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Chapter 1

Introduction

The rising era of synoptic imaging surveys has opened the exciting chapter of
time-domain astrophysics: one of the fastest growing areas of astrophysical
research. A number of important phenomena can, in fact, be studied only
in this domain, while new and previously unknown phenomena expect to be
discovered. The purpose of this thesis is the classification of astrophysical
transients in synoptic surveys, using data mining techniques and methods.
The exploration of the temporal domain in search of variable objects and
transients has known a constant expansion during the last few years, im-
pacting on all branches of astrophysical research. With the term variable
we refer to sky objects whose luminosity presents a more or less accentuate
variation in time. As we shall see in what follows, the understanding of the
underlying physical mechanisms responsible for the variability represents a
crucial aspect in explaining a great variety of phenomena, from Supernovae
(SN), to variable stars and Active Galactic Nuclei (AGN), including some of
the most energetic events in the Universe, and the produced data volumes
have begun to overcome what is possible to visually inspect even for large
teams of astronomers, and also crowds of "citizen scientists" are not suffi-
cient to the task. So, an increasingly central role of software and hardware
frameworks is needed in order to supply the traditional roles of humans in
the real-time loop. In this not so futuristic scenario, data need to be au-
tomatically transported, processed, calibrated, and ingested into databases
without human intervention.

Each step of such data flow presents many challenges: from the discovery to
the detection, to classification and, possibly, to the automatic setup of follow-
ups for the most interesting and peculiar variable objects. This requires to
employ significant resources, in particular for what concerns the observing
time and the technologies used. This will become even more cogent in the
near future when a new generation of instruments (such as LSST - Large Syn-
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1. Introduction

optic Survey Telescope!, SKA - Square Kilometer Array?, etc.) will produce
an increasingly large amounts of complex data every night. For these instru-
ments a massive application of intelligent and automatic multi-disciplinary
methods, enclosed under the umbrella of Astroinformatics (that can be con-
sidered as a new scientific matter, standing in the more general family called
X-informatics), will be an absolute must and in fact, Astroinformatics in
particular and X-informatics in general, configure as the "fourth paradigm”
of scientific research (the others are experimentation, theory and simulation
- |27]). In other words, Information Technologies (IT), Data Mining (DM)
and Machine Learning (ML) methods need to become an indispensable part
of the game.

A central role, in this sense, has been acquired by the Virtual Observatory
infrastructure. It is a project that has the aim to create a new way to con-
struct astrophysical research. It is developed in an international framework
from national research agencies and expanded collaborations. The major
aim of the project is to make possible to researchers and students a simple
access to data archives, resources and applications through the web. Pro-
grams that are needed for data analysis are available in pre-compiled packets
(for example viewing instruments, statistical analysis, regression and all that
can be useful to extract knowledge from astronomic data). Therefore, the
Virtual Observatory is the result of convergence of research interests and
informatics and information technologies.

The application of these methodologies to the discovery and classification of
transients (which is the main target of the present work) can be approached
from two different points of view: (i) online treatment of data and (ii) offline
data analysis. In fact, in some cases it is important to quickly recognize the
transient candidates and to perform a rapid follow-up almost in real time,
while, in other cases, offline processing may be required to achieve a deeper
understanding of the data.

In this work we shall focus on offline classification of variable objects, making
use of machine learning approaches, in particular the MLPQNA method
(9] - [8]), and analyzing alternative ones like the random forest method
(|21] - [20] - [42]). We will use intensively some statistical methods like the
Lomb-Scargle [39], and we shall make extensive use of the Caltech Time
Series Characterization Service, a web service devoted to the derivation of
photometric features associated with light curves. Most of the work will
be performed using the DAMEWARE (Data Mining & Exploration Web
Application REsource) infrastructure. The final purpose is to perform a
step for a more precise classification based on several methods that in the
next future will allow a fully automatized classification of variable objects
and transients. In this way, as it has been said before, it shall be possible to

"http://www.lsst.org/lsst/
https://www.skatelescope.org/



1.1 Time Domain Astronomy: the past

reach a better comprehension of the known phenomena and to discover new
ones yet unknown.

1.1 Time Domain Astronomy: the past

Since the early days, time domain astronomy (hereafter TDA) has enor-
mously grown, including all wavelength ranges and many different parts of
astrophysics. In fact, in the history of Astronomy, studies of transient phe-
nomena have always played a key role. In this paragraph we shall outline
just a few among the most relevant facts that helped to develop modern
TDA. First of all let us introduce the distinction between photometric and
astrometric transients.

It is known that astrometry is the branch of Astronomy that involves precise
measurements of positions and movements of stars and other celestial bod-
ies. Photometry, instead, concerns with measuring the flux, or intensity of
an astronomical object electromagnetic radiation, particularly refering over
different wavelength bands of radiation. Therefore, we can define astro-
metric transients those objects whose variability is due to changes in their
positions on the sky. This is the case, for example, of asteroids, comets, etc.
Conversely, photometric transients can be defined as those objects whose
variability is due to variations in the luminosity of the object caused either
by intrinsic or extrinsic phenomena. To the first family belong objects in
which the variability is caused by physical variations in its structure which
modify also the luminosity flux. It could be the case of supernovae, AGN,
cataclismic variables, and so on. Extrinsic variables are instead objects where
the variability is induced by other phenomena, such as for instance eclipsing
variables.

Modern Astrophysics was born with the first systematic study of a transient.
In fact, in 1782 the English amateur astronomer John Goodricke observed
the variable star Algol (Beta Persei). We have to recall that, in the ancient
era, the static sidereal universe was outside scientific investigation, because
it was considered unchangeable. Goodricke noticed the strange variability
of Algol® and proposed several mechanisms to explain it, as the presence of
shape effects (non spherical simmetry) or the passage of a dark body in front
of the star. This fact brought to the attention of the scientific community
the variability of the universe and we can say that it gave life for the first
time to Astrophysics, as a discipline that studies the physical mechanisms
and the causes of astronomical phenomena.

Meanwhile, in 1774 Charles Messier had published the Catalogue des Neb-
uleuses et des Amas d’Etoiles nowadays known as the Messier Catalog, which

3We wish to stress that Algol is a quite bright object clearly visible by naked eye and
presents a strong variability. The fact that none before Goodricke seems to have explicitly
noted the phenomenon tells a lot about the strenght of the Aristotelic dogma.
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can be considered as an involuntary by-product of transient astronomy. In
fact, he was a "comet hunter" and he compiled his catalog of nebulae with
the aim to better disentangle new comets (astrometric transients) from neb-
ulae (stationary objects).

At the beginning of the 20th century, Henrietta Swan Levitt, one of the
human computers hired by Edward Charles Pickering at the Harvard Col-
lege Observatory, by studying variable stars, discovered the Cepheid Period-
Luminosity relation. This constituted a key result which enabled the mea-
surement of galactic distances. We will return on this fundamental discovery
in the following.

In 1936 Fritz Zwicky and Walter Baade had access to what we now con-
sider the first example of dedicated hardware for transient astronomy: the
18” Schmidt Telescope at the Palomar Observatory (Fig. 1.1). Using this
instrument, Zwicky began to workout the first supernovae surveys, and to-
gether with Baade, they coined the term "supernova" itself, considered as
transitions from normal stars into neutron stars [1]. So they started hunting
for supernovae, founding a total of 120 objects. Moreover, Baade proposed
the use of supernovae as standard candles, to estimate distance in space. The
instrument was also used to discover nearly 50 comets, the most famous of
which was the Shoemaker-Levy 9 comet, discovered in 1993, which collided
with Jupiter in 1994.

In more recent years the Calan/Tololo Survey was performed, a supernova
survey ran from 1989 to 1995 at the University of Chile and the Cerro Tololo
Inter-American Observatory to measure a Hubble diagram out to redshifts of
0.1. It led to the discovery of 32 Ia supernovae, which were used as accurate
standard candles for measuring distances, bringing to precise measurements
of the Hubble Constant Hy and to the evidence of the accelerated expansion
of the Universe and the hypothesis of the presence of dark energy or of a
cosmological constant dominating the mass/energy of the Universe itself.
Modern transient surveys can offer information only on phenomena which
vary significantly on time scales between 1 days and ~ 10 years (ideal for
supernovae, but a large portion of the Universe operates at a much slower
rate, so we could strongly expand our knowledge if we could extend the time
range of our available data) the so called DASCH project (Digital Access to a
Sky Century @ Harvard) was performed. The aim of this quest is to digitize
over 100 years of historical photographic plates at Harvard [24].

Harvard College Observatory was founded in 1839 and soon moved to the
forefront of astronomy research, housing the 15-inch "Great Refractor",
which resulted to be the largest telescope in the U.S. between 1847 and
1867. In the late 1800s, the observatory began imaging large portions of
the sky with telescopes positioned all around the world, and these photo-
graphic plates were examined by the already mentioned human computers
as we previously said when we spoke about the period-luminosity relation
for Cepheid. So, Harvard’s collection of photographic plates continued to
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Figure 1.1: The 18" Schmidt telescope at the Palomar Observatory.

grow until the early 1990s, i.e. until when most telescopes had replaced pho-
tographic plates with CCDs. Nowadays the archive contains about 500.000
photographic plates, obtained between 1885 and 1993, covering, with dif-
ferent frequency and sampling, the entire sky. Most locations were imaged
from hundreds to thousands of times in a 100 year window. Therefore, the
project mainly consists in digitizing the plates, detecting sources and mea-
suring their magnitudes, and finally producing the 100-year light curve for
every object. The 100-year temporal coverage, compared with < 10 years of
coverage by PTF (Palomar Transient Factory?) and CRTS (Catalina Real-
Time Transient Survey®) and the several epochs of SDSS (Sloan Digital Sky
Survey®), and many other surveys, will enable new studies of long-time scale
phenomena, as it can be seen by the comparison in Fig. 1.2.

The overall conclusion is that by expanding TDA surveys to time-scales that
are 1 o 2 orders of magnitude longer than those reached by current or planned
modern surveys, a range of fundamental classes of objects can be studied as
individual objects in well-defined samples’.

“http://www.ptf.caltech.edu/iptf

®http:/ /crts.caltech.edu/

Chttp://www.sdss.org/

"One of the purposes is to create a historical knowledge (Historical TDA), taking a step
back and looking to the past, also in the optics of the incoming new projects previously
presented. This also gives the idea of the always increasing interest of the astronomical
community in the wide field of TDA.
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Figure 1.2: Representative classes of variables and transients vs their recur-
rence time that can be measured for a complete sample with DASCH (right)
vs PTF, CRTS, Pan-STARRS-1 and LSST (dashed box, left) or jointly (over-
lap region).

1.2 Time Domain Astronomy: the present

TDA is opening a totally new discovery space, extending to the time axis
the Observable Parameter Space (or OPS). In general the parameter space
is defined as the set of all possible combinations of values for all the different
parameters contained in a particular mathematical or physical model. So
different configurations of the parameters space produce different behaviors
of the model. In astrophysics, the set of the parameters is usually obtained
from photometric or spectroscopic observables, and from statistical patterns.
It is known from the history of science and from literature that every time
a technology enables us to open a new portion of the OPS, new types of ob-
jects and phenomena are usually discovered. Therefore, adding the temporal
dimension to the parameter space has allowed and will allow the discovery of
new phenomena and a better characterization of the old ones, with a major
comprehension of some physical phenomena (Fig. 1.3).

At the present time, the overall description that emerges is the one depicted
by the semantic tree of Fig. 1.4, from which a first classification of vari-
able objects in extrinsic and intrinsic ones can be deduced, as previously
explained. As we shall see in more details in the next chapter, extrinsic
objects can be asteroids or eclipsed, microlensed and rotating stars, while

intrinsic objects are eruptive, cataclysmic, pulsating and secular stars, or
AGN.
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Figure 1.3: The plot, from Harwit [25], shows how our knowledge of the
parameter space has increased trough the years, both in wavelength and time
resolution of the phenomena. It is interesting to notice that new phenomena
(marked with different symbols) are always at the edges of the colored ar-
eas, making clear that they were a result of a new technology, opening new
windows in the OPS.

Therefore, TDA allows to tackle a broad range of different physical phenom-
ena. In fact, we have to consider that some phenomena can be studied only
in the time domain, for example various cosmic explosions, accretion and rel-
ativistic phenomena. We can safely state that TDA regards essentially every
field of astronomy, from the Solar System to cosmology, and from stellar
structure and evolution to extreme relativistic phenomena.

It is needed to emphasize that the data and event discovery rates are expected
to increase dramatically, from 0.1 TB and ~ 10— 10? events per night now, to
30 TB and 10° — 10”events per night in the LSST era, and that the available
follow-up facilities would be simply overwhelmed, and will result absolutely
unable to react to all potentially interesting events. The traditional manual
approach will simply not scale to the next generation of surveys, especially
if we are interested in finding the rarer transients. So, the main challenge
is to achieve the dynamical, real-time characterization and classification of
transient events, and the subsequent optimal decision for their follow-up.

In Fig. 1.5 it is possible to see an example of how such coordination works,
for a single event which was observed in the Crab Nebula. This episode
illustrates brilliantly how the availability of instruments that survey large
areas of the sky, combined with the ability to process the data in real time,
has opened new perspectives in TDA.

Moreover, not only electromagnetic signals are involved, if we consider that

neutrino and cosmic ray astronomy are ready to explode and gravitational
wave astronomy is at its first steps.The community is growing toward this
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Figure 1.4: Semantic tree of astronomical variables and transients (see

Eyer [23]).
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INTEGRAL, SwifUBAT, RXTE/ASM: Na change in a-ray Crab
Mo enhancement in Crab Nebula ‘Mebula spectrum and pulsar
xeray flux, no other hard x-ray sianal properties No change in x-ray Crab "
source in the vicinity Nebula flux and spectrum | ARGO-YBJ:
Observed enhancement at very
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No significant change in Crab Nebula flux and Nothing unusual compared to archive x-ray
spectrum, no change in Crab pulsar x-ray signal images but brightened features noticeable
shape, no new active x-ray source in the vicinity .

Figure 1.5: Timetable of the Astronomer’s Telegram releases on a Crab
Nebula flare in universal time, within 1 month after discovery on 22 Septem-
ber 2010 (see [2]).

kind of "multimessenger astronomy". But now it is clear that the huge
volume of data to be searched for transients and the multitude of possible
decisions to be taken will soon make it impossible to rely on human capabili-
ties to rapidly collect and discriminate time-critical information. Efforts are
therefore being put into developing common standards for the implementa-
tion of fully automated near real-time systems.

The study of the presented phenomenology implies two different operational
modes:

e Offline TDA: understanding of the variable universe from the huge
amounts of light curves produced by modern surveys and stored in the
digital archives.

e Online TDA: detecting and characterizing in real time photometric
transients.
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Chapter 2

Phenomenology of transients

In this chapter we shall provide the reader with more details about the clas-
sification based on the semantic tree of Fig. 1.4, presented in the previous
chapter and we shall furnish a description of the main phenomena and phys-
ical process regarding the objects mainly involved in the development of this
thesis work.

2.1 The semantic-tree based classification

First of all one must say that it is possible to distinguish transients from sim-
ple variable objects using the definition taken from CRTS: transient objects
are those which show a magnitude variability of Am > 2 mag.

Looking at the semantic tree (Fig. 1.4), the first obvious division is, as
it was already said previously, between astrometric and extrinsic ones and
photometric or intrinsic ones. We recall that astrometric transients are those
phenomena that show a variability induced by variations of their position in
the sky with time, so it is not connected to physical properties of the objects.
Instead photometric transients consist in those phenomena that owe their
variability to a real change of the luminosity of the object itself, caused by
intrinsic variations of its physical state and/or parameters.

2.1.1 Astrometric and extrinsic transients

Astrometric and extrinsic transients can be then divided mainly in two cat-
egories.

e Asteroids: the causes of their extrinsic variability can be identified in
rotational or eclipsing processes.

e Eclipsing, rotating and microlensed stars: In an eclipsing system a
star can change its brightness due to an asteroid occultation, to a
planetary transit or to the interaction with another star. In the latter

17
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case we speak of Eclipsing Binaries. These systems are formed by
physically bound stars, having an orbital plane which lies near the
line-of-sight of the observer. The components periodically eclipse each
other, causing a decrease in the apparent brightness of the system,
with the period of the eclipse that can range from minutes to years.
In particular, the case of planetary transit underlies for the search of
extrasolar planets. This is one of the most active and intriguing field of
the modern astrophysical research, and it is performed mainly with the
methods of TDA. Rotating stars, instead, show small changes in light
that may be due to dark or bright spots on the stellar surfaces. Finally,
microlensing is a phenomenon due to the gravitational lens effect, that
can be used to detect objects ranging from the mass of a planet to
the mass of a star, if obscured by another massive objects, as in the
usual lensing phenomenon for galaxies. Microlensing phenomena can
be monitored over time through the detection of their light curves.

2.1.2 Intrinsic transients

Intrinsic transients can again be divided in the two major subclasses.

e Variable stars: for what concern stars, we can consider the subcate-
gories of eruptive, cataclysmic and pulsating variables, depending on
which phenomenon is at the origin of their variability, and stars dis-
playing a secular evolution, which are usually stars in the post-AGB
(Asymptotical Giant Branch) of the H-R diagram (Hertzsprung-Russell
[26] - [37]). The entire work described in this thesis in entirely based
on intrinsic transients, so in the following paragraphs we will describe
these classes in much more detail.

e (alaxies: in the specific, galaxies that show marked variability phe-
nomena are classified as AGN (Active Galactic Nuclei).

Specifically, for what concern stars:

e Eruptive variables: these stars suffer very large variations in brightness
due to violent processes and flares occurring in their chromospheres
and coronae. The light changes are often accompanied by shell events
or mass outflow in the form of stellar winds of variable intensity and
by interaction with the surrounding interstellar medium. We recall,
as example of eruptive variables, the Wolf-Rayet and the R Coronae
Borealis stars. R Coronae Borealis variables are luminous, hydrogen-
poor, carbon-rich, supergiant star which spend most of their life time
at maximum light, occasionally fading even by nine magnitudes at ir-
regular intervals. Wolf-Rayet stars are very luminous hot Population
I stars with effective temperatures between 30000 and 50000 K. They
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are characterized by very high mass-loss rate (= 10™> Muyr—'). They
show light variations with amplitudes of several hundredths of a mag-
nitude and time scales from milliseconds to years. Therefore, eruptive
stars are substantially evolved stars that have left the main sequence
and are proceeding step by step towards the last phases of their life.

Cataclysmic variables: are usually close binary systems in which the
most massive component is a white dwarf and the companion a main
sequence star. In most cases mass is transferred from the companion
to the white dwarf through a surrounding accretion disk. This ac-
creted material feeds various types of phenomena, including occasional
eruptions and jets. Components of this class of objects are:

— Novae: these systems are constituted by a white dwarf and a
main-sequence low mass star that has filled his Roche lobe. A
classical nova can show an increase of brightness from 7 to 15
magnitude in a range of 1 to several hundred days.

— Dwarf Novae: these systems are constituted by a white dwarf and
a red dwarf star cooler of our Sun. They experience semi-regular
outbursts with a typical timescale ranging from weeks to years
and a range of 4-5 magnitudes.

— Symbiotic Stars: these are interacting binary systems composed
of an evolved red giant and a hot companion star that could be
a main sequence star, a white dwarf, or a neutron star. Most
symbiotics have orbital periods of a few years while other orbit
over several decades.

But the most famous type of cataclysmic variables of course remain
the Supernovae, to which we shall dedicate the next paragraph, due to
their importance in our work.

Pulsating variables: stars characterized by periodic variations of its lu-
minosity. Stellar pulsations can be radial, if the expansion has spherical
symmetry, or non-radial, and in this case the shapes of the stars can be
asymmetrically distorted. Pulsations can occur at various frequencies,
with the lowest allowed frequency called fundamental mode, and the
higher frequencies called overtones. For each oscillation mode, these
waves have at least one node, where the matter remains steady, at the
center of the star and an antinode, where the velocity of the gases is
maximum, at the surface.

The principal categories of pulsating stars are observed to lay in the
so called Instability Strip (see Fig. 2.3), a nearly vertical region of the
H-R diagram, which defines a range of luminosities, colors and periods,
over which pulsation is a stable mode for the star.
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We shall analyze the theory of pulsation in more detail in a subsequent
paragraph.

An important thing to be noticed is that, in this schema, there are some
points of contact between the two great categories of intrinsic and extrinsic
transients. In fact, some types of stars that show eruptive phenomena, could
have also an extrinsic variability due to rotational effects.

2.2 Supernovae

With the term supernova it is intended the catastrophic explosion occurring
in the last stages of the life of a massive star, which is capable to eject a
mass of =~ 10 — 100 M, with velocities of about 0.01 — 0.1 c. The explosion
commonly feeds the external environment and the interstellar medium with
the heavy elements that were produced in the interior of the star. The burst
of radiation in a supernova often briefly outshines the luminosity of the entire
host galaxy, before fading from view over several weeks or months.
Supernovae are, without any doubt, among the most spectacular celestial
objects ever observed by humans and for sure one of the most energetic phe-
nomena in the Universe. The oldest known supernova was the one observed
in 185 AD. Supernovae in 386 and 393 AD are recorded only in Chinese
reports with no precise information about their positions. The brightest Su-
pernova ever seen was the one exploded in 1006 AD, which reached a visual
magnitude of -7.5 mag. It was described by observers in China, Egypt, Iraq,
Japan, Switzerland. However, the most famous supernova is probably the
one seen in 1054, which produced an expanding shell of gas and dust today
known as the Crab Nebula (see Fig. 2.1). This SN shone brighter than
Venus and remained visible for 23 days also during daylight. Another super-
nova was observed in the 1181 AD by Chinese and Japanese astronomers in
the constellation of Cassiopeia. In the same constellation, another famous
supernova was observed by the Danish astronomer Tycho Brahe in the 1572
AD, constituting the basis for most of his successive research. Finally, the
last confirmed supernova exploded in the Milky Way was the one observed
by Kepler in 1604.

For what concern the previous listed supernovae, all of them have left be-
hind the so-called Supernova remnants, and because no supernova has been
observed in our Galaxy during the telescopic era, everything we know about
these phenomena comes from these remnant and from supernovae in other
galaxies.

The features of the optical spectra at maximum light and the characteristics
of light curves define the various categories of supernovae. The first divi-
sion was performed by R. Minkowski in 1941 [32|, who defined two main
categories, type I and type II. The former differ from the latter for the lack
of hydrogen emission line, H, in type I. Type I Supernovae have then been
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Figure 2.1: The Crab Nebula resulting from the explosion of the Supernova
1054. In its center there is the so-called Crab Pulsar, a neutron star of about
10 km of diameter.

subdivided in three further classes: type la, Ib and Ic, depending on their
spectral characteristics. The first one shows the absorption line of the Si
IIA6355 (however we shall see next that Ia Supernovae are originated by a
completely different process). Ib show the absorption line of He IA5876 to-
gether with Calcium and Oxygen emission lines, while Ic do not show any of
the previous absorption lines. Type Il Supernovae are also divided in type
II-L (linear) and type II-P (plateau), depending from the shape of the result-
ing light curve after the explosion, which can respectively present a steady
decline or a slower decline followed by a normal decay.

Type la Supernovae were found in all kind of galaxies, ellipticals, spirals and
irregulars, and this is an evidence of the fact that their progenitors must be
long-lived stars, because in ellipticals there is no ongoing stellar formation.
They show the presence of characteristic elements in their spectrum, such as
magnesium, silicon, sulphur, calcium and iron. Type Ib, Ic and II instead,
seem to explode respectively in stellar formation zones of the arms of spi-
ral galaxies and in H II region of spiral discs or in irregular galaxies, thus
indicating that their progenitors must be short-lived, hence massive, stars.

2.2.1 Core Collapse Supernovae

According to what has been said in the previous paragraph, we can now
understand that type Ib, Ic and II have a common origin as Core Collapse
Supernovae, while type la must be considered as completely different phe-
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Figure 2.2: Shell structure of the interior of an evolved star that will
undergo a supernova explosion.

nomena. In fact, the former ones are originated from the collapse of a mas-
sive, evolved stellar core. In particular, type II Supernovae must be stars
with masses between 8 — 40 M. Instead, stars with a bigger initial mass,
like Wolf-Rayet, loose their envelopes bringing to Ib and Ic Supernovae.
These stars pass through the burning phases of hydrogen, helium, carbon,
neon, oxygen, and silicon, finally producing an iron core (Fig. 2.2). At this
point, because the nuclear binding energy per nucleon has its maximum for
iron, no energy can be released by nuclear fusion of this element. Due to the
process known as photodisintegration, photons at the very high temperatures
present in the iron core are capable to destroy heavy nuclei. Meanwhile, the
free electrons that contribute to support the star through the electron degen-
eracy pressure, in these critical conditions, are captured by heavy elements
and by protons produced through photodisintegration. Then the core starts
to collapse.

The collapse is halted by the repulsive component of the strong nuclear
force, when the core has reached about twice the density of atomic nuclei,
~ 4 —5x 10 g/em3. But the sudden halt of the collapsing core produce
a rebound mechanism, and shock waves form, directed toward the surface
of the star. The shock waves, together with the enormous force generated
by neutrinos, which at the opacity caused by the impressive pressure cannot
escape as usually, propagate through the still collapsing layers of the star,
leading to the supernova explosion. A huge amount of energy is released and
the outer layers, containing heavy metals, together with the remaining outer
envelope of hydrogen, are expelled.
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2.2.2 Type Ia Supernovae

Regarding type la Supernovae, there are still uncertainties about the pro-
cess that originates these kind of phenomena. The most accepted hypothesis
is that the formation of these supernovae happens in binary systems con-
stituted by a carbon-oxygen white dwarf and an evolved star. The cause
of the explosion can be found in the accreting material on the white dwarf
from the companion star, during its red giant phase, until the white dwarf
itself reaches its Chandrasekhar limit. At this point, in the most accredited
models, the degeneracy pressure is no longer able to support the star against
gravity, and the star starts to contract, soon reaching pressure and temper-
ature conditions sufficient to ignite carbon fusion. What happens next is
not well understood, but probably the shock waves produced by the explo-
sion ignites a deflagration that completely disrupt the star, without leaving
any remnant. Part of the material becomes °°Ni and the remaining lighter
elements like Si and C.

The typical light curve can be divided in four phases, all explainable consid-
ering the energy released in the decay from °°Ni to °6Fe. We can identify:

e rise time: the period in which the supernova rises very fast to its
maximum;

e maximum phase;

e second maximum: a pronounced second maximum has been observed
in redder light curves about from 20 to 40 days after the first maximum;

e late decline: about after 50 days the light curves reaches a steady
decline phase, exponential in luminosity.

Ia Supernovae reach their maximum about 2 or 3 weeks after the explosion,
are brighter of one magnitude then the type II and all of them have the same
peak luminosity. For these reasons they can be good standard candles, and
if it would possible to measure the absolute magnitude of the supernova,
regardless its distance, we could obtain a measure of the Hubble constant.
In fact, in 1993, Phillips [34] discovered a linear relationship between the
decline rate parameter of the light curve, Amis (the difference between the
magnitude at maximum light and the magnitude after fifteen days), and the
absolute peak magnitude of the supernova. This correlation makes possible
to greatly improve the precision of distance estimation of Ia Supernovae,
using them for the determination of cosmological parameters.

2.3 Pulsating variables and theory of pulsation

The theory of radial stellar pulsation is based on the assumption that this
is generated by small perturbations around the hydrodynamical equilibrium
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state (during this phase the star places on the Instability Strip, see Fig. 2.3),
which can grow to observed amplitudes (linear stability analysis of stellar
structure). The first step is to consider the stellar structure equations:

&%r B GM, OP

-T2 ar 1)
or 1
OM, — 4mrZp (22)
OFE P dp oL
3 2 3
L,«:—47T7‘2@T or _  64rtac ,T° 0T (2.4)

3 kpor 3 | K OM,
In these equations r is the distance from the center of the star, M, repre-
sents the mass at radius r, L is the luminosity, T' the temperature and P
the pressure. The energy density € and the opacity s are functions of the
density p and the temperature T', and if we consider an equilibrium state,
the previous equations become:

oR,  GM,
8r0 o 1
OM, — 4mripo (26)
6Lr0 o
O—M = € (27)

Therefore, to solve the problem of stellar pulsation, the variables considered
can be expressed in terms of an equilibrium quantity and a small perturba-
tion: r = ro+dr, P - Py + 6P, p — po+dp, L — Lo+ 6L. Putting
¢ = or/rg, so that r = ro(1 + ¢), we can furthermore write a generic La-
grangian quantity f, as f = fo(1 +df/fo). We will proceed assuming that,
in case of small perturbations, |(| << 1 and |[0f/fo| << 1 and neglecting all
the terms of from second order. With these assumptions, the equations 2.1
- 2.4 can be reduced to a single equation in (:

¢ 10¢d 1.0 L0C,
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where
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'y =(dnP/dlnp)yy and Ts=(dInT/dIlnp)uq

are the adiabatic exponents of pressure and temperature. Considering only
solutions of the form:

((r,t) = &(r)e™! (2.9)

where £(r) is a complex function of the only spatial variable and w is a
frequency. Therefore, in the case of adiabatic oscillations, from Eq. 2.8 we
obtain:

1 d Wl 1 (d r
Y S £ R[] TETE )

This is an eigenvalue equation which admits discrete solution characterized
by eigenfunctions (, where every k is a node with (; = 0, and eigenvalues wy.
wp is the fundamental mode, while the other frequencies are the overtones.
Obviously, the solution of such equation requires special conditions at the
center and at the surface of the star.

The driving mechanism which sustains the pulsation must be found in the
opacity of the star. It was suggested by Eddington [22] that certain layers of
the star, during the compression phase due to pulsation, might become quite
opaque to radiation. But the increase of the opacity generates an accumula-
tion of heat under these layers, which brings to an increase of pressure and
an expansion of the star. At this point, there is a new decrease of opacity
and pressure, the star contracts again and a new cycle begins. In 1980, J.P.
Cox [14] found that the mechanism proposed by Eddington can successfully
operate in the partially ionization zones of the pulsating star.

2.3.1 Types of pulsating variables

The parameters that permits to distinguish between the various types of
pulsating variables are the pulsation period, mass and evolutionary status of
the star, besides the characteristics of the pulsation itself.

e RR Lyrae stars: short period (1 hour to 30 hours), pulsating, blue
giant stars, usually of spectral class A. The amplitude of variation is
usually from 0.3 to 2 magnitudes.

e § Scuti: their variations in luminosity are due to both radial and non
radial pulsations of their surface. Fluctuations in brightness are com-
prised between 0.003 and 0.9 magnitudes in V, over a period of a few
hours. They can be A0 to F5 type giant or main sequence stars.
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o RV Tauri: yellow supergiants with characteristic light variation which
alternates deep and shallow minima. The period between two deep
minima ranges usually between 30 to 150 days and the variation in
magnitude can be up to 3. Some of these stars show also long-term
cyclic variations from hundreds to thousands of days. The spectral
class often ranges from G to K.

e Pulsating white dwarf: their luminosity variations are due to non radial
gravity wave pulsations. The variations are small (1% - 30%) and the
periods are comprised from hundreds to thousands of seconds.

e Long period variables: pulsating red giants or supergiants in which
variations occur over long timescales of months or years. We can dis-
tinguish the two major subclasses of Mira and Semiregular variables.

e Irregular variable stars: red supergiants white little or no periodicity
at all.

But the most famous example of pulsating stars remain Cepheid variables.
These are massive stars, with spectral type that can change during pulsation,
from F at maximum luminosity to G or K at minimum. Pulsation is mainly
radial. It is possible to identify four classes of Cepheid variables:

e (lassical Cepheids: also called type I Cepheids, fundamental mode
pulsators with periods that vary from 1 to 70 days.

e Beat Cepheids: they display the presence of two or more simultane-
ously operating pulsation modes, generally the fundamental and the
first overtone, with periods between 2 and 7 days.

e S Cepheids: probably first-overtone pulsators, with periods in the same
range of Beat Cepheids.

e W Virginis: population IT Cepheids, they are fundamental mode pul-
sators with periods between 1 and 30 days.

Cepheids exhibit strong correlations between their periods, luminosity and
colors, but not for amplitudes, which do not seem to correlate with other
observables. In the next paragraph we will analyze this in more detail.

2.3.2 Period-Luminosity relation

In 1912 Henrietta Swan Leavitt, an American astronomer and human com-
puter of Edward Pickering at the Harvard Observatory, discovered a linear
correlation between the apparent magnitude and the logarithm of the pe-
riod for a sample of stars, in the specific Classical Cepheids, in the Large
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Figure 2.4: Period-luminosity relations of classical (grey points) and type
IT Cepheids (color symbols) in the Large Magellanic Cloud, as taken by
OGLE. As the "luminosity" the reddening-free Wesenheit index [13| was
used, defined as WI =T — 1.55(V — I) — DM, where I and V are mean
luminosities of Cepheids in these passbands, and DM = 18.5 mag is the
distance modulus of the Large Magellanic Cloud.

Magellanic Cloud (LMC). However, the relation is valid also for the abso-
lute magnitude, because all the stars of the LMC can be considered at the
same distance. The relation discovered by Leavitt was called the "Period-
Luminosity relation", and can be expressed as:

M:a+b*10g10P (211)

An example of the Period-Luminosity relation is reported in Fig. 2.4. Once
it has been properly calibrated, this relation allows us to derive, from the
measured period of a Cepheid, its absolute magnitude and so its distance
module. Obviously, one has to take into account the effects of interstellar
reddening, which will produce systematic errors that could be reported into
the distance scale.

2.4 Active Galactic Nuclei

Galaxies hosting Active Galactic Nuclei (Fig. 2.5), that contain all AGN
subclasses such as Blazars, Seyfert Galaxies, Quasars and so on, are also
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Figure 2.5: The active radiogalaxy M87 as seen by Hubble Space Telescope,
with its characteristic 5000-light-year-long jet. It is thought to be produced
by the synchrotron radiation of the particles accelerated from the central
engine.

usually variable. AGN, however, are very particular variables. In fact they
emit strongly over a wide range of wavelengths, from X-ray to radio. Many
AGN vary in brightness by huge amounts over relatively short timescales,
such as months, days, or even hours. AGN are conveniently divided in two
main classes, radio-loud and radio-quiet, depending on whether or not they
emit in the radio portion of the electromagnetic spectrum respectively.
Nowadays, the different types of AGN and their physical properties have
found explanation in a unified model that bases the activity of these objects
on a central engine constituted by a supermassive black hole on which the
dynamical e termodynamical properties of the entire galaxy are based. It
results evident that the strong emission coming from AGN could be explained
only considering accretion onto a supermassive black hole (in the range of
10 — 10'° My). In fact, we must remember that gravitational accretion is
the most efficient known way of using mass to get energy, much more efficient
than nuclear fusion.

The unified model proposes that different types of AGN are a single type
of physical object observed under different conditions, as showed in Fig.
2.6. The currently accepted idea is that this models are "orientation-based
unified models", meaning that the apparent differences between the various
types of objects arise simply because of their different orientations to the
observer. Moreover, it has been proposed that, confirmed the presence of a
supermassive black hole in the nucleus of almost all galaxies, the AGN phase
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is just a step in the evolutionary history of a galaxy.
However, once fixed the division in radio-quiet and radio-loud AGN, it is
possible to identify the following subcategories.

Radio-quiet AGN

e Low-ionization nuclear emission-line regions (LINERs): weak nuclear
emission-line regions. It is still debated if the are truly AGN.

o Seyfert galaxies: these objects show optical range nuclear continuum
emission, narrow and occasionally broad emission lines, occasionally
strong nuclear X-ray emission and sometimes a weak small-scale radio
jet. They are divided into two types known as Seyfert 1 and 2: Seyfert
1 show strong broad emission lines while Seyfert 2 do not, and Seyfert
1 are more likely to show strong low-energy X-ray emission. The host
galaxies of Seyferts are usually spiral or irregular galaxies.

e Radio-quiet quasars/QSOs: characterized by a very high redshift, quasars
were originally "quasi-stellar" in optical images as they had optical lu-
minosities that were greater than that of their host galaxy. They show
strong optical continuum emission, broad and narrow emission lines,
and strong X-ray continuum emission. The host galaxies of quasars
can be spirals, irregulars or ellipticals.

Radio-loud AGN

e Radio-loud quasars: they behave exactly like radio-quiet quasars, with
the addition of emission from a jet. Thus, they show strong optical
continuum emission, broad and narrow emission lines, and strong X-
ray emission, together with nuclear and often extended radio emission.

e Blazars, i.e. BL Lac objects and OVV (optical violent variable) quasars:
their variable emission is believed to originate in a relativistic jet ori-
ented close to the line of sight. Both classes are distinguished by rapidly
variable, polarized optical, radio and X-ray emission. BL Lac objects
show no optical emission lines, broad or narrow, so that their redshifts
can only be determined from features in the spectra of their host galax-
ies. The emission-line features may be intrinsically absent or simply
swamped by the additional variable component. OVV quasars behave
more like standard radio-loud quasars with the addition of a rapidly
variable component.

o Radio galaxies: these objects show nuclear and extended radio emis-
sion. Their other AGN properties are heterogeneous, but their host
galaxies, whatever their emission-line type, are essentially always ellip-
ticals.
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Figure 2.6: Unification by viewing angle. From bottom to top: down the
jet - Blazar, at an angle to the jet - Quasar/Seyfert 1 Galaxy, at 90 degrees
from the jet - Radio galaxy / Seyfert 2 Galaxy.
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Chapter 3

Automated classification of
transients

For what classification is concerned, the main aspect that must be taken
into account is that nowadays data volumes have begun to surpass what is
possible to visually inspect by even large teams of astronomers and volunteer
citizen scientists. This implies an increasingly more central role of software
and hardware frameworks to substitute humans in the real-time loop. Data
need to be automatically transported, processed, photometered and inserted
into databases almost without human intervention.

Of course, autonomous discovery of transients and variables is a big chal-
lenge. Threshold cuts in photometric quality, changes in apparent magni-
tudes, matched filtering, etc., can be very effective tools to discover new
events, but other types of variables and transients could be not easily re-
covered from these kinds of approaches. Furthermore, previous machine-
learning based discovery have been optimized on domain-specific discovery,
leaving apart the multitude of other variables not of direct interest for a
particular project.

The challenge is to conflate the process of discovery with classification, using
different machineries and methods working on the same problem with various
approaches. In this view, the advantages of a computational approach, rather
than human-centric, become clear:

e machines, properly trained, are faster than humans both in discovery
and classification of candidates/events; at least in theory they allow
for operations at arbitrarily high data rates;

e more efficient use of follow-up (e.g. spectroscopic, photometric, etc.)
facilities;

e experimentations with new discovery and classification schema require
little more than re-running new codes on existing data;

33
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|3. Periodic Star Classification |

Figure 3.1: Scheme of classification for variable and periodic stars by Du-
bath [21]

e machine-learned classification is reproducible and very often determin-
istic;

e the reproducibility allows for calibration of the uncertainties of clas-
sification probability statements, giving assurances that classifications
are robust as the survey proceeds.

In this framework, there may still be a vital role for humans in the real-time
loop, in the case of ambiguous classifications or uncertain follow-up paths
for a particular source, but the main idea is that the whole process must not
be guided by humans.

3.1 Periodic objects classification

As it has already been mentioned, this thesis focuses on offline classification
and therefore real-time issues are not crucial. The study of their periodicity
represents the baseline for a deeper analysis of transients. The traditional
and most logic approach consists in three main steps (see Dubath [21]).
During the first one it tries to separate variable objects from the ones that
do not show variability. Then the second part the method considers the
periodicity of the objects and measures their period. Finally, in the third
part, one can proceed to the classification of the periodic objects (see Fig.
3.1 - 3.2 for the scheme).
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Figure 3.2: Modified scheme for a most general classification of variable
and periodic objects.

To determine the variability in a certain data sample, it is possible to use
many criteria. We analyze the one due to Stetson [42]. This criterion employs
an index used to determine the probability that a given object presents a
certain variability degree, so determining the p-value of the distribution. We
recall that the p-value is defined as the probability, under the assumption of
a certain hypothesis, of obtaining a result equal or more extreme than what
was actually observed (Fig. 3.3). The index provides the principal measure
of confidence that the variability is real, and not due to noise. In fact noise
can be confused for a variable source if not correctly dealt with.

These are two expressions of the Stetson index:

1 bi—g Vi — U
I\ S ) (3.1)

)

7 = 2 wksgn(Pe) VI Pl (3.2)
> Wk

where:

n v—7u
= 4
0 \/n—l Ov (3-4)

In this expressions b; and v; are the apparent magnitudes obtained for the
candidate object in two observations closely spaced in time, o4; and o, ;




36

3. Automated classification of transients

Most likely observation

|

Probability

Very unlikely
observations

Very unlikely
Observed P-value phservations

data point

< >

Set of possible results

A p-value (shaded green area) is the probability of an
observed (or more extreme) result arising by chance

Figure 3.3: Example of a p-value computation. The p-value is the area in
green under the curve, past the observed data point.

are the standard errors of those magnitudes, b and T are the weighted mean
magnitudes in the two filters, and n is the number of observation pairs. wy,
instead is a weight and § is a magnitude residual of a given observation from
the average of all observations in the same bandpass, scaled by the standard
error.

The J value is a more robust version of the same index, which, combined
with the distribution kurtosis, gives:

o UNTI

\/1/N 362

where the index ¢ runs over all N observations available without regard to
pairing. Then one can show that, in the limit where the total range of
variation is vastly larger than the o’s of the individual observations, and for
a Gaussian magnitude distribution K — /2/7 = 0.798. Hence the final
version of the index can be written as:

(3.5)

JK > w

L= ("=
(0.798 Wall

where the factor > w/wgy, with w,y being the total weights an object would
have if successfully measured in all frame pairs, takes into account possible
problems of detection of the same object if it results to be absent from one or
more frames. In this way, those candidates that were successfully measured
the most times will also be the first to be followed up. A value of L can be

(3.6)
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determined for every object in the field having some minimum total weight,
and stars exceeding some threshold value of L may be subjected to period
searches and light curve fits.

After the potentially variable objects have been identified, the second step
requires to disentangle periodic from non periodic objects. One possibility
is to evaluate the periodogram function through the Lomb-Scargle method
[39]:

1 D Xjcosw(t; — 7)]?

> X;sinw(t; — 7))
Po(w) = 2( > cosPw(t; — ) )+

Sosin®w(t; —7)
This function is a discrete expression of the power spectrum of the signal,
and the periods are taken as the peak frequency of the distribution.

) (3.7)

3.2 An automated classification method

There are many automated methods that can be used to achieve the final
classification. In this paragraph, we want to describe briefly one of them,
the Random Forest method, that has also been used by Donalek [17], which
we adopted as a template for comparison. Then, in the next chapter, we will
focus on classification based on neural networks.

Firstly developed by Leo Breiman and Adele Cutler ([3] - [20]), a random
forest is a classifier consisting of a collection of tree-structured classifiers
{h(x,0),k =1,...} where the {©} are independent identically distributed
random vectors and each tree cast a unit vote for the most popular class at
input x. The algorithm is defined as follows (see Fig. 3.4):

1. A bootstrap object sample is obtained, by building it substituting ob-
jects from the training set, with the same size as the original set, but
with some objects represented multiple times, while others left out
(Out of Bag stars, OOB from now - the same number of the objected
used multiple times are omitted and will be used to estimate the pre-
diction error).

2. The tree is recursively grown by partitioning the bootstrap sample into
subgroups having always more and more homogeneous type contents.
At each node, my,,, divisions into two groups are considered, each using
one attribute from a randomly selected set of my,, attributes. The best
split is selected and the process is then repeated for the child nodes.

3. Finally, a maximum tree is constructed, i.e., a tree with terminal nodes
containing only a single type of objects.

Large numbers of trees are built and each tree provides a predicted type for
an object. The most probable type is the most frequent one in the sample of
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predictions from the different trees. The error rate and confusion matrix can
be built by comparing the predicted with the actual types. The attribute
importance is given by the difference in classification error averaged over all
trees obtained by the OOB sample, permuting the attributes to infer about
their importance.

The procedure to build a list of the most important, not too correlated,
attributes is as follows (Fig. 3.5):

1. A ranked list of attributes, from the most to the least important, is
built using a 20000-tree random forest with the full attribute set.

2. The most important attribute is selected and all other attributes with
a Spearman correlation coefficient (Spearman [41]|) above 80% are dis-
carded.

— Oz
Pzy = 020y (3.8)

3. A new ranked attribute list is built by re-running a random forest with
the selected and the remaining attributes.

4. The second most important attribute is selected and all other attributes
highly correlated with any of the first two are discarded, repeating the
same procedure.

5. The process is iterated, obtaining a full ranked list of not too correlated
attributes.

The importance value decreases in the list, but never reaches zero, so it is
important to understand where to cut the list.
In order to reduce the number of attributes, it is used the following algorithm:

1. The data sample is partitioned for a 10-fold cross validation (CVAL by
now).

2. On each CVAL training set, a ranked list of attributes is established
using the random forest importance measures.

3. On each CVAL training set, a model is trained on all attributes and
used to predict types for the CVAL test set. The CVAL error rate is
recorded and the process is repeated after removing the least important
attribute. Iterating by removing one attribute at a time and stopping
when only 2 attributes are left, a vector of CVAL error rates is obtained.

4. A mean error vector is computed by taking the mean of the 10 values
obtained for each attribute subset.
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Figure 3.4: Simplified scheme that summarizes the principles of the random
forest method.

5. Steps 1 to 4 are repeated 20 times. The mean value and the stan-
dard deviation of the 20 CVAL mean errors are computed for each
attribute number, combining the results of the classification experi-
ments achieved with a specific attribute number.

The optimum number of attributes can then be inferred by the plot resulting
from this procedure. Finally it is possible to proceed with classification and
determine the confusion matrix.

3.3 Photometric features

The process of classification relies upon the ability to recognize and quantify
the differences between light curves. To build a supervised machine-learning
classifier, many instances of light curves are required for each class of interest.
These labeled instances are used in the training and testing processes. Since
the data are, in general, not sampled at regular intervals, nor are all instances
of a certain class observed with the same number of epochs and S/N ratio,
the identification of the differences directly from the time-series data is both
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Figure 3.5: An example of a ranked list of 14 most important, not too cor-
related attributes, from Dubath [20]|. The Spearman correlation coefficient
of any of the above attributes pairs is smaller than the 80%. The attribute
importance is measured with the random forest OOB mean decrease accu-
racy.
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Figure 3.6: Using the CTSCS a set of photometric features is extracted
from each light curve forming a feature vector. Here a light curve of a
Cataclysmic Variable from CRTS is shown.

conceptually and computationally challenging.

Instead, we homogenize the data by transforming each light curve into a
set of real-number line features using statistical and model-specific fitting
procedures (Fig. 3.6). These features can be identified, for example, with
the attributes used for the random forest method, as said in the previous
paragraph.

The features needed for our purpose were calculated by raw light curves using
the web service "Caltech Time Series Characterization Service"! (CTSCS).
With the help of this web service it was possible to determine the 31 non-
periodic features (|35] - [15]) for a data sample taken from the Catalina
Real-Time Transient Survey (CRTS). Moreover, it is possible to upload also
a user defined catalog. Furthermore there exist a number of features that
can be determined from the Lomb-Scargle method. In the next paragraph
we list the above features, with a brief description for each of them.

3.3.1 Description of the features

As said before, it is possible to divide features in periodic and non-periodic
ones. The formers are extracted using the Lomb-Scargle method, while the
latter are statistical parameters derived from the light curve analysis.

e Amplitude: arithmetic average between maximum and minimum

"http:/ /nirgun.caltech.edu:8000/scripts/description.html#data_input
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magnitude.

magmazxz — MAGmin

amplitude = 5

(3.9)

e Beyondlstd: fraction of photometric magnitudes (< 1) that are
above or under a certain standard deviation from the weighted average
(by photometric errors).

beyondlstd = P(|mag — mag| > o) (3.10)

o Flux Percentage Ratio: The percentile is the value of a variable
under which there is a certain percentage of observations. The flux
percentile ), ,,, was defined to be the difference between the flux values
at percentiles n and m, and the following flux percentile ratios were
used:

fpr_mid20 = Fug 60/ F5 95

fpr_mid35 = F33567.5/F5.95
for_mid50 = Fbs 75/ F5 95

fpr_mid65 = Fi7.5825/F5.95
for_mid80 = Fio,90/F5,95

e Linear Trend: slope of the light curve in the linear fit, that is to say
the b parameter in the following linear relation.

mag =axt+b (3.11)

linear _trend = b (3.12)

e Maximum Slope: the maximum difference obtained measuring mag-
nitudes at successive instants.

(mag;y1 — mag;) ) = Amag

maximum slope = max
_slop (1 i —10) A7

(3.13)
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e Median Absolute Deviation: median of the deviation of fluxes from
the median flux.

med_abs_dev = median;(|z; — median;(z;)|) (3.14)

e Median Buffer Range Percentage: fraction of observations that
are within 10% of the median flux.

med_buf_range_per = P(|lz; — medianj(x;)| < 0.1 x median;(x;))
(3.15)

e Pair Slope Trend: percentage of the last 30 couples of consecutive
measures of fluxes that show positive slope.

pair_slope_trend = P(xi41 —x; > 0,i =n — 30,...,n) (3.16)

e Percent Amplitude: maximum percentage difference between max-
imum or minimum flux and the median.

percent _amplitude = max(|Tmae — median(x)|, |Tmin — median(x)|)
(3.17)

e Percent Difference Flux Percentile: Difference between the second
and the 98th percentile flux, converted in magnitudes. It is calculated
by the ratio F5 g5 on median flux.

(maggs — mags)
median(mag)

pdfp = (3.18)

e QSO - NOT QSO: the x?/qso and x?/non-qgso statistics and their sig-
nificance levels from the quasar variability metric of Butler and Bloom
[11]. These parameters, obtained from a function of time modeled
using a covariance matrix, make possible to determine a probability
distribution for an object to be or not to be a quasar.
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Skew: the skewness is an index of the asymmetry of a distribution. It
is given by the ratio between the 3rd order momentum and the variance
cube.

skew = 12 (3.19)
o

Small Kurtosis: the kurtosis represents the departure of a distribu-
tion by normality and it is given by the ratio between the 4th order
momentum and the variance square. For small kurtosis it is intended
the reliable kurtosis on a small number of epochs.

. 4
kurtosis = s (3.20)

Standard deviation: standard deviation of the fluxes.

Stetson J-K: the Stetson variability index, which describes variability
for Cepheids by p-value determination, as described in Chapter 3.

Lomb-Scargle Periodogram: the period obtained by the peak fre-
quency of the Lomb-Scargle periodogram (Scargle [39]), as described
in Chapter 3. There are also a faster version of the algorithm, that
determines the top five periods and their false-peak probabilities, and
the Generalized Lomb-Scargle Periodogram (see Zechmeister [43]), that
instead determines the first five periods obtaining them from a gener-
alization of the Lomb-Scargle method, using appropriate weights.

Self Correlation: the correlation function expresses the statistical
correlation between random variables in different points of space and
time. If correlation functions between variables representing the same
quantity measured in two different points are considered, we speak
about an autocorrelation function.

pxy = corr(X,Y) = cogf(i;y) _ BlX _5;(;(:/ —m)l (31

C(s,t) = corr(X(s), X(t)) (3.22)
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Structure Function: the first order structure function obtained using
the square differential.

sf = f(lmag; — mag;|?,Iti — ;) (3.23)

Debosscher Frequency Statistics: the frequency statistic analysis
described by Debosscher et al. [15], that is to say the slope of the linear
trend, the first three frequencies and their first four harmonics (ampli-
tude and phase for each of them) and the ratio between the variance of
the light curve before and after the subtraction of a harmonic fit with
the first frequency.

R Cor Bor: the fraction of magnitudes that is below 1.5 magnitudes

respect to the median.

rcorbor = P(mag > (median(mag) + 1.5)) (3.24)

AOV: the period according to the analysis of variance method of
Schwarzenberg-Czerny [40].

Magnitude Ratio: an index used to estimate if the object spends
most of the time above or below the median.

mag _ratio = P(mag > median(mag)) (3.25)

Phase Dispersion Minimization: the period obtained by the min-
imization of the variance of data with respect to the medium light
curve.

Fast y: this technique uses Fourier series truncated at the H harmonic
to model the periodic function. The quality of data is obtained from
the Fourier coefficients’ x? together with the frequency f.

Periodic features: these are a series of features obtained by light
curves using the generalized Lomb-Scargle method. The light curves
are modeled as follows:

yi(t)fi) = a;sin(2m f;t) + b; cos(2m fit) + bi g (3.26)

To determine periodic variations then it is possible to do a minimiza-
tion of the square sum:
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X = ldr — yi(te)* /o (3.27)

So one can define the generalized periodogram:

(N = 1) x5 — xa(f)

Py(f) =~ 2 (3.28)

where:
X6 = _ld — pul*/o7 (3.29)
p="> lde/ot]) > 1/o} (3.30)

Then a fit of light curves is done using the sum of a linear term plus a
sum of sinusoids:

y(t) =ct+ > > wiltlif:) (3.31)

The features used are so obtained:

AL]‘ = UCLZZJ» + bl%j (332)

PH;; = tan™" (b j, ai ;) (3.33)

fi (3.34)

Finally, other four features are used, obtained by the ratio of the pre-
vious features and the offset c.



Chapter 4

Machine learning with Neural
Networks

As already mentioned in the introduction, this thesis work tries to classify
transients using a machine learning approach based on the use of neural
networks.

4.1 Neural networks

A neural network is an analysis instrument modeled on the human brain
structure, inserted in an informatics device. It can be constituted both by
software and/or by dedicated hardware. Its purpose is to simulate a heavily
interconnected computational structure, consisting of many relatively simple
individual process elements, the neurons, which make simple calculations on
the input signal, then passing the output one to another neuron. These
elementary objects are usually organized in groups or layers. Layers can
generally receive input signals (input layers), emit output signals (output
layers), or be inaccessible to both types of signals, having only connections
with other layers (hidden layers).

4.1.1 Biological foundations

In almost all living organisms there are complex organizations of neural
cells, with configurations defined by external environment, memorization and
reaction to stimuli. Human brain represents the most extraordinary product
of biological evolution, due to his capacity to elaborate information. With
the aim to do these operations, biological networks use a massive number of
simple computational elements, neurons, highly interconnected so as to vary
their configuration in response to external stimuli: in this sense we can speak
about learning and artificial models trying to catch this distinctive feature
of biology.

47



48

4. Machine learning with Neural Networks

Generally a neuron is constituted from three principle parts: soma (cell
body), axon (the unique output neuron line, branching off in thousands
of lines) and dendrite (input neuron line, receiving input signals by other
axons through synapses). The cell body makes a weighted sum (integration)
of input signals. If the result exceeds a certain threshold value, then the
neuron is activated and an action potential is produced and sent to the
axon. If the result does not exceed the threshold value, the neuron remains
in the rest state. An artificial neural network receives external signals on an
input nodes’ layer (elaboration units), each one connected with numerous
internal nodes, organized in more layers. Every node elaborates the received
signals and transmits the result to the nodes in the subsequent nodes layer.

4.1.2 History and utilization

The wide variety of neural networks models cannot leave aside from its basic
constituent, the artificial neuron proposed by W.S. McCulloch and W. Pitts
in 1943 [31], which outlines a linear threshold combiner, with multiple input
binary data and a single output binary data. An appropriate number of
these elements, connected to form a network, is capable to calculate simple
boolean functions.

In 1958, F. Rosenblatt [36] introduces the first neural network schema, called
perceptron, which is the precursor of current neural networks, for identifica-
tion and classification of shapes, with the aim to furnish an interpretation
of biological systems general organization. So, the probabilistic model of
Rosenblatt looks at the analysis, in mathematical sense, of functions such as
information storing and their influence on models’ identification. It consti-
tutes a crucial improvement with respect to the binary model of McCulloch
and Pitts, because the synaptic weights are variable and therefore the per-
ceptron is capable to learn.

Rosenblatt’s work stimulate a great number of studies and researches and
causes strong interest and expectations on scientific community, which un-
derwent a stop in 1969, when Marvin Minsky and Seymour A. Papert [33]
show the operative limits of simple two layers networks based on perceptron,
demonstrating the impossibility to resolve many classes of problems: in fact,
this type of neural network is not quite powerful for calculating the XOR
(exclusive or) function.

The mathematical context to train Multilayer Perceptron networks (MLP)
was established by the American mathematician Paul Werbos in his doctor-
ate thesis in 1974. One of the best known and efficient methods for neural
networks training is the so called error backpropagation algorithm, proposed
in 1986 by Rumelhart, Hinton and Williams, that systematically modifies
weights of connections between nodes, bringing the network response always
nearer to the one desired. The backpropagation (BP) algorithm is a learning
technique by examples, constituting a generalization of the perceptron learn-
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ing algorithm developed by Rosenblatt in the Sixties. Through this technique
it was possible, as it has already been said, treating just applications char-
acterized as linearly separable boolean functions. The new algorithm, which
allowed to overcome perceptron limitations and to resolve the problem of non
linear separability (so calculating the XOR, function), marked the definitive
revival of neural networks, as showed also by the great variety of commercial
applications.

Neural networks are usually used in contexts where data could be partially
wrong or where does not exist analytical models to face the problem. Typical
utilizations are in optical character recognition software (OCR), in facial
recognition systems, and more generally in systems that treat data subjected
to errors or rumor. Neural networks are also one of the most used instrument
in Data Mining analysis. They are also used as predictive instrument in
financial or weather analysis. In last years their importance has enormously
grown also in bioinformatic and astrophysics, in which they are used for
researching functional and structural models in proteins and nucleic acids in
the first case and, as previously said, in regression and classification problems
for what concerns the astrophysical aspects. Giving properly a series of input
(training or learning phase), the network can give the most probable output.

4.1.3 Structure

A neural network is characterized by three fundamental elements:

e The architecture or network topology, that is the particular way in
which layers are interconnected and through which they receive in-
put and output; the connection between two generic neurons occurs
through a link called weight.

e The activation or transfer function chosen for the neurons, which, in
analogy with biological neuron, represents the answer modality to ex-
ternal stimuli. Generally the same function is chosen for all neurons of
the layers composing the network, but this is no a strict bond, but an
architectural strategy.

e The algorithm used during the learning phase of the network.

These three characteristics can be thought as the highest level of vision of
a neural network model. It is important to say that the method, or the
methods, must be defined unequivocally, because by this process depends
the ability whereby the network learns and progressively improves the re-
sponse. In the neural networks context, the learning process can be seen as
the problem to update network architecture and connection weights, so that
the network itself can efficiently perform its specific task. In general, dur-
ing the learning phase, the network fixes the weights values that the input
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configurations connections must have. Its performances improve progres-
sively by updating the weights over time, by the repeated presentation of
configurations belonging to the same class.

It is necessary to distinguish at least three different learning typologies (the
most important ones, but there exist also other ones). In particular, one can
have:

e Supervised learning: based on a training set including typical input ex-
amples with the corresponding outputs. The network is trained with a
proper algorithm, which uses the a priori knowledge to modify weights
and other parameters of the network itself, so as to minimize the pre-
vision error related to the sample used for training. If the training
phase is successful, the network learns how to recognize the unknown
relation that connects the input variables with the output ones, and
so it becomes capable to make previsions also where the output is not
known a priori. In other words, the final target of supervised learning
is the prevision of the output value for every valid input value, basing
just on a relatively small number of correspondence examples (that is
to say, input-output couples).

e Unsupervised learning: based on training algorithms that modify net-
work weights referring exclusively to a set of data that includes just
input variables. These algorithms try to group input data and to
find proper classes that result to be representative of the data them-
selves, making use of topological or probabilistic methods. Unsuper-
vised learning is also used to develop compression data techniques.

e Reinforcement learning: in this case an algorithm aims to find a cer-
tain modus operandi, starting from an observational process on exter-
nal environment; every action has a consequence on environment, and
it produces a feedback that guides the algorithm itself in the learning
process. This class of problems postulates an agent, endowed with per-
ception power, which explores an environment in which it undertakes
a series of actions. The environment itself furnishes an incentive or
disincentive as response, as appropriate. Algorithms for reinforcement
learning ultimately try to determine a policy inclined to maximize in-
centives received by the agent during its exploration of the problem.
Reinforcement learning differs from supervised one because there were
not presented input-output couples of known examples, and one does
not proceed to the explicit correction of suboptimal actions. Further-
more, the algorithm is focused on real time performance, that implies
a balance between the exploration of unkwown situations and exploita-
tion of current knowledge.

In the present work we shall use only supervised methods.
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4.1.4 Multilayer Perceptron

The Multilayer Perceptron (MLP) is the most commonly used architecture
for practical applications of neural networks. Generally a MLP is constituted
by an input neuron layer, one or more hidden layers, each one composed by a
certain number of neurons, and an output layer, constituted by as many neu-
rons as the response variables are. The different neurons are interconnected
by weights, that is to say parameters which are estimated during the training
phase using the so called learning set. Practically MLP networks with just
one hidden layer are often used, because they furnish satisfactory results and
are computationally less expensive than networks with more layers.

The MLP realizes a complex non linear mapping between input and output
of the network. Denote with x = {x,z9,...,24} the N input values. The
first layer generates a series of linear combinations of the input values, with

the aim to obtain a set of intermediate activation variables agl) such that:

Zw x2+b j=1,..M (4.1)

(1)

where every a; " variable is associated to a single neuron of the M units of

the hidden layer. The w](;) values represent the elements of the weight matrix

of the first layer, while the bg»l) are the bias parameters (which consider a
systematical error or a selection effect) associated to the hidden layer units.
So the ag-l) variables are transformed into the non linear activation function
of the hidden layer. For example, if the used funct