�erent layers 
ommuni
atewith ea
h other via simple and well-de�ned rules:
• Data A

ess Layer (DAL): the persistent data management layer, re-sponsible of the data ar
hiving system, in
luding 
onsisten
y and reli-ability maintenan
e.
• Business Logi
 Layer (BLL): the 
ore of the system, responsible ofthe management of all servi
es and appli
ations implemented in theinfrastru
ture, in
luding information �ow 
ontrol and supervision.
• User Interfa
e (UI): responsible of the intera
tion me
hanisms betweenthe BLL and the users in
luding data and 
ommand I/O and viewsrendering.The main 
on
epts that lay behind the distributed data mining appli
ationsimplemented in the DAME Suite are based on three issues:
• virtual organization of data: this is an extension of a basi
 feature ofthe VO;
• hardware resour
e-oriented: this is obtained by using 
omputing in-frastru
ture, like grid, whi
h enable parallel pro
essing of tasks, usingidle 
apa
ity, with the aim to obtain large number of instan
es runningfor short periods of time;
• software servi
e-oriented: this is the base of usual 
loud 
omputingparadigm. The data mining appli
ations implemented runs on topof virtual ma
hines seen at the user level as servi
es (spe
i�
ally webservi
es), standardized in terms of data management and working �ow.The hardware infrastru
ture of DAMEWARE, instead, is based on two sub-networks addressable from an unique a

ess point, the website, whi
h pro-vides an embedded a

ess to the user to all DAME web appli
ations andservi
es. The integrity of the system is guaranteed by a registration pro
e-dure, whi
h gives the possibility to a

ess all fa
ilities from just one a

ount.Depending on the 
omputing and storage power requested by the job andby the pro
essing load 
urrently running on the network, an internal me
h-anism redire
ts the jobs to a job-queue in a pre-emptive s
heduling s
heme.The intera
tion with the infrastru
ture is 
ompletely asyn
hronous and aspe
ialized software 
omponent has the responsibility to store o�-line job re-sults in the user storage workspa
es, that 
an be retrieved and downloadedin subsequent a

esses. This hybrid ar
hite
ture makes possible to exe
utesimultaneous experiments that gathered all together bring the best results.
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hite
ture 61Instead, from the software point of view, DAME is based on the followingfeatures:
• modularity: software 
omponents with standard interfa
ing, easy tobe repla
ed;
• standardization: basi
ally, in terms of information I/O between userand infrastru
ture as well as between software 
omponents;
• hardware virtualization: i.e. independent from the hardware deploy-ment platform (single or multi pro
essor, grid et
.);
• interoperability: by following VO requirements;
• expandability: be
ause many parts of the infrastru
ture require to bein
reased and updated along its lifetime;
• asyn
hronous intera
tion: there is not a syn
hronous intera
tion be-tween the end user and the 
lient server me
hanisms, so the user isnot 
onstrained to remain 
onne
ted after laun
hing an experiment inorder to wait for the end of exe
ution;
• language-independent programming: this basi
ally 
on
erns the API(Appli
ation Programming Interfa
e) forming the data mining modellibraries and pa
kages. Although most of the available models and al-gorithms were internally implemented, this is not 
onsidered as manda-tory. The suite provided a Java based standard wrapping system toa
hieve the standard interfa
e with multi-language APIs;
• distributed 
omputing: the 
omponents 
an be deployed on the samema
hine as well as on di�erent networked 
omputers;
• pluggable: with the new plugin pro
edure users 
an extend the datamining model library integrated into the web app, by simply downloadand run a Java appli
ation, whi
h through a driven pro
edure generatesour
e 
ode to be integrated into the web app software infrastru
ture.
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Chapter 6DataIn this thesis we used data from a single synopti
 survey, the CRTS. This
hoi
e 
ame after 
omparing several data sets from di�erent surveys and thefundamental parameters 
hara
terizing them, as is possible to see in Tab.6.1 and 6.2.The survey resulted as the most suitable for our purpose was the CRTS, so,as said before, the 
atalogs have been 
reated from this survey. Relativelysmall synopti
 surveys like CRTS, today, 
an be 
onsidered both as s
ienti�
and te
hnologi
al pre
ursors and testbeds for the biggest surveys of the nextfuture, su
h as LSST or SKA.6.1 Catalina Real Time Transient SurveyThe Catalina Real Time Transient Survey (Tab. 6.1) makes use of existingsynopti
 teles
opes and image data resour
es from the Catalina Sky Survey(CSS). CSS uses three wide-�eld teles
opes: the 0.68 m Catalina S
hmidt atCatalina Station, AZ, the 0.5 m Uppsala S
hmidt (Siding Spring Survey -SSS), at Siding Spring Observatory, NSW, Australia, and the Mt. LemmonSurvey (MLS), a 1.5 m re�e
tor lo
ated at Mt. Lemmon, AZ. For ea
hteles
ope, a 
amera with a single, 
ooled, 4k x 4k ba
k-illuminated, un�lteredCCD is used. The 
ombined CSS+SSS+MLS data streams 
an 
over up to
≈ 2000 deg2 per night to a limiting magnitude of V ≈ 19 − 20 mag, plusa smaller area (≈ 200 deg2 per night) to a limiting magnitude of V ≈ 21.5mag.The CRTS 
overs the total area of ≈ 33000 deg2, ex
luding the Gala
ti
plane within |b| < 10 − 15, down to ≈ 19 − 21 mag per exposure, within
reasing time baselines from 10 min to 8 years; there are now typi
ally
≈ 300 − 400 exposures per pointing, and 
oadded images deeper than ≈ 23mag.The CRTS has dete
ted astrophysi
al transients and variable obje
ts outsidethe Solar System performing sear
hes in the 
atalog domain and by the use63



64 6. Data

Survey CRTS PQCoverage 33000 deg2 150000 deg2Coverage per night 2200 deg2/night 500 deg2/nightField of View 8 deg2 9.4 deg2De
lination −75 < dec < 70 −25 < dec < 25RA / /Gala
ti
 latitude |b| > 15 /Nr of passes/�eld/night 4 From 5 to 25f_open 0.7 /E�e
tive 
olle
ting area 2.326 m2
1 m2t_exp 20− 30 se
 150 sec/cosδOverall instrument e�
ien
y 0.7 0.4Full Width Half Maximum 3 2Merit �gure 5470 /Limiting magnitude 21.5 (V) 21.5 (r)Transient dete
ted 7500 (CSDR2) 4800 (15% 
on�rmed)Time baseline From 10 min to 6 yrs From hours to yearsPubli
 data release CSDR2 Publi
 data release 1.0Number of obje
ts 500 million /Magnitude interval 11.5 < V < 21.5 /Referen
e for data [19℄ [16℄In
luded surveys CSS, MLS, SSS /Table 6.1: Some useful parameters of CRTS and Palomar Quest (PQ)surveys.



6.1 Catalina Real Time Transient Survey 65

Survey SDSS II PTFCoverage 300 deg2 1/2 of the entire skyCoverage per night / 1000 deg2/nightField of View 3 ∗ 3 deg2 7.78 deg2De
lination −1.25 < dec < 1.25 /RA −60 < ra < 60 /Gala
ti
 latitude b < 0 /Nr of passes/�eld/night / 2f_open / 0.7E�e
tive 
olle
ting area 4 m2
1.131 m2t_exp 54 se
 60 se
Overall instrument e�
ien
y 0.4 0.7Full Width Half Maximum 1.5 2Merit �gure / 4820Limiting magnitude 22.5 21Transient dete
ted 580 1860Time baseline / From 1 min to 5 daysPubli
 data release DRSN1 /Number of obje
ts 230 million /Magnitude interval / /Referen
e for data [38℄ [29℄ - [28℄In
luded surveys / /Table 6.2: Some useful parameters of SDSS II and Palomar TransientFa
tory (PTF) surveys.



66 6. Dataof image subtra
tion. Sour
es that show signi�
ant 
hanges in brightness, orwhi
h appear for the �rst time where previously no sour
es where dete
ted,are identi�ed. The 
ontrast threshold is set high (�ux 
hanges of at least
≈ 1 mag and ≈ 5σ), with the aim to �nd the most dramati
, and also mostinteresting, transients.The survey has dete
ted ≈ 7500 unique, high-amplitude, transients, in
lud-ing at least 1800 SN, at least 1000 CVs (the majority of them previouslyun
atalogued), over 2500 of blazars/OVV AGN, hundreds of �are stars,et
. It was re
ently made available for download the se
ond data release(CSDR21), 
ontaining about 500 million light 
urves. Photometri
 data areobtained using SExtra
tor.It is possible to 
hoose di�erent sear
h options into the database2. It ispossible to perform sear
hes around a single lo
ation (giving Ra and De
, thename of the sele
ted obje
t or the ID) or around multiple lo
ations, loading adata �le 
ontaining ID, Ra, and De
 (with a limit of 100 lo
ations). Moreoverit is possible to perform a sear
h for period. For every 
atalog extra
ted,one 
an sele
t the table and the data formats. The database is organized indi�erent 
atalogs, des
ribed in the following.Master obje
ts are the sour
es dete
ted in 
oadds (Master frames) from20 CSS images. Obje
ts dete
ted in individual images are linked to theseobje
ts based on their position. The mat
hing radius is a fun
tion of seeingand teles
ope resolution. Information about all master images is pla
ed inthe MasterFrame, whereas the photometry of the obje
ts is in Master
atCSS(Master
atMLS and Master
atSSS for MLS and SSS 
oadd sour
es).The individual obje
t 
atalogs in
lude all the dete
tions from the North andSouth grid �elds of CSS. Ea
h dete
tion is linked to a master sour
e andpla
ed in the photometry 
atalog (Phot
at). Sour
es with no mat
h to mas-ter obje
ts are put in the separate Orphan obje
t 
atalog (Orphan
atCSS).Orphan obje
ts in
lude real sour
es su
h as asteroids as well as other tran-sients. Other spurious single dete
tions are also in
luded. However, someobje
ts have been removed based on quality �ags. Information 
ommon toan image is pla
ed in the frame 
atalog (Frame
atCSS).A fundamental feature of the CRTS is its fully open poli
y: in fa
t all de-te
ted transients are immediately published, with no proprietary period atall, bringing enormous bene�ts to the entire astronomi
al 
ommunity andmaximizing the s
ienti�
 returns by en
ouraging follow-up by other groups.6.2 Final 
atalogWe prepared a 
atalog with data from the CRTS database, from whi
h thephotometri
 features des
ribed in the paragraph 3.3 were extra
ted using1http://nesssi.
a
r.
alte
h.edu/DataRelease/2http://nesssi.
a
r.
alte
h.edu/DataRelease/s
hema.html



6.2 Final 
atalog 67the CTSCS web-servi
e, with 1619 patterns and 29 
olumns (name, ra, de
,25 photometri
 features and 
lass). These data will be used to train theMLPQNA. The 
atalog is 
omposed by the following 
lasses (on the rightthere is the label used in the 
atalog and in bra
kets the number of patternsfor ea
h 
lass is reported):
• Cata
lismi
 Variables - CV (461);
• Supernovae - SN (536);
• Blazar - Bl (124);
• A
tive Gala
ti
 Nu
lei - AGN (140);
• Flare Stars - Fl (66);
• RR Lyrae - RRL (292).
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Chapter 7Classi�
ation experimentsThis 
hapter des
ribes the 
entral part of this thesis. The experimental strat-egy followed in the development of the work is presented and the des
riptionof the experiments, with the tables presenting the detailed results obtained.7.1 Experimental strategyBefore des
ribing in details the experiments, we will summarize the adoptedstrategy and the various steps in the preparation of the 
atalogs. First of allour work fo
used only on two-
lass 
lassi�
ation, sin
e it is an exploratorywork and this is the simplest type of 
lassi�
ation. Only some of the availablephotometri
 features were sele
ted for the training in the di�erent 
ases. Infa
t, for ea
h experiment, a new 
atalog was prepared, by sele
ting only asubset of features plus the binary �ags representing the target 
lassi�
ationvalues. Then, in ea
h experiment the 
atalog was randomly split in twoparts, one for training and one for test, 
ontaining 80% and 20% of theobje
ts respe
tively, using the random row shu�e fun
tion available withinDAMEWARE, in order to ensure a proper 
overage of the parameter spa
e.In Tab. 7.1 an example of su
h a 
atalog is presented. All the 
atalogs inthe following will be based on the same 
riteria.We used the following strategy to pro
eed with the experiments:1. A �rst series of experiments was performed in order to �nd the bestinitial 
on�guration of the MLPQNA 
lassi�er. The 
lassi�
ation isbetween the two 
lasses CV and ALL (AGN + SN + Fl + Bl - RRLwere removed to be added again in late experiments).2. To understand what were the best working group of features for the
lassi�
ation of the previous 
lasses, we performed a pruning of the fea-tures. We started from a nu
leus of features, 
hosen heuristi
ally, andthen we added the other features, one by one, re
ursively, sele
ting theone that gave the best results. Then we repeated the same operation69



70 7. Classi�
ation experimentsamplitude beyond1std fpr_mid50 fpr_mid65 std target1.5 0.571429 0.61319 0.806252 1.082759 10.47817 0.33333 0.2247 0.41031 0.29104 01.33274 0.45454 0.71078 0.83724 0.95925 01.36 0.310954 0.279479 0.42138 0.50272 1Table 7.1: Example of few re
ords in one of the 
atalogs used for theexperiment, with some features sele
ted and the target parameter indi
atingthe right 
lassi�
ation for all training and test pattern.starting from a di�erent nu
leus, 
hosen by the inspe
tion of featureshistograms, �nally 
omparing the results. The main purpose of thismethod was to see what 
ould be the ideal 
ombination of features forthis 
lassi�
ation.3. Using the two nu
lei and the best setup previously obtained, we 
hangedthe type of 
lassi�
ation, by performing experiments that we shall 
allfor EXTRA-GALACTIC vs GALACTIC (AGN + Bl vs CV + SN+ Fl), to see if there are improvements with respe
t to the previousseparation. This de�nition 
omes from the fa
t that we grouped to-gether AGN with BL La
 obje
ts (i.e. extra-gala
ti
 obje
ts), againstCV+SN+Fl. The in
lusion of SN in the latter being due that eventhough they are mainly observed in external galaxies, they still arestars and therefore of a 
ompletely di�erent 
ategory with respe
t toa
tive gala
ti
 nu
lei. The idea, in fa
t, is to explore di�erent types of
lassi�
ation to test the method in di�erent situations.4. Finally we did experiments adopting the same groups of features usedin Donalek [17℄, to 
ompare the results obtained with di�erent 
las-si�ers. In this 
ase the 
atalog used was the same of the arti
le [17℄,with the 
lassi�
ation of the two 
lasses SN vs ALL (AGN + Bl + CV+ Fl + RRL).Following this strategy we aimed of exploring the performan
es of the method,identifying its strength and its weakness, by 
onsidering also its results withinthe 
ontext of a wider framework of transient 
lassi�
ation, starting from rawdata up to the �nal 
lassi�
ation.Therefore: for ea
h experiment (in the 
ases of the pruning operations, onlyfor the best ones), we repeated the experiment with the same 
on�gura-tion, but on a new 
atalog, in whi
h the two 
lasses have been preventivelybalan
ed one ea
h other. We noti
ed that there is always a great la
k ofbalan
e between the 
lasses 
onsidered (it will be 
lear when we will reportthe number of the patterns 
omposing the di�erent 
lasses). So we properly
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Figure 7.1: Histogram showing a 
omparison between the e�
ien
y valuesduring the two phases of training and test in some of the experiments done.Only experiments 6 and 7 uses CVAL.(randomly) 
ut the 
atalogs, by leaving the larger 
lass with about the 5%of patterns more than the smaller one. In this way, we 
ould study the de-penden
e of the results from the number of patterns in the two 
lasses, andfrom the group of features used.Finally, before fo
using our attention on the experiments, we shall anti
ipatesome of the results obtained, in the subsequent histograms, where we reportthe values of the various parameters obtained from the 
onfusion matrix fortraining and test phases of more than 20 experiments.The aim is to verify if there is 
ompatibility between the two values and ifthe 
lassi�er is working properly.The histograms are reported from Fig. 7.1 to Fig. 7.7 in the next pages.We 
an see that, ex
ept for some 
ases, there is a good agreement betweenthe results of the training and test phases. For the 
ases where this is nottrue, with a variation from 10% to 20%, we have noti
ed that this happensmainly in the �rst experiments, based on CV 
lassi�
ation (the most am-biguous one), and done with groups of features and MLPQNA stru
ture notyet �xed at all. So we think this 
ould be a good explanation for thesestrong variations, that in the last experiments pra
ti
ally disappeared. No-ti
e that, among these experiments, only number 6 and 7 use the k-fold CrossValidation.
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Figure 7.2: Histogram showing a 
omparison between the 
ompletenessvalues of the �rst 
lass (Cata
lismi
 Variables, AGN + Blazar, or Super-novae, depending from the experiments that will be presented in the nextparagraph and that were 
hosen to 
over all the experimental phase) duringthe two phases of training and test in some of the experiments done. Onlyexperiments 6 and 7 uses CVAL.

Figure 7.3: Histogram showing a 
omparison between the 
ompletenessvalues of the se
ond 
lass (ALL the other 
lasses opposite to the �rst 
lasseslisted in Fig 7.2, depending from the experiments that will be presented inthe next paragraph and that were 
hosen to 
over all the experimental phase)during the two phases of training and test in some of the experiments done.Only experiments 6 and 7 uses CVAL.
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Figure 7.4: Histogram showing a 
omparison between the purity values ofthe �rst 
lass (Cata
lismi
 Variables, AGN + Blazar, or Supernovae, depend-ing from the experiments that will be presented in the next paragraph andthat were 
hosen to 
over all the experimental phase) during the two phasesof training and test in some of the experiments done. Only experiments 6and 7 uses CVAL.

Figure 7.5: Histogram showing a 
omparison between the purity values ofthe se
ond 
lass (ALL the other 
lasses opposite to the �rst 
lasses listed inFig. 7.4, depending from the experiments that will be presented in the nextparagraph and that were 
hosen to 
over all the experimental phase) duringthe two phases of training and test in some of the experiments done. Onlyexperiments 6 and 7 uses CVAL.
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Figure 7.6: Histogram showing a 
omparison between the 
ontaminationvalues of the �rst 
lass (Cata
lismi
 Variables, AGN + Blazar, or Super-novae, depending from the experiments that will be presented in the nextparagraph and that were 
hosen to 
over all the experimental phase) duringthe two phases of training and test in some of the experiments done. Onlyexperiments 6 and 7 uses CVAL.

Figure 7.7: Histogram showing a 
omparison between the 
ontaminationvalues of the se
ond 
lass (ALL the other 
lasses opposite to the �rst 
lasseslisted in Fig. 7.6, depending from the experiments that will be presentedin the next paragraph and that were 
hosen to 
over all the experimentalphase) during the two phases of training and test in some of the experimentsdone. Only experiments 6 and 7 uses CVAL.



7.2 Experiments 75Hidden De
ay Wstep E� Pur1 Pur2 Comp1 Comp2layers (%) (%) (%) (%) (%)Test1 1 0.01 0.001 78 75 80 65 86Test2 1 0.001 0.001 73 68 75 56 83Test3 2 0.01 0.001 74 70 75 55 85Test4 2 0.001 0.001 73 69 75 54 85Table 7.2: Table showing the di�erent settings of the MLPQNA and theresults obtained in per
entage of obje
ts. Class 1 is referred to CV (461patterns), while 
lass 2 to is referred to ALL the others (866 patterns). Thevalues of Restart and MaxIts parameters are �xed respe
tively to 60 and
10000 and the number of input neurons is �xed to 5.7.2 ExperimentsIn this paragraph we shall report the detailed des
ription of the experimentsdone, following the strategy previously depi
ted in paragraph 7.1. We didthree di�erent 
lassi�
ations: CV vs ALL, EXTRA-GALACTIC vs GALAC-TIC and SN vs ALL.7.2.1 Feature spa
e identi�
ationIn this paragraph we des
ribe the realization of the �rst point of our strategy.After the �rst test experiments, that we will not report here, we fo
used onthe goal to �nd the best MLPQNA 
on�guration, by sele
ting a nu
leusof �ve features (Nu
leus 1 from now) and working only on 
lassi�
ation ofCata
lismi
 Variables 
lass (
lass 1) versus ALL the others (
lass 2 - SN +Bl + AGN + Fl, with RRL 
lass removed).We had 461 CV and 866 ALL the other patterns. The sele
ted features are:

• amplitude;
• beyond1std;
• per
ent_amplitude;
• skew;
• kurtosis.These features were sele
ted by the heuristi
 
riteria dis
ussed before. Weobtained the results showed in Tab. 7.2.
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ation experimentsN Feature E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont26 linear_trend 79.70 67.68 86.83 75.28 81.92 24.72 18.087 med_buf_range 80.83 69.77 86.11 70.59 85.63 29.41 14.368 pair_slope_trend 83.46 81.63 84.52 75.47 88.75 24.53 11.25Table 7.3: Table showing the results of the pruning operation for the 1Hidden Layer 
on�guration. All the values are in per
entage of obje
ts.Only the best feature added is reported for every value of N (the number ofinput features). Class 1 refers to CV (461 patterns), 
lass 2 refers to ALL(866 patterns).N Feature E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont26 linear_trend 78.19 66.67 85.03 72.53 81.14 27.47 18.867 med_buf_range 82.33 70.93 87.78 73.49 86.34 26.51 13.668 fpr_mid65 81.95 80.64 82.66 71.43 88.82 28.57 11.18Table 7.4: Table showing the results of the pruning operation for the 2Hidden Layers 
on�guration. All the values are in per
entage of obje
ts.Only the best feature added is reported for every value of N (the number ofinput features). Class 1 refers to CV (461 patterns), 
lass 2 refers to ALL(866 patterns).7.2.2 Cata
lismi
 Variables vs ALL 
lassi�
ationTo perform the se
ond point of the strategy previously explained, in the fol-lowing we used the MLPQNA with the �rst and third 
on�guration, shownin Tab. 7.2, be
ause they 
learly obtained the best results. Then, we de
idedto perform a pruning of the remaining features, with the aim to minimizee�e
ts of 
orrelation and to identify the best group of features for CV 
las-si�
ation (CV: 
lass 1 - ALL the others: 
lass 2). We re
ursively added allthe other features to the initial nu
leus, one by one, and sele
ted the mostsigni�
ant. In Tab. 7.3 - 7.4 we report the results of the experiments onlyfor the best feature.At this point, we repeated the experiments for the two best setups (Test 1and 3) and for the pruning, using the best features sele
ted, as shown inTab. 7.3 - 7.4, with the pres
riptions indi
ated in paragraph 7.1, using abalan
ed 
atalog. In fa
t, we noti
ed that in most 
ases there is a largedi�eren
e between the values of 
ompleteness for the two 
lasses, and thisproblem 
ould be resolved only by balan
ing the two 
lasses. In Tab. 7.5 wereport the results of these experiments.We noti
e that, ex
ept in the 
ase of the nu
leus 1, there is always a balan
ingof the 
ompleteness values, with respe
t to the previous experiments, but wedid not see any improvement in the total e�
ien
y, probably due to theredu
ed number of patterns. However, these experiments did not help us to



7.2 Experiments 77N HL E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont25 (Nu
leus1) 1 72.25 61.96 81.82 76.00 69.83 24.00 30.175 (Nu
leus1) 2 68.06 58.69 76.77 70.13 66.67 29.87 33.336 1 83.77 85.57 81.91 83.00 84.61 17.00 15.386 2 80.10 79.38 80.85 81.05 79.17 18.95 20.837 1 80.63 82.22 79.21 77.89 83.33 22.10 16.677 2 70.68 73.33 68.32 67.35 74.19 32.65 25.818 1 79.58 74.04 86.21 86.52 73.53 13.48 26.478 2 83.25 84.44 82.18 80.85 85.57 19.15 14.43Table 7.5: Table showing the results in per
entage with the balan
ed 
at-alog CV vs ALL. All the experiments were done using both the topologywith one and two hidden layers. We added the best features sele
ted by theprevious pruning for every 
ase (the one showed in Tab. 7.3 - 7.4). Class 1refers to CV (461 patterns), 
lass 2 refers to ALL (490 patterns).
hoose between the 1 or 2 hidden layers topology and, moreover, by repeatingsome experiments, we noti
ed a strong variation in the results (of 3 − 4%in terms of e�
ien
y). We supposed that the reason for this behavior 
ouldarise by an ill de�ned sele
tion of features.Therefore we tried to sele
t a new nu
leus (Nu
leus 2) of features, by in-spe
ting their histograms, without dividing the patterns in 
lasses (e.g. by
onsidering the whole 
atalog), and 
hoosing the most regular ones. In thisway we obtained a new nu
leus 
omposed by the following features:
• amplitude;
• beyond1std;
• fpr_mid50;
• fpr_mid65;
• std.In Fig. 7.8 we show the histograms of the sele
ted features.Then we performed a new series of experiments using this nu
leus. Ea
hexperiment was repli
ated three times, in order to avoid systemati
 trends.We 
an observe that the e�
ien
y variation between the experiments is re-du
ed, leading to more stable results, by not using CVAL and by freezingthe 
on�guration of the MLPQNA to a single hidden layer.After that, we performed a pruning with some features (sele
ted for theirregularity properties by the histograms), by identifying the best one (forinstan
e, pair_slope_trend). In Tab. 7.6 we report the results.Also in this 
ase, we de
ided to repeat the experiments with a balan
ed
atalog. In Tab. 7.7 we report the results obtained.
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Nu
leus2 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 75.94 57.83 84.15 62.34 81.48 37.66 18.52Exp2 77.07 57.83 85.79 64.86 81.77 35.13 18.23Exp3 75.19 53.01 85.24 61.97 80.00 38.03 20.006 Features E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 77.44 64.83 84.00 67.82 82.12 32.18 17.88Exp2 76.31 61.54 84.00 66.67 80.77 33.33 19.23Exp3 76.31 70.33 79.43 64.00 83.73 36.00 16.26Table 7.6: Results in per
entage of the experiments on the new nu
leusof features, obtained by histogram analysis, and the new pruning to add asixth feature. Only the best feature is reported (pair_slope_tren). Class1 refers to CV (461 patterns), 
lass 2 refers to ALL (866 patterns). The
on�guration adopted is the one of Test 1 of Tab. 7.2.

Nu
leus2 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 71.20 67.02 75.26 72.41 70.19 27.59 29.81Exp2 71.20 56.83 85.57 79.10 66.93 20.89 33.06Exp3 69.11 65.96 72.16 69.66 68.63 30.34 31.376 Features bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 67.54 68.82 66.33 65.98 69.15 34.02 30.85Exp2 70.68 72.04 69.39 69.07 72.34 30.93 27.66Exp3 70.68 66.67 74.49 71.26 70.19 28.73 29.81Table 7.7: Table showing the results in per
entage with the balan
ed 
ata-log CV vs ALL for the Nu
leus2. In the six features 
ase, we added the bestfeature sele
ted by the previous pruning (pair_slope_trend). Class 1 refersto CV (461 patterns), 
lass 2 refers to ALL (490 patterns).
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(a) amplitude (b) beyond1std
(
) fpr_mid50 (d) fpr_mid65

(e) stdFigure 7.8: Histograms of the features of the Nu
leus 2 over all the 
atalog:(a) amplitude, (b) beyond1std, (
) fpr_mid50, (d) fpr_mid65, (e) std.In this 
ase there is not a substantial improvement in the results, probablybe
ause there is a stronger dependen
e on this group of features (i.e 
or-relation phenomena between the nu
leus used and the 
lassi�
ation CV vsALL). Furthermore, we de
ided to stop the pruning at this point be
ause wedid not noti
e a substantial improvement by adding the sixth feature, andalso CV experiments, trying a new 
lass separation.7.2.3 EXTRA-GALACTIC vs GALACTIC 
lassi�
ationAs �xed in point 3 of the experimental strategy of paragraph 7.1, we de
idedto pro
eed with a new 
lassi�
ation, in whi
h the 
lassi�er had to separatebetween two new 
lasses: EXTRA-GALACTIC (Bl + AGN - 
lass 1) andGALACTIC (CV + SN + Fl - 
lass 2) obje
ts. From this point we shalluse only the 
on�guration with one hidden layer and without using CVAL,whi
h seems to indu
e instability in the results, probably due to the verylimited number of input patterns.We had 264 galaxies (124 Bl and 140 AGN) and 1063 stars (461 CV, 536
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ation experimentsNu
leus1 Nu
leus2amplitude amplitudebeyond1std beyond1stdper
ent_amplitude fpr_mid50skew fpr_mid65kurtosis stdTable 7.8: The two main nu
lei of features obtained from the previousanalysis, that were used in the experiments.Nu
leus1 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 83.46 61.40 89.47 61.40 89.47 38.60 10.53Exp2 84.21 56.14 91.87 65.31 88.48 34.69 11.52Exp3 84.59 57.89 91.87 66.00 88.89 34.00 11.11Nu
leus2 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 85.34 65.57 91.22 68.96 89.90 31.03 10.10Exp2 87.22 67.21 93.17 74.54 90.52 25.45 9.48Exp3 89.47 70.49 95.12 81.13 91.55 18.87 8.45Table 7.9: Results in per
entage of the EXTRA-GALACTIC vs GALAC-TIC experiments for the two nu
lei of Tab. 7.8. The experiments are re-peated for three times with the same network 
on�guration (the one usedfor Test 1 in Tab. 7.2, without 
ross validation). Class 1 refers to EXTRA-GALACTIC (264 patterns) obje
ts, Class 2 refers to GALACTIC (1063 pat-terns) obje
ts.SN and 66 Fl). As in the previous experiments, we used the two estab-lished nu
lei of features and ea
h experiment was repli
ated three times. Were
apitulate the 
omposition of the two nu
lei in Tab. 7.8.The results obtained are reported in Tab. 7.9. We noti
ed a great improve-ment in the 
lassi�
ation pro
ess with this method, so we were en
ouragedto pro
eed �rst with the experiments using a balan
ed 
atalog (the resultsfor 
ompleteness however show a great di�eren
e per 
lass also in this 
ase),and then with a pruning operation on the De
ay parameter.We re
all that this is one of the internal model parameters, indi
ating theweight regularization de
ay. If a

urately 
hosen, there 
ould be an impor-tant improvement of the generalization error of the trained neural network,with also an a

eleration of training.In fa
t there is a strong dependen
e of the De
ay from the spe
i�
 
ase weare 
onsidering, the number and type of features, and so on.For what 
on
erns the experiments with balan
ed 
atalog, we obtained theresults reported in Tab. 7.10. These results show a balan
ing in both 
ases,but in the �rst 
ase there is a global worsening in the results, while in these
ond 
ase there is a smaller e�e
t whi
h however still leads to a good
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leus1 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 74.31 79.49 71.43 60.78 86.21 39.21 13.79Exp2 77.98 71.79 81.43 68.29 83.82 31.71 16.18Exp3 73.39 76.92 71.43 60.00 84.74 40.00 15.25Nu
leus2 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 83.49 78.57 88.68 88.00 79.66 12.00 20.34Exp2 80.73 78.57 83.02 83.02 78.57 16.98 21.43Exp3 81.65 82.14 81.13 82.14 81.13 17.86 18.87Table 7.10: Results in per
entage of the experiments EXTRA-GALACTIC(
lass 1 - 264 patterns) vs GALACTIC (
lass 2 - 280 patterns) for the twodi�erent Nu
lei, with the balan
ed 
atalog, using the same network 
on�g-uration of Tab. 7.9 (in parti
ular the De
ay parameter remains �xed to0.01).Nu
leus1 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 86.09 52.63 95.21 75.00 88.05 25.00 11.95Exp2 86.09 52.63 95.21 75.00 88.05 25.00 11.95Exp3 86.09 52.63 95.21 75.00 88.05 25.00 11.95Nu
leus2 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 89.85 73.77 94.63 80.36 92.38 19.64 7.62Exp2 89.85 72.13 95.12 81.48 91.98 18.52 8.02Exp3 89.85 72.13 95.12 81.48 91.98 18.52 8.02Table 7.11: Results in per
entage of the EXTRA-GALACTIC vs GALAC-TIC experiments for the two nu
lei of Tab. 7.8, after the pruning operationon the De
ay parameter. Only the best results, with the sele
ted De
ayvalue of 0.5, are reported. The experiments are repeated for three timeswith the same network 
on�guration. Class 1 refers to EXTRA-GALACTIC(264 patterns) obje
ts, Class 2 refers to GALACTIC (1063 patterns) obje
ts.
result. Again we 
an identify this behavior in the dependen
e from the groupof features used. Con
erning instead the pruning of the De
ay parameter,we obtained that the best value is 0.5, with the results for the two nu
lei,respe
tively, reported in Tab. 7.11.We pro
eeded again by balan
ing the 
lasses, with the goal to obtain re-sults with less di�eren
e in the 
ompleteness values. The results are showedin Tab. 7.12. This shows the improvement, together with the great balan
ingbetween 
lasses, for the se
ond nu
leus. Therefore in the subsequent exper-iments we will use the se
ond nu
leus, and a 0.5 De
ay value, be
ause thisis the 
on�guration that gives the best results.
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ation experimentsNu
leus1 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 76.15 79.49 74.28 63.26 86.87 36.73 13.33Exp2 77.06 79.49 75.71 64.58 86.88 35.42 13.11Exp3 76.15 79.49 74.28 63.26 86.87 36.73 13.33Nu
leus2 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 89.91 87.50 92.45 92.45 87.50 7.55 12.50Exp2 90.82 89.28 92.45 92.59 89.09 7.41 10.91Exp3 90.82 89.28 92.45 92.59 89.09 7.41 10.91Table 7.12: Results in per
entage of the experiments EXTRA-GALACTIC(
lass 1 - 264 patterns) vs GALACTIC (
lass 2 - 280 patterns) for the twodi�erent nu
lei, with the balan
ed 
atalog and the De
ay value set to 0.5Nu
leus2 E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 79.70 72.75 84.97 78.09 80.74 21.90 19.25Exp2 81.20 76.99 84.31 78.38 83.22 21.62 16.77Exp3 81.20 76.99 84.31 78.38 83.22 21.62 16.77Table 7.13: Results in per
entage of the SN vs ALL experiments for theNu
leus 2 of Tab. 7.8. The De
ay parameter is �xed to the value of 0.5.Class 1 refers to SN (536 patterns), Class 2 refers to ALL the others (791patterns).7.2.4 Supernovae experimentsFinally, as stated in the fourth point of paragraph 7.1, we 
ontinued ourwork by performing experiments for Supernovae (Class 1), versus ALL other
lasses (Class 2). In this series of experiments we used the best MLPQNAstru
ture previously �xed. For the �rst group of experiments we used thenu
leus that gave us the best results (Nu
leus2 - Tab. 7.8) obtaining the re-sults reported in Tab. 7.13 (we had 536 SN and 791 ALL the other patterns).Pro
eeding instead with the usual balan
ing of the 
atalog, we obtained theresults showed in Tab. 7.14.Nu
leus2 bal. E� Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 77.37 76.41 78.26 76.41 78.26 23.58 21.74Exp2 77.37 76.41 78.26 76.41 78.26 23.58 21.74Exp3 78.28 79.24 77.39 76.36 80.18 23.64 19.82Table 7.14: Results in per
entage of the SN vs ALL experiments for theNu
leus 2 of Tab. 7.8 with a balan
ed 
atalog. The De
ay parameter is �xedto the value of 0.5. Class 1 refers to SN (536 patterns), Class 2 refers to ALLthe others (566 patterns).



7.2 Experiments 83This leads to a better balan
ing of the 
ompleteness values but also to theworsening of the overall results. After that, we de
ided to make a 
ompar-ison with the results of Donalek [17℄, whi
h worked on the same types of
lassi�
ations and with the same 
atalog, but using di�erent 
lassi�ers, i.e.K-nearest-neighbor (KNN) and De
ision Trees (DT). Therefore we addedagain the sixth 
lass 
ontaining RR Lyrae (536 SN and 1083 ALL the otherpatterns) to our 
atalog, in order to obtain the same 
atalog as in the arti
le
onsidered. We then performed the experiments with our MLPQNA model,but using some groups of features 
hosen by various feature sele
tion au-tomated methods, from Donalek [17℄. In Donalek [17℄ the feature sele
tionmethod are:
• Fast Relief Algorithm (reliefF): simple but e�
ient pro
edure to esti-mate the quality of attributes a

ording to how well their values dis-tinguish between istan
es;
• Fisher Dis
riminant Ratio (fdr): it 
an be used to rank a number offeatures with respe
t to their 
lass-dis
riminatory power;
• Correlation-based Feature Sele
tion (
fs): it is a method whi
h sele
tsfeatures that have low redundan
y and results strongly predi
tive of asingle 
lass, 
onsidering that features strongly predi
tive of a 
lass arehighly 
orrelated with that 
lass and un
orrelated with ea
h other;
• Fast Correlation Based Filter (f
bf): it is a supervised �lter basedfeature sele
tion algorithm, similar to 
fs;
• Multi Class Feature Sele
tion (m
fs): it is an unsupervised featuresele
tion method based on the spe
tral analysis of the data.In Tab. 7.15 we report the groups of features used by Donalek [17℄ for thevarious method. By assuming the same groups of features as in Donalek[17℄, we obtained the results reported in Tab. 7.16. We indi
ated also the
olumn with the mis
lassi�ed obje
ts, to make a 
omparison with the resultsobtained in the arti
le previously indi
ated (Tab. 7.17).As it 
an be seen our results are 
omparable to those obtained by Donalek[17℄, espe
ially in the 
ase of the 
fs/f
bf and fdr methods (we report justthese detailed results here, in the following we will furnish results for all thedi�erent methods of feature sele
tion in a 
omparing table - Tab. 8.1), butwe must however note a rather large di�eren
e between the 
ompletenessvalues.Therefore we repeated the usual pro
edure, obtaining the results reportedin Tab. 7.18. We obtained good results in the last 
ase only (fdr group offeatures). Then we de
ided to pro
eed with a new pruning on the De
ayparameter for the two best groups previously indi
ated (
bs/f
bf and fdrmethods), with the goal to improve our results. The pruning resulted in an



84 7. Classi�
ation experimentsreliefF 
fs/f
bf m
fs fdramplitude beyond1std max_slope fpr_mid50beyond1std linear_trend per
ent_amplitude linear_trendfpr_mid80 per
ent_amplitude pdfp pdfpskew kurtosis skewstd kurtosismagratio stdTable 7.15: The di�erent groups of features used for the experiments asin Donalek [17℄. These groups were determined via di�erent automatedmethods for feature sele
tion.ReliefF E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 77.16 22.84 60.91 85.51 68.37 80.97 31.63 19.03Exp2 77.47 22.53 66.36 83.18 66.97 82.79 33.03 17.21Exp3 77.47 22.53 58.18 87.38 70.33 80.26 29.67 19.74
fs/f
bf E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.88 15.12 54.74 97.38 89.65 83.83 10.34 16.16Exp2 85.49 14.51 56.84 97.38 90.00 84.47 10.00 15.53Exp3 85.49 14.51 56.84 97.38 90.00 84.47 10.00 15.53m
fs E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 64.51 35.49 29.46 83.02 47.83 69.02 52.17 30.98Exp2 64.51 35.49 29.46 83.02 47.83 69.02 52.17 30.98Exp3 64.51 35.49 29.46 83.02 47.83 69.02 52.17 30.98fdr E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.88 15.12 71.17 92.02 82.29 85.96 17.71 14.03Exp2 85.80 14.20 71.17 93.43 84.95 86.15 15.05 13.85Exp3 86.11 13.89 70.27 94.37 86.67 85.90 13.33 14.10Table 7.16: Results in per
entage of the experiments with the di�erentgroups of features of Tab. 7.15. The 
olumn Mis
lass indi
ates the per
ent-age of mis
lassi�ed obje
t, as the 
omplement of the e�
ien
y parameter.Class 1 refers to SN (536 patterns), Class 2 refers to ALL the others (1083patterns). The De
ay parameter is �xed to the value of 0.5 for all the ex-periments. Feature Sele
tion Strategy KNN Loss DT LossReliefF 22% 15%CFS 24% 17%FCBF 24% 17%MCFS 32% 19%FDR 22% 16%Table 7.17: Per
entage of mis
lassi�ed obje
ts, obtained by Donalek [17℄,using two di�erent 
lassi�ers.



7.2 Experiments 85ReliefF bal. E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 76.47 23.53 78.38 74.54 75.65 77.36 24.35 22.64Exp2 76.47 23.53 78.38 74.54 75.65 77.36 24.35 22.64Exp3 78.28 21.72 81.08 75.45 76.92 79.81 23.08 20.19
fs/f
bf bal. E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 78.73 21.27 58.09 97.41 95.31 71.97 4.69 28.02Exp2 78.73 21.27 59.05 96.55 93.94 72.26 6.06 27.74Exp3 78.73 21.27 59.05 96.55 93.94 72.26 6.06 27.74m
fs bal. E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 64.70 35.30 76.58 52.73 62.04 69.05 37.96 30.95Exp2 64.70 35.30 76.58 52.73 62.04 69.05 37.96 30.95Exp3 64.70 35.30 76.58 52.73 62.04 69.05 37.96 30.95fdr bal. E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 83.71 16.29 80.58 86.44 83.84 83.61 16.16 16.39Exp2 82.35 17.65 80.58 83.89 81.37 83.19 18.63 16.81Exp3 84.61 15.39 81.55 87.29 84.85 84.43 15.15 15.57Table 7.18: Results in per
entage of the experiments with the di�erentgroups of features of Tab. 7.15, after balan
ing 
atalogs. The 
olumn Mis-
lass indi
ates the per
entage of mis
lassi�ed obje
t, as the 
omplement ofthe e�
ien
y parameter. Class 1 refers to SN (536 patterns), Class 2 refersto ALL the others (566 patterns). The De
ay parameter is �xed to the valueof 0.5 for all the experiments.overall improvement of the results, by using di�erent best De
ay values forthe two di�erent group of features, respe
tively, 0.05 for the 
fs/f
bf groupand 0.005 for the fdr one. The results are reported in Tab. 7.19 - 7.20.In the �rst 
ase, we 
ould noti
e an improvement of about 2-3%, while inthe se
ond 
ase the improvement is smaller. Moreover, by balan
ing the
atalog also in this 
ase and by repeating the experiments, using the respe
-tive best values of De
ay previously obtained, we found the values reportedin Tab. 7.21 - 7.22.With the aim to understand if the worsening of the overall results is due tothe redu
tion of the number of patterns in the balan
ed 
ases, we repeatedthe experiments for the 
fs/f
bf and fdr groups of features with a redu
ed
atalog (randomly 
ut), 
ontaining the same total number of obje
ts for thebalan
ed 
ase (1102 patterns), but without balan
ing the two 
lasses. So wehad 372 SN (
lass 1) and 730 ALL the others (
lass 2). We repeated theexperiments in the two 
ases with De
ay parameter �xed to 0.5, and withthe best respe
tive best values of De
ay obtained after the pruning. Theresults are reported in Tab. 7.23 - 7.24.We 
annot noti
e a worsening of the results, as in the balan
ed experiments,but o� 
ourse the results obtained show the previous strong �u
tuation inthe values of 
ompleteness for the two 
lasses. But we 
an say that, at leastin these 
ases, there is not a strong dependen
e from the number of patterns.
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ation experimentsDe
ay 0.5 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.88 15.12 54.74 97.38 89.65 83.83 10.34 16.16Exp2 85.49 14.51 56.84 97.38 90.00 84.47 10.00 15.53Exp3 85.49 14.51 56.84 97.38 90.00 84.47 10.00 15.53De
ay 0.05 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 87.34 12.66 67.37 95.63 86.49 87.60 13.51 12.40Exp2 87.65 12.35 67.37 96.07 87.67 87.65 12.33 12.35Exp3 87.65 12.35 67.37 96.07 87.67 87.65 12.33 12.35Table 7.19: Best results in per
entage of the pruning experiments for the
fs/f
bf group of features of Tab. 7.15. The 
olumn Mis
lass indi
atesthe per
entage of mis
lassi�ed obje
t, as the 
omplement of the e�
ien
yparameter. Class 1 refers to SN (536 patterns), Class 2 refers to ALL theothers (1083 patterns). Previous results for De
ay 0.5 are also reported for
onvenien
e of the reader.De
ay 0.5 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.88 15.12 71.17 92.02 82.29 85.96 17.71 14.03Exp2 85.80 14.20 71.17 93.43 84.95 86.15 15.05 13.85Exp3 86.11 13.89 70.27 94.37 86.67 85.90 13.33 14.10De
ay 0.005 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 86.11 13.89 78.38 90.14 80.55 88.89 19.44 11.11Exp2 86.11 13.89 78.38 90.14 80.55 88.89 19.44 11.11Exp3 86.11 13.89 79.28 89.67 80.00 89.25 20.00 10.75Table 7.20: Best results in per
entage of the pruning experiments for thefdr group of features of Tab. 7.15. The 
olumn Mis
lass indi
ates the per-
entage of mis
lassi�ed obje
t, as the 
omplement of the e�
ien
y parameter.Class 1 refers to SN (536 patterns), Class 2 refers to ALL the others (1083patterns). Previous results for De
ay 0.5 are also reported for 
onvenien
eof the reader.De
ay 0.5 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 78.73 21.27 58.09 97.41 95.31 71.97 4.69 28.02Exp2 78.73 21.27 59.05 96.55 93.94 72.26 6.06 27.74Exp3 78.73 21.27 59.05 96.55 93.94 72.26 6.06 27.74De
ay 0.05 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 77.37 22.63 64.76 88.79 83.95 73.57 16.05 26.43Exp2 78.28 21.72 64.76 90.52 86.08 73.94 13.92 26.06Exp3 79.64 20.36 66.67 91.38 87.50 75.18 12.50 24.82Table 7.21: Best results in per
entage of the pruning experiments for the
fs/f
bf group of features of Tab. 7.15, using balan
ed 
atalogs. The 
olumnMis
lass indi
ates the per
entage of mis
lassi�ed obje
t, as the 
omplementof the e�
ien
y parameter. Class 1 refers to SN (536 patterns), Class 2 refersto ALL the others (566 patterns). Previous results for De
ay 0.5 are alsoreported for 
onvenien
e of the reader.
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De
ay 0.5 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 83.71 16.29 80.58 86.44 83.84 83.61 16.16 16.39Exp2 82.35 17.65 80.58 83.89 81.37 83.19 18.63 16.81Exp3 84.61 15.39 81.55 87.29 84.85 84.43 15.15 15.57De
ay 0.005 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 82.35 17.65 82.52 82.20 80.19 84.35 19.81 15.65Exp2 81.45 18.55 75.73 86.44 82.98 80.31 17.02 19.68Exp3 78.73 21.27 83.49 74.58 74.14 83.81 25.86 16.19Table 7.22: Best results in per
entage of the pruning experiments for thefdr group of features of Tab. 7.15, using balan
ed 
atalogs. The 
olumnMis
lass indi
ates the per
entage of mis
lassi�ed obje
t, as the 
omplementof the e�
ien
y parameter. Class 1 refers to SN (536 patterns), Class 2 refersto ALL the others (566 patterns). Previous results for De
ay 0.5 are alsoreported for 
onvenien
e of the reader.
De
ay 0.5 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 87.78 12.22 70.89 97.18 93.33 85.71 6.67 14.28Exp2 87.78 12.22 70.89 97.18 93.33 85.71 6.67 14.28Exp3 87.78 12.22 70.89 97.18 93.33 85.71 6.67 14.28De
ay 0.05 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 87.78 12.22 75.95 94.37 88.23 87.58 11.76 12.42Exp2 87.33 12.67 77.21 92.56 85.91 88.00 14.08 12.00Exp3 88.23 11.77 75.95 95.07 89.55 87.66 10.45 12.34Table 7.23: Results in per
entage for the redu
ed 
atalog with the 
fs/f
bfgroup of features of Tab. 7.15. The redu
ed 
atalog has the same totalnumber of obje
ts of the balan
ed 
ase (1102 patterns), but the 
lasses, 372SN (
lass 1) and 730 ALL the others (
lass 2), are not balan
ed. The 
olumnMis
lass indi
ates the per
entage of mis
lassi�ed obje
t, as the 
omplementof the e�
ien
y parameter. The values used for the De
ay parameter arethe initial one of 0.5 and the best one (0.05) obtained for this group afterthe pruning operation.
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De
ay 0.5 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.61 15.39 68.42 93.10 83.87 84.90 16.13 15.09Exp2 82.80 17.20 64.47 92.41 81.67 83.23 18.33 16.77Exp3 83.71 16.29 67.10 92.41 82.26 84.28 17.74 15.72De
ay 0.005 E� Mis
lass Comp1 Comp2 Pur1 Pur2 Cont1 Cont2Exp1 84.61 15.39 71.05 91.72 81.82 85.81 18.18 14.19Exp2 83.26 16.74 69.74 90.34 79.10 85.06 20.89 14.93Exp3 82.35 17.65 71.05 88.27 76.06 85.33 23.94 14.67Table 7.24: Results in per
entage for the redu
ed 
atalog with the fdrgroup of features of Tab. 7.15. The redu
ed 
atalog has the same totalnumber of obje
ts of the balan
ed 
ase (1102 patterns), but the 
lasses, 372SN (
lass 1) and 730 ALL the others (
lass 2), are not balan
ed. The 
olumnMis
lass indi
ates the per
entage of mis
lassi�ed obje
t, as the 
omplementof the e�
ien
y parameter. The values used for the De
ay parameter arethe initial one of 0.5 and the best one (0.005) obtained for this group afterthe pruning operation.



Chapter 8Con
lusionsAs dis
ussed in the introdu
tion, Time Domain Astronomy, or TDA, isamong the most 
hallenging and rapidly evolving �elds of Astrophysi
s.TDA, in fa
t, is 
ru
ial both to better understand old phenomena (su
has stellar variability, a
tive gala
ti
 nu
lei, supernovae) and to dis
over newones. From a pra
ti
al point of view, TDA presents formidable te
hnologi
al
hallenges whi
h have already 
hanged, and even more so will do in the fu-ture, the methods, problems and goals of everyday astronomi
al pra
ti
e. Aswe said in the introdu
tion, the future of observational astrophysi
s will beperformed mainly by extra
ting the useful information from huge datasetsprodu
ed by a new generation of instruments. As a results of this 
hangings
enario, astronomers will need to automatize as mu
h as possible the pro-
edures for data analysis and for the interpretation of the data. This thesisadopted this new perspe
tive and fo
used on the use of a neural networkto 
lassify transients as a �rst step towards produ
ing a framework wheredi�erent 
lassi�ers will work in 
ollaborative manner on the same data toobtain a 
lassi�
ation of variable obje
ts reliable, a

urate and reprodu
ible.This thesis made use of the DAMEWARE infrastru
ture, that representsa 
ru
ial te
hnologi
al improvement in the 
onstru
tion of an environmentwhere everyone 
an work on data, with powerful instruments, in a simple,standardized and a

essible way.We performed three types of experiments (all binary 
lassi�
ations): Cat-a
lismi
 Variables versus all other 
lasses, EXTRA-GALACTIC (AGN +Blazars) versus GALACTIC (Supernovae + Cata
lismi
 Variables + Flarestars), Supernovae versus all other 
lasses.These experiments were done with the aim to test di�erent types of 
lassi�-
ations to verify the behavior of the neural network on the di�erent 
lassesinvolved. We also varied the groups of features used, to analyze the de-penden
e of the 
lassi�
ation performan
es on them. Finally, with the lastseries of experiments, Supernovae versus ALL, we 
ompared our results tothose obtained by Donalek [17℄, who worked on the same dataset but using89



90 8. Con
lusionsdi�erent 
lassi�ers and di�erent automated methods of feature sele
tion.More in detail, the results obtained during the �rst set of experiments, (Cata-
lismi
 Variables vs ALL), even after the pruning operation, produ
ed resultswhi
h are the worst ones, probably due to the wrong balan
ing of the two
lasses. However these experiments allowed us to de�ne a good topology forthe MLPQNA and provided some nu
lei of features whi
h be
ame the start-ing point for the subsequent work. This operation also resolved the problemof the �u
tuations between the training and test phases, as it is showed inthe histograms from Fig. 7.1 to Fig. 7.7.In the EXTRA-GALACTIC vs GALACTIC experiments, despite the fa
tthat the patterns were not balan
ed, the results were mu
h better, verylikely be
ause the distin
tion between the two 
lasses has a deeper physi
almeaning, whi
h was re�e
ted in di�erent temporal behaviors.Finally, in the experiments regarding Supernovae vs ALL, using the samegroups of features as in Donalek [17℄, we noti
ed an improvement with respe
tto the experiments done with our sele
tion of features. The results obtainedwith two of these groups of features are 
omparable and we de
ided to tryto improve them by a pruning on the De
ay parameter. The pruning leadto a substantial improvement in the �rst 
ase, a smaller one in the se
ond
ase; 
on�i
ting results whi
h were 
aused by a dependen
e of the best De
ayvalue on the di�erent groups of sele
ted features.In Tab. 8.1 we 
ompare our results and those obtained in [17℄. These en-
ouraging values show that the MLPQNA 
an be 
onsidered a good tool fortransient 
lassi�
ation, espe
ially in view of the fa
t that this result must be
onsidered only preliminary and 
an be largely improved in the future.Furthermore, we noti
ed that, by balan
ing the 
lasses in the training set,in most 
ases, we obtained a de
reasing di�eren
e between the 
ompletenessvalues for the two 
lasses, but also a general worsening of all the parameterswith respe
t to the not-balan
ed 
ase. This is likely due to the redu
ednumber of patterns after the balan
ing. In some 
ases, by repeating thesame experiments, we noti
ed also an in
rease in the �u
tuations. We alsoperformed experiments with a redu
ed, but non balan
ed, 
atalog, with theaim to verify whether there was a dependen
e of the results on the numberof patterns in order to try to understand the worsening of the overall results.These experiments, performed only for our best 
ases (
fs/f
bf and fdr),dis
laimed this hypothesis, at least in the 
ase SN vs ALL. This aspe
t,however, will require further analysis.Despite of this fa
t, we 
an 
onsider as the most robust the results obtainedby balan
ing the training data, whi
h produ
ed better 
lassi�
ation in thetwo 
lasses (as demonstrated by the redu
ed di�eren
e between 
omplete-ness values). The balan
e, though not improving our results, allowed usto evaluate the strong dependen
e of the 
lassi�
ation pro
ess and of theMLPQNA behavior on the number of patterns and on the groups and num-ber of features used. The results obtained in the balan
ed 
ase are reported



91Feature sele
tion KNN DT MLPQNA MLPQNA bal. MLPQNA red.strategy (%) (%) (%) (%) (%)reliefF 22 15 23 23 /
fs/f
bf 24 17 12 22 12m
fs 32 19 35 35 /fdr 22 16 14 19 16Table 8.1: Comparison between the results obtained by Donalek [17℄ withtwo di�erent 
lassi�ers and those obtained by us with the MLPQNA andusing the same group of features. The per
entage indi
ates the number ofmis
lassi�ed obje
ts (average on the three experiments) as a 
omplement ofthe e�
ien
y. We report also the balan
ed results, but it is 
lear that theseare not 
omparable with the results of [17℄, that are not balan
ed, and theresults with the redu
ed 
atalog, as reported in Tab. 7.23 - 7.24. We re
allalso that in the two 
ases of reliefF (Fast Relief Algorithm) and m
fs (Multi-Class Feature Sele
tion) groups of features, the results are for a De
ay valueof 0.5, be
ause we did not perform the pruning operation. The redu
ed 
ase,instead, was done only for 
fs/f
b
 (Correlation-based Feature Sele
tion/FastCorrelation Based Filter) and fdr (Fisher Dis
riminat Ratio) 
ases (our best
ases), to verify the existen
e of a dependen
e from the number of patternsthat 
ould explain the worsening of the overall results in the balan
ed 
ases.in Tab. 8.1, though they 
annot be 
onsidered 
omparable with the resultsobtained in Donalek [17℄, be
ause these were not performed using a balan
edtraining set.The �nal purpose of the 
lassi�
ation pro
ess with neural networks, togetherwith the 
omparison with other methods, as we said before, must be seenin the framework depi
ted by the 
lassi�
ation s
hema of Fig. 8.1. Wefo
used just on a small subset of this 
lassi�
ation problem, exempli�edin Fig. 8.1, whi
h will require a mu
h more 
omplex hierar
hi
 work�ow.Starting from raw data, it aims on a
hieving a pre
ise 
lassi�
ation, usingdi�erent methods and feature sele
tion algorithms, that, also with the helpof external knowledge, in the next future, will make possible to realize a
omplete automatized 
lassi�
ation pro
ess.
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Figure 8.1: Classi�
ation s
hema with di�erent 
lassi�ers (Donalek [18℄). Aweighted average of the results obtained by di�erent methods 
an representa simple way to obtain the �nal 
lassi�
ation, with the help of some externalknowledge.
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