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Introduction

A galaxy is the environment in which stars are born and die, and distant

galaxies are beacon that enable us to probe the distant universe. Our galaxy,

the MilkyWay, is only one out of billions of such systems in the observable

universe; furthermore, it is just a member of a group, the Local Group.

Therefore, galaxies structures are an important field of study in cosmology;

it has in fact been observed that in the Universe, objects tend to do not be

isolated: stars form stellar clusters and then form galaxies. Galaxies them-

selves make groups, groups and clusters form superclusters

Once again the Local Group is a good example to understand such phe-

nomenon, well described by Hubble, at the time of the first distance de-

terminations and redshift measurements. The mechanism which controlled

galaxy formation represents a central theme in modern cosmology. Among

the main problems which have get to be solved: galaxies were formed before

or after the large scale cosmic structures?

In other words, did massive clouds fragment in smaller clouds from which

formed or, rather, galaxies formed first only of the mutual gravitational

interaction made them group together to form structures? However, it is

broadly recognized that studying galaxies clustering brings forth important

clues of the conditions at the age of recombination.

It is for the mentioned reasons that the quest for the “perfect” galaxy group

finding algorithm, started several years ago, is still an important open field

of research.

Such “perfect finding algorithm”, still does not exists, however, its spec-

ification and expectation are well known, it is in fact desirable that such

algorithm results to be easy to apply, capable to handle as many selection

effects as possible, yield reproducible results, without building in strong pre-

conceptions about the group dynamics. Ideally it should be possible to vary

9
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all selection criteria according to the specific needs.

It is here presented a new modified version of the friends-of-friends (FOF)

structure finding algorithm (Huchra & Geller 1982), designed specifically to

locate groups or clusters of galaxies in photometric redshift datasets. The

main objective of this thesis is to show that this “new friends-of-friends”

(hereafter New-FOF) algorithm yields results almost identical to the original

FOF, if applied to a spectroscopic redshift dataset, and a rather conserva-

tive catalogue of structures, in case of a dataset with simulated photometric

redshifts, when their errors are taken into account.

In order to achieve this purpose, after the mandatory introduction on galax-

ies groups morphology and origin, the basis of the original FOF algorithm

are presented, together with the reasons that brought us and many other

around the globe to extend such finding algorithm to photometric redshifts.

The algorithm performance (catalogue size and composition) are then com-

pared against with the performance of the standard FOF algorithm, firstly

on a simulated dataset photometric redshifts, created using the 3D simula-

tor developed for the GODFinGER ( Galaxy Objects Detection Finalized

to Groups Extensive Recognition) project.

Secondly, following the same methodology of parallel performance assess-

ments of the New FOF against the standard FOF; catalogue obtained by

observed data are then compared in size and composition. The New FOF

algorithm (source code is attached in appendix.), it is realized in standard

ANSI C to be platform independent, however, in this thesis it was compiled

under a LINUX system.



Chapter 1

Formation of Structure in

the Universe

Nowadays, it is well known that every cosmological model, in order to

describe our universe has to comply with so called Cosmological Principle

which states that the universe is homogeneous and isotropic on the large

scale ( ≥ 100 Mpc). This assumption (as it will be clarified later), is based

on the well known property of translations and rotations invariance. In fact,

to consider the universe homogeneous is equivalent to consider the galaxies

and, more in general the mass, equally distributed in universe, and therefore

an operation of translation from a galaxy to another would leave constant the

galactic distribution taken into account. Moreover, the isotropic property

of the universe represents the rotation invariance around one observation

point. In few words, it does not exists any privileged direction in the space.

On the other hand, when considering scales smaller than 100 Mpc, galaxies

are not homogeneously distributed, rather they present themselves grouped

in gravitational structures. Observing that all models willing to describe

the origin of the universe must reproduce the “skeleton of the cosmic struc-

tures”, it is clear that the understanding of galaxy distribution is among the

fundamental purposes of cosmology.

1.1 Elements of Cosmology

Before proceeding with this exposition, it is important to shortly describe

some of the main cosmological parameters.

11



12 CHAPTER 1. FORMATION OF STRUCTURE IN THE UNIVERSE

1.1.1 Hubble’s law

In the 1929’s at the National Academy of Sciences in Washington, Edwin

Hubble presented observational evidence that the spectrum of the galaxies

was shifted to the red band. His experimental evidence was based on dis-

tance measurements obtained through Cepheids1 for an handful of galaxies.

Indicating with λe the wavelength of the radiation emitted by a source and

with λo the observed wavelength, the quantity

δλ = λo − λe (1.1)

is the so called Doppler shift caused by the fact that the galaxies are moving

at a velocity expressed by the relationship

v = c
δλ

λe
(1.2)

where c represents the speed of light. Hubble noted that there is a propor-

tional relationship between galaxies distance and motion speed:

V = cz = H0D (1.3)

where z = δλ
λ represents the redshift of the spectral lines of the galaxy

taken into account. H0 represent a proportion constant with dimensions

kms−1Mpc−1. It is worth to underline that the redshift it is not just due to

a simple motion of the galaxies, but it is linked to a phenomenon known as

“Hubble flow”.

Such phenomenon finds explanation into the global recession speed of the

Universe due to its expansion. Moreover, given the Hubble law unwavering

with the space, it is possible to affirm that while in the universe expand the

relative distances ratio is a constant, or in other words that the universe

is always the same, the only thing varying with time being its scale. The

above relationship can be also used to infer the distance of a galaxy on the

1The relationship between Cepheids ’ period P , and its mean absolute magnitude Mv

has been empirically derived. The period-luminosity relationship was:

Mv = −2.81 log(P ) − (1.43 ± 0.1)

with P measured in day.
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basis of its radial speed:

Dz = H−1
0 cz (1.4)

where with Dz is indicated the distance derived from the redshift z.

1.1.2 Scale Factors

In first instance it is possible to consider the galaxies in the universe as

homogeneously and isotropically distributed and interacting through their

gravitational field. According to the mentioned hypothesis, defined as t0

and l0 the initial conditions (present time and distance), it is possible the

define the scale factor, as the quantity:

a(t) =
l(t)

l0
(1.5)

where l(t) is the distance at the time t. It is also possible to normalize all

the distances posing a(t0) = 1. Furthermore, given the above hypothesis it

is also possible to write the total mass density ρ conservation equation as:

dρ

dt
+ 3

ȧ

a
ρ = 0 (1.6)

From eq. 1.6 it is also possible to yield the Einstein equation (or the Newton

equivalent) in terms of ρ namely as:

1

a

d2a

dt2
= −4πG

3
ρ. (1.7)

Making use of the above defined parameter a(t) it is also possible to write

the eq. 1.3 in another form:

H =
ȧ

a
=

l̇

l
(1.8)

this equation provides an experimental measurement of the ratio H. So,

we can express the Hubble constant H0 as:

H0 =
l̇0
l0

=
ȧ0

a0
(1.9)

Moreover, given the last expression, it is possible to write a more general
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definition of the redshift for a galaxy placed at the distance l

1 + z =
1

a
(1.10)

1.1.3 The Hubble’s constant

As mentioned above (Eq. 1.3), H0 represents the proportionality con-

stant between the velocity and the distance of a galaxy; this equation allows

to estimate the present value of the Universe expansion. In paragraph 1.1.1

it already mentioned that the Hubble’s constant has the physical dimension

of [t−1]; taking into account this observation it is possible to derive the so

called Hubble’s time (tHubble) as:

tHubble =
1

H0
. (1.11)

As it is possible to observe from the relationship 1.11, the Hubble time is

the inverse of the Hubble constant, and it represents the time the universe

needed to reach its actual configuration, hence, it is possible to say that

tHubble represents the Universe’s age. Therefore, tHubble represents the up-

per bound limitation for the age of all the celestial objects in the space.

Given the last, argument it is needless to say that the evaluation the exact

value of such constant is an important field of research and still an open

question not easy to solve.

In fact, determining the exact value of H0, requires the availability of a

method to gather the distance of galaxies independently from their redshift,

a datum which is available only for few objects; to obtain such information

for a large number of galaxies is not trivial.

Galaxies are far away objects and hence, it is not possible to calculate the

distance parallax2, and it is necessary to use methods based on the distance

indicator objects, so called standard candles, i.e, which objects are charac-

terized by an intrinsically known brightness.

One example of such kind of objects is the variable stars called Cepheids.

They are good distance indicators because they exhibit an evident relation-

ship between their period of variability, and their luminosity.

2By definition, an object at a distant of one parsec has a parallax equal to one arcsec.
The object, in this case a galaxy, at a distant of one Megaparsec has a parallax too little
to be measurable.
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The standard candles objects are useful when all other geometric based

methods such as the parallax, fail. It is necessary to stress that in order

to fulfill the Hubble’s law, distances must be large enough, cosmic reces-

sion speeds should be larger than the radial components of the peculiar

ones, namely, larger than the peculiar velocities of the galaxies, due to the

interaction with other galaxies. The average value of velocity is

v ∼ 103km s−1

which correspond to a distant D ≥ 103H−1
0 Mpc.

A consequence of this rather complex procedure is that the value of this

constant is still affect by considerable uncertainty. Just as a curiosity it

is mentioned that since the first measurement of H0, provided by Hubble

himself (H0 ≈ 500 kms−1Mpc−1); this value has been slowly reduced and

now it falls in the range 50 e 100 km s−1Mpc−1. The most recent measures

(performed using Hubble Space Telescope) estimated such value as: H0 =

71 ± 4 km s−1 Mpc−1.

In order to deal with such uncertainty a Hubble parameter h, defined as

H0 = 100 h km s−1Mpc−1.

1.1.4 Density Parameter

Considering the Universe to be a homogeneous and isotropic distribution

of particles (in this case, galaxies), it is possible to define the critical density

parameter, ρc. By definition, ρc is the density of an uniform self-gravitating

sphere isotropically expanding at rate H with equal kinetic and gravitational

potential energy.

ρc =
3H2

8πG
(1.12)

please observe that since H is a function of time, then so is ρc.

The value of this parameter is very important; in fact it determines the limit

value to the expansion of the Universe: a universe, whose density is ρc(t),

stops expanding and contract down to a future singularity. On the other

hand a density value less than ρc(t), yields to an universe that expands for-

ever.

Therefore, it is convenient to express the density of the Universe by introduc-

ing the density parameter Ω, defined as the ratio between the total density
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and ρc:

Ω(t) =
ρ

ρc
(1.13)

Ω includes the contribution of several different kinds of matter: baryonic

components, dark matter, dark energy, etc. The baryonic density, expressed

as Ωb, is the normal matter (protons, electrons neutrons, etc.). The dark

matter is an unknown and not yet well understood form of matter. It is

broadly accepted that it is not baryonic matter and that it interacts with

the normal matter through the gravitational interaction. Dark matter, even

though it is not directly observable, it is detectable only through its gravi-

tational effect. The dark energy, ΩL is a hypothetical form of energy that

permeates all the space and tends to increase the expansion rate of the Uni-

verse, hence it is characterized by a negative pressure.

The knowledge of these terms allows us to determine the shape of the uni-

verse:

Ω0 = 1 ρ = ρc Universe is flat and infinitely extended

Ω0 > 1 ρ > ρc Universe is closed and finite

Ω0 < 1 ρ < ρc Universe open and infinitely extended

1.1.5 The Cosmological Constant

The cosmological term was introduced by Einstein when he applied gen-

eral relativity for the first time to cosmology. In his 1917 paper, he found

the first cosmological solution for a consistent theory of gravity. In spite of

its drawbacks, this bold step can be regarded as the beginning of modern

cosmology. Due to his belief in favor of static Universe, in order to find a

static solution for his equation, Einstein introduced therefore a cosmolog-

ical additive constant, Λ which acts as a repulsive force that prevents the

collapse of the Universe. After the publication of the theory of an expand-

ing universe by Friedmann, Einstein realized that his Universe was unstable

and even a small change would cause its expansion or collapse. To better
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Figure 1.1: Shape of Universe.
From top to bottom: a spherical universe, a hyperbolic universe, and a flat universe.
In a spherical universe a positively curved universe is described by spherical geometry,
and can be thought of as a three-dimensional hyperspher.
A hyperbolic universe is described by hyperbolic geometry, and can be thought of locally
as a three-dimensional analog of an infinitely extended saddle shape. For hyperbolic local
geometry, many of the possible three-dimensional spaces are informally called horn topolo-
gies, so called because of the shape of the pseudosphere, a canonical model of hyperbolic
geometry. In a flat universe, all of the local curvature and local geometry is flat. It is gener-
ally assumed that it is described by an Euclidean geometry, however there are some spatial
geometries which are flat and bounded in one or more directions. A positively curved uni-
verse is described by spherical geometry, and can be thought of as a three-dimensional hy-
perspher. You can find this image on http://map.gsfc.nasa.gov/universe/uni shape.html.
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understand the Λ’s effects is possible to refer to dynamics equation. Just

by taking in to account the simplest case [14], namely when the pressure is

zero, it possible to write

1

a

d2a

dt2
= −4πG

3
ρ +

Λ

3
(1.14)

in the equation 1.14, a positive value Λ implies a positive contribution for

ä; therefore, Λ acts as a repulsive force. In particular, for large values, Λ

becomes larger than the first term, which represents the gravitational force

and leads to an Universe acceleration.

In presence of Λ, Ω becomes:

ΩΛ =
Λ

3H2(t)
(1.15)

Note that it is also possible to introduce a dimensionless measure of Λ as

λ =
Λ

3H0
2
. (1.16)

1.1.6 Deceleration

Beside the cosmic acceleration parameter H0, it is possible to define a

deceleration parameter that describes the capability of the Universe to react

at the expansion.

q0 = −H−2
0

(

d2a

dt2

)

t0

where H0 =
ȧ0

a0
(1.17)

Observing that, H0 is represents the slope of the relationship between ve-

locity and distance, expressed by the Hubble law (see 1.3), it is possible to

say that while q0 represents the deviation by from the linearity or, in other

words, its curvature due to the gravitational deceleration of the cosmic ex-

pansion. Moreover, If the cosmic pressure is zero, it is possible to rewrite

the density parameter Ω, as function of the deceleration one, as:

q0 =
1

2
Ω + λ (1.18)

where λ is given from 1.16. A universe with Ω0 = 1 and Λ = 0 (Einstein-de

Sitter Universe) has q0 = 1
2 [11].
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1.2 Standard Model

Cosmological models matching experimental observations confirm that

the Universe originated from a singular configuration characterized by infi-

nite density and temperature that still expand itself following the Hubble’s

law. In the common language this paradigm (will all subtle varieties)is

known as: “Big Bang”3.

With the terms “standard model” or “Big Bang model” it is meant an ho-

mogenous an isotropic universe (which fulfills the cosmological principle),

with a cosmological constant Λ = 0, constituted by matter and radiation.

In this model, small fluctuations of the density are responsible of the origin

for astronomical bodies. Luminous matter is for the most part constituted

by Hydrogen and Helium with a density given by:

ρ0m = ρ0cΩ0 ≃ 1.9 · 10−29Ω0h g cm−3. (1.19)

At the beginning of the Universe, high temperature and density made chem-

ical reactions quite impossible because of the comparable magnitude of re-

action velocities and expansion velocity (hereby this kind of Universe is

referred as Hot Universe (HU). Moreover, in the Universe evolution it is

possible to distinguish four different phases in the Universe evolutions:

1. HADRONIC STATE: t ≤ 10−6 sec, T > 1013K.

In this phase the plasma is constituted by neutrinos, mesons, electronic

pairs and nucleons-antinucleons couples in thermal equilibrium.

2. LEPTONIC STATE: 10−6 < t < 10 sec, 1013 < T < 5 · 109K.

In this phase, the only particles able to remain in equilibrium are pho-

tons, neutrinos, electron-positron couples, and a few nucleons. This

phase is a pure statistical one because the behavior of the particles is

determined only by temperature in condition of thermal equilibrium.

The matter and radiation density are so high that it is possible for the

neutrinos to interact with them. While the expansion proceeds these

interaction processes slow down, until such interaction is no longer

possible and neutrinos become free to propagate.

3. PHOTONIC PLASMA EPOC: 10 < t < 1012sec, 5·109 < T < 4·103K.

3The name Big-Bang was used by supporters of Stationary Models, there after it is
become of common use.
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It is in this age that the radiation becomes predominant and the an-

nihilation process between electrons and positrons particles can be-

gin. The plasma is ionized due to the high temperature, but it is

still in equilibrium with the radiation while the neutrinos are free to

propagate. This phase terminate with the hydrogen recombination

(T ≃ 40K and z = a0

a − 1 ≃ T
T0

≃ 400
3 = 1500).

4. THE AGE FOLLOWING THE HYDROGEN RECOMBINATION:

t ≥ 1012sec.

When the temperature drops below the range of 4-3 thousand Kelvin,

electrons and protons are able to combine to form hydrogen atoms. In

this phase, the primary plasma becomes neutral and it is now trans-

parent to radiation.

The recombination phenomenon has a very high importance since both

the perturbations and matter free mean paths increase. In fact be-

fore this age, the radiation scattering by photons inhibited the phe-

nomenon. Before the decoupling processes, the matter was offering

to the photons larger scattering cross sections (Compton scattering

cross sections), however, once hydrogen atoms were formed scatter-

ing phenomena almost vanish. In fact the characteristic collision time

of a photon with one hydrogen atom is greater than the Universe’s

expansion time (expressed by τ0,coll =
mp

ρ0mσHC
, with σ Thomson scat-

tering cross sections). Moreover, there are still matter density fluctua-

tions until electrons and protons recombine forming electrically neutral

atoms able to move freely into the radiation field, thus setting up the

seeds for gravitational collapse.

In conclusion, it is possible to say that what in the beginning was a simple

fluctuation in an fairly homogeneous universe, ends up into a huge inhomo-

geneity.

1.3 Structure Formation in different Scenarios

Structure formation scenarios are usually based on the simple principle

of gravitational instability. In a medium of uniform density matter, a local

density excess (overdensity) will attract nearby matter by the effect of its

own gravitational potential.
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This type of model predicts a very rapid growth of irregularities. Never-

theless, in the hypothesis of an homogeneous universe, the increase is not

so fast as expected. For this reason, it’s reasonable to think that there are

two effects in competition: on the one hand, there is an increase of the per-

turbations characterized by gravitational collapse; on the other hand, there

is the expansion which tends to dilute all local overdensities. The result is

that the growth of fluctuations in an expanding Universe is slowed down.

1.3.1 The Jeans Instability

The first mathematical model for the instability of a homogeneous distri-

bution of matter was formulated by Jeans. This theory takes into account

two factors: gravity, which forces the matter to condense, and pressure,

which tends to reduce the instability.

Jeans observed that the competition between the two terms is similar to the

competition between pressure and gravitation, characterizing the behavior

of sound waves (indicating with cs the velocity of sound) in a collisional

fluid where the pressure causes the propagation of sound waves of constant

amplitude, whit the gravitation increasing this amplitude.

Furthermore, Jeans noted that a gas cloud can became unstable under cer-

tain conditions and it can collapse when the pressure cannot balance the

gravitational effects. When the critic mass is reached, the collapse process

starts and goes ahead until the forces capable to contrast the process be-

comes dominant. Jeans formulated a mathematical model to calculate the

maximum value of critical mass, as a function of its density and temper-

ature. Moreover, the size of system that sets a limit for the stability was

calculated as well.

Taking into account the Hydrodynamic equation:

∂u

∂t
+ (u · ▽)u = ▽Φ − 1

ρ
▽ p

∂ρ

∂t
+ ▽·u = 0

▽2Φ = 4πGρ

(1.20)

where p, ρ,u and Φ are respectively the unperturbed pressure, density,
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velocity and gravitational potential, we can obtain for δ = δρ
ρ

δ̈ = 4πGρδ + cs
2 ▽2 δ.4 (1.21)

The qualitative behavior described above is thus easily obtained: in absence

of the pressure term, δ grows exponentially, producing the collapse of clouds

in a time:

tc ≈
1√
Gρ

Instead, taking into account the pressure term, the sound waves take a time

ts to cross the cloud:

ts =
L

cs

after this time interval, the system returns to its equilibrium state. However,

when tc < ts, the gravitational contribution becomes larger than the pressure

term and the system collapses. The limit of which gravitational instability

appears is thus given by ts ≈ tc, which gives

LJ ≈ csGρ−
1

2 (1.22)

where LJ is the so called Jeans length and the mass contaned in a radius LJ

MJ ≈ LJ
3ρ (1.23)

is called the Jeans mass. This is the minimum mass of a system for which

the pressure cannot counter balance the increase in the density contrast δ.

As a consequence, a matter distribution having several inhomogeneities will

condense into a discrete objects with a size greater than or equal MJ . It is

important to observe that for masses comparable with MJ , the pressure in

not negligible and the system formed will have, a more or less a spherical

shape.

1.3.2 The origin of the matter fluctuations

As already mentioned, during the initial instants of the Universe both

density and temperature were extremely high; therefore, the matter was

both highly ionized and quickly expanding. In this scenario, all the present

4The unperturbed solution corresponding to a static and uniform fluid with ρ =
constant, p = constant
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particles, including the photons, are in equilibrium with themselves, hence

it is possible to say that the very early Universe behaved as an opaque body.

Thereafter, due to the expansion, the system started to cool down thus al-

lowing the matter to decouple from the photons (the temperature dropped

below ∼ 10−4), leading to the beginning of the recombination epoch.

After, the photons acquired freedom of movement and the universe became

more transparent. These primordial photons are still detected as Cosmic

Background Radiation (hereby CBR), characterized by an attenuation fac-

tor of ∼ 1000.

The CBR spectrum of perturbations was measured in 1989 when the NASA

launched in orbit the satellite COBE (COsmic Background Explorer). The

results of this mission confirmed that the background radiation has a spec-

trum of a black body at the temperature of 2.7 K with very small spatial

variation in the emission spectrum (order of magnitude of 0.001%) Since the

regions of the universe characterized by higher density cooled down more

slowly, it is possible to affirm that the CBR temperature gradient gives like

a snapshot of the matter distribution in the universe at an age of ∼ 107

years. For a temperature of δT/T≤ 10−5 the cosmic radiation is homoge-

neous; therefore at the recombination epoch the baryonic matter had the

same grade of inhomogeneity

δT

T
=

2

3

δρ

ρ
.

Moreover, it is possible to affirm that the CBR provides a direct measure-

ment of the primordial perturbations which by increasing out to gravita-

tional instability, gave birth to the present structures.

As it was already mentioned, the major problem is that on the small scale

the Universe presents itself as inhomogeneous while, for increasing scale, this

property progressively diminish until the Universe becomes homogeneous on

scales larger than 100 Mpc. It is not possible to understand this relationship

without first giving a classification for all possible kinds of perturbation; it

is also needed to clarify the effects that each kind of perturbation imprinted

on the structures. Moreover, before going ahead with this classification it is

necessary to underline that is not possible to be sure about the exact shape

of the perturbations spectrum, even though it seems logic to assume that it

follows a power law.
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We can distinguish between two kinds of perturbations,

• Isothermal or entropic fluctuations: they are associated with a

variation of the baryonic density δnB 6= 0 in a uniform fluid of photons

namely δnγ = 0, T = constant, therefore, the entropy variation s is

given by
δs

s
=

δnB

nB

• Adiabatically fluctuations: in such fluctuations is the entropy that

remains constant; therefore, in this case there are variations in both

baryons and photons (and in all the particles that contribute to the

entropy variation as well). In other words

s = constant
δs

s
= 3

δT

T
− δnB

nB
= 0 (1.24)

means that to each density fluctuation it is possible to associate a

fluctuation for the CBR temperature

δT

T
=

1

3

δρ

ρ
= 0

According to more recent studies, it is possible to affirm that the ratio

nγ/nB is a constant with a value of ≈ 1011, hence, given this hypothesis, it is

possible to state that the fluctuations that give birth to the cosmic structures

were of the second kind (adiabatic), because isotherms fluctuations cannot

preserve a constant value for the ratio nγ/nB. Moreover the repartition of

the fluctuation at a given time, results random and homogeneous in space,

hence the distribution of density contrast is:

δ(x, t) = δ≡(ρ−ρ̄)

ρ̄
(1.25)

From which it is evident that it is a function of the random variable x with

a mean value of < δ> = 0 and a correlation function expressed by:

< δ(x)δ(x + r)> =

∫

δ(x)δ(x + r)d3x (1.26)

where < δ2(x) > represents the measurement of the fluctuation in the point

r.
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The Fourier transform of δ gives as result the wave number k related to the

scale L:

δk =

∫

δ(x, t)eik·xd3x (1.27)

where |k| = 2πR(t) is the wave number. It is worth to highlight, once again,

that the Eq. 1.27 clearly depends on the scale. In fact performing a choice

for the scale as L ≈ 1/k, and assumed known and fixed the mean value of

the density, the initial measurement of the fluctuation is

δM =

(

〈

δM

M

〉2
)1/2

= δ =

〈

(

δρ

ρ

)2
〉1/2

(1.28)

The above equation is in relationship with |δk|= kn form the equation:

δM ∝
(
∫

|δk|2k2dk

)

∝ k3|δ|2 (1.29)

and furthermore:

δ = δM ∝ k(n+3)/2 ∝ L−(n+3/2) ∝ M−α (1.30)

where α = (1/2)+(n/6). The superimposed value of α is consistent with the

existing models since, being smaller than 1, it explains why on the small scale

the universe has small interferences, and being larger than zero it ensures

the existence of interferences on the large scale.

1.4 The Evolution of Perturbations

It is possible to distinguish between two large classes of possible candi-

dates for Dark Matter: Hot Dark Matter (HDM) and Cold Dark Matter

(CDM). The existence of different kinds depends upon a different behavior

at the recombination epoch.

As already mentioned, each component of the primordial plasma was in

equilibrium with the others, until the characteristic time (peculiarity of each

chemical reaction) remains smaller than the Universe expansion time. If this

is not the case, decoupling takes place and the number of particles per unit

comoving volume is like “frozen”. If this occurs while the particles are still

relativistic, the species is said to be hot ; when they are nonrelativistic, the

species is defined as cold. In the next sections, are shortly outlined the two
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possible scenarios for the evolution of fluctuations

1.4.1 Scenario Hot Dark Matter

In this case, the interaction between the baryons and photons tend to

dump the oscillatory effect of the fluctuations, under a minim scale, fixed

by the Jeans parameter. On the one hand the massive particles tend to

assemble together, because of the gravitational potential; on the other hand,

the photons, due to their radiation pressure, are able to fight the contraction.

In fact, in order for a perturbations of scale L to survive, it is necessary

that photons cross it in a time t greater than the expansion time. The

adiabatic fluctuations spectrum, at the end of the recombination epoch, is

then characterized by a cutoff on the small scale. In the time after the

recombination, the perturbations will achieve a mass (M ≈ 1013MJ) many

orders of magnitude greater than the Jeans Mass (MJ ≈ 106MJ). In the

HDM models, the formation of structures leads to a top-down formation

scenario, in which supercluster of galaxies are the first objects to form after

the big bang, while clusters and galaxies form through a subsequent process

of fragmentation. This is called also Pancake Model.

1.4.2 Scenario Cold Dark Matter

In this case, particles are not relativistic and there is no fluctuation

damping, like in the previous one. In this scenario, the first object formed are

subgalactic (globular clusters, dwarf galaxies, and so on), while the largest

structures form later through gravitational grouping. This is also called

hierarchical, or “bottom-up”, scenario (Hierarchical Scenario).

In the case of isothermal baryons fluctuations, there is a scale dependency,

but there is not a cutoff on the small scale. The value of this scale which

the initial fluctuation, δMi, becomes not linear is (with Ω0 = 1)

δM

M
=

(

δM

M

)

i

t2/3 =

(

Mrec

M

)α

(1 + z)−1 ≈ 1. (1.31)

1.5 Groups and Clusters of galaxies

In the Universe, the objects tend not to be isolated: stars form stellar

clusters which form galaxies; galaxies themselves form groups, groups clus-
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ters and so on.

Even our own galaxy, the Milky Way, is a member of the Local Group. This

structure was described for the first time by Hubble, at the time of the first

distance determinations and redshift measurements (see, his The Realm of

the Nebulae,1936). In addition to the Milky Way system, Hubble assigned

to the Local Group two satellites, the Large Magellanic Cloud (LMC) and

Small Magellanic Cloud (SMC) of our Galaxy, the Andromeda galaxy, (M31,

in the Messier’ catalog), the Triangulum galaxy (M33). Taking into account

recent discoveries of faint dwarf irregulars (dIr) and spheroidal dwarf galax-

ies (dSph) the total number of presently know members of the Local Group

up to ∼ 50.

Membership is not certain for all these galaxies, and there are other possi-

ble yet unknown members. The most luminous Group members are spiral

galaxies. The Milky Way system contains many dwarf galaxies, spread all

over the sky, namely Sag DEG , LMC, SMC, the recently discovered and

widely disrupted Canis Major, and the dwarf galaxies in Ursa Minor, Draco,

Carina, Sextans (dwarf), Sculptor, Fornax, Leo I, Leo II, and perhaps the

Phoenix Dwarf, and Leo A (which may alternatively belong to the NGC

3109 subgroup), as well as probably 10 or 11 newly discovered known dwarf

spheroidal galaxies.

The system of the Andromeda appears grouped around its main galaxy M31,

and contains the dwarf ellipticals M32 and M110 as well as fainter and more

far-out NGCs 147 and 185, the very faint systems And I, And II, And III

and possibly And IV, And V, And VI (Pegasus dwarf), And VII (Cassio-

pea dwarf), And VIII, And IX, and And X, as well as the newly discovered

spheroidal dwarfs And XI, And XII, And XIII, and And XIV. The third-

largest galaxy, the Triangulum spiral M33, may or may not be an outlying

gravitationally bound companion of M31, but has itself probably the dwarf

LGS 3 as a satellite. Also, IC 1613 may perhaps be a member of the M31

subgroup, as may be also members UGCA 86 and UGCA 92.

The luminosity function of the Local Group contains fewer faint dwarfs than

the luminosity functions of many rich clusters of galaxies. The difference is

too large to be entirely accounted for by observational bias against the in-

completeness of the very low surface brightness Local Group members.

Most of the galaxies in the Local Group belong to clumps that are centered

on M31 and on our Galaxy. In the future, interactions between the member
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galaxies and with the cosmic neighborhood will continue to change the Local

Group. Some astronomers speculate that in a not too far away future the

two large spirals, our Milky Way and the Andromeda Galaxy, will collide

and merge in some distant future, to possibly form a giant elliptical.

In addition, there is evidence that the nearest large cluster of galaxies, the

Virgo Cluster, will probably stop our cosmological recession away from it

and accelerate the Local Group toward itself so that it will finally fall and

merge into this huge cluster of galaxies.

The analysis of the dynamics of the Local Supercluster has provided a pic-

ture of how the enormous mass of the Virgo Cluster acts gravitationally

on the galaxies and on galaxy groups around it. As a result, the value of

the Virgo Cluster mass and the motion of the Local Group with respect

to it (the Virgo-centric flow at the location of our small family of galaxies)

seem to indicate that the Virgo Cluster is massive enough to slow down and

eventually stop our recession from it, and then accelerate the Local Group

member galaxies toward the central region of the Local, or Virgo Super-

cluster of Galaxies. Therefore, the members of the Local Group and of the

Virgo Cluster are the laboratories in which the effects of environment on

individual objects can be studied in detail. In general, groups and clusters

of galaxies are extremely important to understand the cosmic structure for-

mation process. Their properties, like shape, size, velocity dispersion, are

important factors in determining galaxy member evolution processes. In the

next sections are summarized the properties of group and cluster.

1.5.1 Galaxies groups

With the word “group” we label a number equal to three or more (up to

thirty) of distinct galaxies that are bound gravitationally for periods of time

> 109 years or alternatively, that are the product of a common formation

event which has taken during the past 109 years even though they may not

be gravitationally bound at present. Usually, these galaxies are distributed

within a radius R, given by

R = (0.1 − 1)h−1Mpc. (1.32)

Groups are commonly identified by their conventional name or by the coor-

dinates of their brightest element.
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Figure 1.2: Local Group.
Schematic illustration of the galaxies locations in the Local Group.
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They are usually identified as regions where galaxy density is higher than in

the neighborhood regions. However, since it does not exists any supportive

physical parameter able to characterize such localization criterion, it is com-

monly accepted the following definition: an aggregate of galaxies located in

a region of the sky, and characterized by a numerical density ρg = N/V (N

is the number of galaxies present in the volume V taken into account) at

least one order of magnitude bigger than the average numerical density of

the surrounding volume, can be called a “group”.

This definition remarks the fundamental role played by the contrast factor

in group identification. An experimental way to confirm that a galaxy is be-

longing to a group is based on the measurement of relative velocity. In fact

within groups such relative velocities can differ only of few hundred km s−1.

However, sometimes, the information on the redshift is not directly avail-

able, so in this case to estimate the distance between galaxies it is possible

to take in account common characteristics such as, apparent magnitude and

diameter.

Nowadays in literature are available several groups classification systems

which often are a source of confusion and lead to ambiguous situations.

Therefore, it is possible to say that the genetically and or development pro-

cesses determining the structure of a galaxies cluster and groups are not yet

properly understood. However, among the groups it is possible to distin-

guish between two principal typologies:

1. Compact groups: they are composed by a small number of objects (up

to eight) with very high spatial density value;

2. Loose groups: (example: the Local Group) characterized instead by a

low spatial density value and large average distance within members

(> 100 kpc).

Nowadays it is estimated that about 55% of all galaxies belong to more or

less well defined groups.

Additionally, it is possible to mention three further reasons that make the

study of groups very interesting. The first one is that such study can bring

important clues on the development history of the universe. The second

reason is that, the distribution of groups gives information on the matter

distribution in the Universe. Finally, studying the physical properties of the

interactions within group members and their dependence on the redshift can
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also give clues on dark matter and at the same time acts as, on experimental

test for cosmological models.

Further details on the physical properties of the groups (in particular re-

garding the compact ones), are provided in the following paragraphs.

1.5.2 Compact Groups: Morphology

In Compact groups, the separation among members is comparable with

their diameters. Therefore the spatial density value is very high, sometimes

higher than in the core regions of richest clusters. For example, the 100

compact groups described in the Hicksons catalogue [9] represents about

the 1% of the matter in the nearby Universe.

Loose groups are different from compact ones. Firstly, for compact groups

the numerical density can be ∼ 100 times that of the surrounding space

while for loose groups the numerical density can be up to ∼ 10 times higher.

It is important to observe that the morphology of galaxies within groups

varies with their density. In particular, the higher is the density, the lower

is the percentage of spiral galaxies. More in detail the decrease of the spiral

galaxies fraction in compact groups is due to a decrease in the fraction of

late-type ones, while early-type one are still present in groups with high den-

sity (ρ≈ 100h3 Mpc3). In compact groups the fraction of elliptical galaxies

is so high that the spiral fraction (fs) drops from about fs≃ 0.80 (for field

galaxies) to about fs ≃ 0.49 (Kindl ed Huchra 1988). Opposite is the distri-

bution for loose groups where the distribution is similar to that of the field.

Another difference observed between loose and compact group is in their

velocity dispersions. Loose groups present a value of about σv≈ 200kms−1

while compact groups present a value of about σv≈ 1000kms−1.

Moreover, about the 60% of the spiral galaxies inside compact groups present

peculiar rotation curves. It is possible to think that this is a symptom of

merging, in fact for few of them it is been observed in a counter-rotation

between the stellar and gaseous components of the galaxy. This can be due

to the gravitational interaction between two galaxies with different inertial

mass and misaligned angular momentum.

Compact groups were pretty unknown till the early 80’s. It was only in 1982

that Hickson [9] started a survey on all the available POSS (Palomar Obser-

vatory Sky Survey) films realizing the first statistically significant catalogue

of compact groups using the following three criteria:
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1. Population: at least four members (N ≥ 4)

2. Loneliness: ΘN≥ 3ΘG;

3. Compactness: µ̄G ≤ 26.0;

where N represents the total number of members having a total magnitude

in a range of three magnitudes from the brightest member; µ̄G is the total

magnitude of such galaxies per arcsec2 averaged on the smallest circle (an-

gular diameter ΘG) containing their geometrical centres; ΘN is instead the

angular diameter of the largest circle that while concentric with the previous

one, does not contains any galaxy external to the group with a magnitude

neither in the range already defined, nor brighter. The 100 compact groups

he found are known as Hikson compact groups. They got an average redshift

of 0.02 ( in other words, recession velocity ∼ 6000 Km s−1) and so they have

a distance between 60 and 100 Mpc.

Before concluding this short introduction it is important to highlight a dis-

covery about the ratio between virial and luminous matter in the groups.

In fact the relative fraction of luminous matter of many groups is much

smaller than the virial one (Zwicky (1933), Smith (1936), Burbidge & Sar-

gent (1971)). Such discovery made the scientific community think that such

groups were not bound systems. However, further observations of the same

matter discrepancy in clusters and the discovery of galactic mass halos seems

to contradict such hypothesis. It is now widely accepted that groups are

systems kept together by their internally dark matter halos. According to

Rubin et al. (1991) about the 85% of the mass contained inside compact

groups should be dark matter.

1.5.3 Dynamical state of compact groups

Compact groups are characterized by very short dynamic time scales,

with tcr ≤ 0.02, crossing time5, therefore:

1. Compact groups are subject to collapse in a time much shorter than

τH , this means that the nowadays observable ones are young systems.

However, the large number of recognized compact groups is difficult

to explain due to the lack of recent or ongoing mergers;

5The crossing time tcr represents the time needed for a galaxy to cross the group. A
low crossing time it is considerate as clue of a real physical interaction.
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2. According to Mamon G.A. (1986, [12]) many CGs could be casual

alignment of unrelated galaxies within larger groups.

In regard to the listed bullets, in particular about the first one, it is pos-

sible to say that the presence of neighborhood galaxies tends to slow down

the merging processes increasing the average life span. However, Vennik et

al. (1993), by studying the galaxies distribution surrounding some compact

groups find that 1/3 of them were part of largest groups.

Therefore, it is likely that the nowadays observable compact groups are

young structures. Such hypothesis is also supported by: the absence of

primordial gas inside the groups; the low number of interacting neighbor-

hood galaxies; and the little amount of merging residuals. Thus it seems to

be confirmed the (Diaferio, Geller and Ramella, 1994 and 1995) hypothesis

that compact groups are in continuous formation inside larger groups during

their collapse, and so they are a configuration with a short life span.

A theory that takes into account all the mentioned evidences is known as

“second merger scenario” (Governato et al. 1996, [8]). According to this

theory, a first generation of galaxies developed through a series of merging

(first infall), into early type and very bright galaxies nowadays present in-

side the groups. Then the galaxies present outside this overdensity region

once reached the inversion point, started to fall (secondary infall) towards

the central region. As a conclusion, it is the second infall that provides to

the groups new members and gives the present aspect.

There is also a difference in the intergalactic space composition between the

two generations. In fact, in the second generation this space is filled from

matter stripped from the primordial galaxies that, by reducing the scattering

sections increases the average life span of the groups. This observation also

gives a possible explanation for the high number of bright elliptical galax-

ies (Caon et al. 1994) that seems to dominate the dynamic of the groups

(Shaker et al. 1998).

Results of studies on compact groups using several models of the universe

show that their population is different and moreover, it is in relationship

with age and type of the universe model (critic or open). However, it is

close to zero the dependence from the original fluctuation type.

In a critic universe model, quite all the observable groups went through a

strong interaction and merging phase during the collapse of the central re-

gion characterized by a redshift within a range of ∼ 0.35 and ∼ 1. Thereby,



34 CHAPTER 1. FORMATION OF STRUCTURE IN THE UNIVERSE

according to Governato et al. (1996) the merging ratio decreases, therefore,

a large fraction of the currently visible groups are result of the first infall. Af-

terword galaxies lose their characteristics associated to merger events giving

a theoretical justification of the low fraction of bright blue elliptical galaxies

within groups. Thus it is possible to say that in a critic universe the number

of expected groups results coherent with the observed one.

In an open universe models instead, the largest part of the clustering pro-

cess is supposed to be at high redshift values (z > 0.3) followed by a strong

decrease of the formation rate. Therefore, in the open universe model the

secondary infall phase is absent; hence, the observed group number results

greater than the expected one. Moreover, in order to consider a low den-

sity universe, the galaxies numerical density should results lower than the

observed one.

1.5.4 Triplets of galaxies

Groups with only three members have high importance in the group

studies because they are the conjunction element between binary galaxies

(that can be described as an interaction between two bodies) and largest

groups with many members. Despite their importance, since that it is really

difficult to have a complete catalogue, there is a lack of literature on the

triplexes. However, a catalogue of triplexes is available; as a result of a

study conducted at the end of the ‘70s by the Russian astronomer Igor

Karachentsev. Members of this catalogue are known as K-triplets. Later

studies discovered that more than half of them are physically bound systems

and not projective effects. Some important parameters on the triplets are

now known such as:

• The value of the dispersion velocity:

V =

[

1

3

3
∑

i=1

(Vi− < V >)2

]1/2

= 101 km s−1

where Vi represents the radial velocity of the ith galaxy inside the

triplets and < V > is the average of the radial velocity.

• The average dimension: R ≃ 43 Kpc;

• The luminosity mass: ML ≃ 3.8 × 1011 M⊙;
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• The Virial Mass: MV T≃αV 2R
G = 1.7 × 1012 M⊙

where α is a dimensionless parameter linked to the projection effect of

V and R, in this case its value is assumed to be α = 3π
2 .

• The characteristics crossing time: tcr = 2H R
V

∼= 8 × 108 years

Given the previous relationship, it is possible to derive the mass-luminosity

ratio
MV T

ML

∼= 4.6;

Moreover, according to the results obtained by Zheng & al. (1993) [16],

triplets seem to originate from merging of galaxies belonging to larger groups,

and leading to the formation of elliptical ones (about the 44% of the galaxies

present in the model seem to be merging resituate). This hypothesis is sup-

ported by several facts, because in such groups it is not present a fraction

of early type galaxies (E and or SO) larger than in the field. Based on the

possible four apparent positions that the three members can assume (these

are already known as projections), Agekian & Anosova (1967) [1] gave to

each one a proper name: Lagrangian (L), Hierarchical (H), Aligned (A) and

Median (M).

Experimental observations seem to confirm a quasi uniform distribution for

the recognized triplexes among the four possible configurations. However,

there is just a bit of excess for the A configuration, compensated by a slightly

defect for the M configuration. It is worth to highlight that further stud-

ies conducted form Chernin (1994) on the galaxy evolution, report a higher

concentration of configuration H. Such high concentration brings forth the

hypothesis that there is a deficit of such configuration which is not possible

to explain with a simple projection effect.

It is worth noticing that an uniform triplet distribution, once projected on

the sky, is not anymore uniform, but presents an excess of H configuration

and this supports the hypothesis that such configuration has not a long last-

ing life span. In other words, for such configuration a merging would occur

each time that two members come close. Such hypothesis was not taken

into account by Chernin. However, such high merger frequency would result

into an increase of the number of elliptical galaxies that is not supported (as

mentioned) by observations. In conclusion, it is possible to affirm that the

merging process has not very much influence on the development and life of

triplets.
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A possible explanation could come from the presence of dark matter. In

fact, the interaction between members of an H configuration (two galaxies

are closer) is in prevalence a gravitational attraction that will bring at some

stage the two galaxies to be very close to each other.

However, the presence of diffuse dark matter inside the group could weaken

the gravitational attraction contributing to increase the number of H con-

figuration expected by Chernin in the hierarchical zone.

On the other hand in a bottom-up scenario (or hierarchical), the larger struc-

tures originates from the gravitational attraction between smaller ones. In

such scenario structures members of a system could have independent ori-

gin, and it is not possible to explain a non casual and uniform distribution

in the orientation of the galactic planes.

1.5.5 Cluster

A collection of at least thirty galaxies gravitationally interacting and

contained in a radius Rc = 1.5h−1Mpc (known as Abell’s Radius), can be

called cluster if the magnitude of each member satisfies the relationship:

mg ≤ m3 + 2m

where m3 is the magnitude of the third brightest galaxy in the cluster (Abell

1958). Clusters are characterized by a spatial density which on average is

lower than the groups. However they have relaxation time at least one order

of magnitude smaller than the Hubble time. The other more important

characteristics of groups and clusters are summarized in Tab.1.1

It is important to clarify that our knowledge on the Universe at the

largest scales is limited by our ability to observe and to measure the distance

of distant away objects. However, clusters are relatively easy to recognize

and it is also relatively easy to estimate the distance between members.

Clusters are divided in two categories based on the presence or absence of

central symmetry. Clusters are defined open or irregulars when it is not

possible to recognize a central region (e.g. the Virgo one). Alternatively,

they are classified as spheroidal ones when they present a more compact

spherical symmetry and a central region with higher density than the more

external one. The number of galaxies present within the Abell radius of a

cluster, it is called richness (R). The integral density (nc > NR, a value of
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Property Groups Clusters

R 3 − 30 galaxies 30 − 30 galaxies

R (0.1 − 1)h−1Mpc (1 − 2)h−1Mpc

σV 100 ÷ 500kms−1 400 ÷ 1400kms−1

m (1012.5 − 1014)h−1M⊙ (1014 − 2 × 1015)h−1M⊙

LB (r ≤ 1.5h−1Mpc) (1010.5 − 1012)h−2L⊙ (6 × 1011 − 6 × 1012)h−2L⊙

< M/LB > ∼ 200hM⊙/L⊙ ∼ 300hM⊙/L⊙

n̄ (10−3 − 10−5)h3Mpc−3 (10−5 − 10−6)h3Mpc−3

Table 1.1: Typical property of groups and Cluster.
R is the Richness, it is the number of galaxies into a structure. With LB mean the typical
blue luminosity R is the mean radius. σV is the dispersion of radial velocity. m denotes
groups mass. < M/LB > is mass-luminosity ratio6 and n̄ is numerical density.
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density over a certain richness threshold) and the mean separation (d ≡ n̄1/3,

where n̄ is the average density across clusters) are summarized across clusters

in Table 1.2.

R NR nc(> NR)h3Mpc−3 d(> NR)h1Mpc−3

≥ 0 ≥ 30 13.5 × 10−6 42
≥ 1 ≥ 50 6.0 × 10−6 55
≥ 2 ≥ 80 1.2 × 10−6 94
≥ 3 ≥ 310 1.5 × 10−7 188

Table 1.2: Numerical density of cluster

Clusters, in particular the richer ones (R ≥ 100) are not common ob-

jects; they are characterized by a density ≤ 105 per clusters Mpc3. They are

also characterized by an high average velocity dispersion σV ∼ 750 km s−1

(in range σV ∼ 400 ÷ 1400 km s1).

Before concluding this short introduction it is worth to underline the

weak, but still present relationship between σV and the richness: richer

clusters have larger σV .

Moreover, observation in the X ray-band shown that in all richer clusters,

together with the galaxies it is present also hot intergalactic plasma with a

temperature within the range of ∼ 2 kev and ∼ 14 kev.

1.5.6 Morphology of clusters

In less rich clusters a big fraction of the members is composed by spiral

galaxies. In rich ones instead, the fraction of S0 and elliptical one increases

towards the central region while the spiral fraction decreases. It has been

observed that in few of the richest clusters the fraction of spiral is close to

zero in the core region.

According to Spitzer & Baade (1951), a possible explanation for the lower

count of spiral galaxies in the core region of rich clusters could be the result

of a number of collisions between galaxies across the core region (from the

birth of the Universe) that stripped out their stellar material. However,

due to the latest correction in the estimated dimensions of the clusters,

this hypothesis would never be satisfied. In fact is been proved that this

hypothesis would be satisfied only if the estimated age of the cluster results



1.5. GROUPS AND CLUSTERS OF GALAXIES 39

larger than the estimated age of the Universe. Hence, it is possible to say

that spiral galaxies inside rich clusters, either have never been present or

have disappeared by an unknown development process.

1.5.7 Mass, luminosity and mass-luminosity ratio

Since there is a relationship between the critical mass Ω and the mass

of the cluster, the determination of the mass is an appealing field of study

in cosmology. For a single cluster the approximate range for its mass is:

Mcl(R ≤ 1.5)(0.12)1015h1M⊙. (1.33)

The typical (median) blue luminosity of rich clusters (within 1.5 h−1 Mpc)

is:

Lcl(≤ 1.5) ∼ 1012 h−2 L⊙

so the approximate range of rich cluster blue luminosities is

Lcl(≤ 1.5) ∼ (0.6 − 6) · 1012h−2 L⊙.

Therefore the typical mass-to-luminosity ratio of rich clusters is thus

(M/LB)cl ∼ 300h(M⊙/L⊙).

Such values confirm the presence of dark matter in huge quantities. From

further studies on the cluster dynamics a density parameter for the Universe

has been estimated as:

Ωdin ∼ 0.2 if M ∝ L on a scale ≥ 1h−1Mpc.

At the value Ω = 1, that is the critical value in order to consider the Universe

closed, it is possible to write:

(M/LB)(Ω=1) ≃ 1500h.

Due to the presence of dark matter, the mass-to-luminosity ratio grows out

to a radius the order of (0.1 − 0.2)h−1 Mpc, then slows down and remains

almost constant either in groups, either in clusters. The plateau value is

M/LB ≃ (200 ÷ 300) h (That correspond to a Ω ≃ 0.2). Hence, the largest
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fraction of dark matter present within cluster is due to the contribution from

the galaxies halos and to the plasma present inside and around the individual

galaxy members. Therefore, there not be should additional amount of dark

matter within clusters, beside such mentioned one.

Unless the mass distribution in cluster is totally different from that of the

luminous matter with an huge presence of dark matter in the void or on

the very large scale, the measured universe density should be much smaller

(∼ 0.2) than the critical one.

1.5.8 Mass density estimation: Ω

Rich clusters of galaxies provide the best laboratory for studying the

baryon fraction (i.e., the ratio of the mass in baryons to the total mass of

the system) on relatively large scales.

In the clusters, the baryonic mass is composed by two principal components:

the luminous portion of the galaxies and the intergalactic gas. So, the baryon

fraction in clusters is

Ωb

Ωm
≥ (Mgas − Mstars)

Mcl
≃ 0.07h−1.5 + 0.05 (1.34)

where the first term on the right-hand side represents the gas mass ratio7

and the second one the fraction of stars. The baryon density required by

big-bang nucleosynthesis is

Ωb
BBN ≃ 0.015h−2 (1.35)

Please observe that if in the previous relationships Ωm = 1, the baryons

number observed inside the clusters would be greater than the one allowed

by the big-bang. Combining equations 1.34 and 1.35 it is possible to estimate

7The ratio of the mass of gas in clusters to the total virial cluster mass (within ∼

1.5h−1Mpc) is observed to be in the range

Mgas

Mcl ≃ (0.03 − 0.15)h−1.5

the total gas mass in clusters is generally larger than the total mass of the luminous parts
of the galaxies (especially for low values of h). With so much gas mass, it is most likely
that a large fraction of the intracluster gas is of cosmological origin (rather than all the
cluster gas being stripped out of galaxies).
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the value for the mass density:

Ωm ≤ Ωb

0.07h−1.5 + 0.05
≃ 0.015h−2

0.07h−1.5 + 0.05
∼ 0.2

with h ∼ 0.5 ÷ 0.8. Thus there should be a huge numbers of baryons im-

prisoned within the dark matter present inside the clusters.

1.5.9 The mass function

The clusters mass function describes the numerical density of clusters

characterized by a mass larger than a threshold value M . This is a fun-

damental quantity to discriminate between different theories on the origin

of the Universe. In fact it is believed that larger clusters originated from

rare fluctuation peaks in the distribution of the mass density, hence, less

rich clusters and groups had birth from smaller amplitude fluctuations. The

observed function it is well described by the relationship (Bachall,1996[2]):

n(≥ M) = 4 × 10−5(M/M∗)−1exp(−M/M∗)h3Mpc−3

With M∗ = (1.8 ± 0.3) × 1014h−1M⊙.

Comparing the observed mass function with the one expected from several

cosmological model, it is possible to observe that the standard model Cold

Dark Matter (CDM) (with Ω = 1) leads to huge clusters, while to obtain

the observed ones, Ω should be ∼ 0.2 ÷ 0.3.
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Chapter 2

The Multiplicity function

Studying galaxy clustering brings forth important clues on the condi-

tions at the age of recombination. Three are the most commonly used ways

to characterize the irregular distribution of both matter and light: the lumi-

nosity function (hereby LF), the correlation functions (hereby CF) of various

orders and the multiplicity function (hereby MF). These quantities are use-

ful tools in Cosmology because they all describe (in different manners) the

cosmic abundance of objects.

2.1 Correlation Function

The probability to find galaxies in a small volume sample (taken from

a large homogeneous sample of galaxies Poisson distributed), at a distance

r from each other, is defined using the formula δP = nδV , where n is the

numerical mean density of galaxies present in the sample. It is worth to

clarify that if in the sample are also present structures, the probability must

be calculated by the formula:

δP = n[1 + ξ(r)]δV (2.1)

In a few words, it is possible to affirm that the the CF allows to calculate

the number of couples present around a small volume δV in the sample and

furthermore, to compare it with the number of couples presents in a Poisson

distribution of galaxies included in the same sample. Hence, assuming NG

as the number of galaxies in the sample, and NP as the number of casual

points in the volume element taken into account, it is possible to obtain ξ(r)

43
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from:

1 + δ(r) =
nGG(r)

nRG(r)

NR

NG
(2.2)

where nGG(r) represents the number of couples with a separation factor r

that falls in the range between r − ∆r and r + ∆r, also nRG(r) represents

the number of couples where one of the members is a casually distributed

point, while the other one is a galaxy, again with a separation factor that

falls in the already specified range. It is therefore possible to infer that

the CF provides indications on the tendency of the objects considered to

group themselves together in structures. A zero value for the CF (ξ(r) = 0)

corresponds to an uniform distribution, while for ξ(r) > 0 (ξ(r) < 0) the

distribution is more (or less) skewed. Definite as small scale any values for

r that falls in the interval 0.1h−1Mpc ≤ r ≤ 10h−1Mpc, the CF follows a

power law expressed by the equation:

ξ(r) =

(

r

r0

)γ

(2.3)

where γ ∼ 1.8 and the correlation length is r0 ∼ 5h−1Mpc. Moreover, it is

also possible to define ξ(r) thought the power spectrum1

ξ(r) =
1

2π2

∫

dkk2P (k)
sin(kr)

kr
(2.4)

such definition, shows that ξ(r) is linked to the spectral fluctuation of the

density at the initial recombination.

2.2 Luminosity Function

The luminosity function (LF) gives the number density of stars or galax-

ies having luminosity in the range between (M, M + ∆M). Based on the

observation made by Press & Schechter (1974) and later by Schecter (1976),

it is possible to state that the LF follows a power law. In particular, the

number of galaxies decreases, with a monotonic behavior, while the lumi-

nosity increases. For faint magnitude, Φ(M) decreases with an exponential

1The power spectrum P(k) reflects the fluctuation in the amplitude of the density field
that gave birth to the existing galaxies and structures. As logic consequence it follows
a power lawP (k) ∝ kn. Usually n = 1 in this case, in fact, the fluctuations on different
scales are correspondent to the same amplitude fluctuations in the gravitational potential
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behavior with respect to |M | and reaches zero for a particular value of the

magnitude defined as M∗. Changing the magnitude with the luminosity,

moreover, given the definition of Φ(L)dL as the number of galaxies with the

luminosity that falls in the range of (L, L + ∆L), it is possible to write the

LF as:

Φ(L) =

(

Φ∗

Φ

)(

L∗

L

)α

exp −
(

L

L∗

)

(2.5)

where L∗ is the brightness that correspond to M∗. In the case groups

are close enough to the observer, it is possible to obtain the photometric

information for weak objects as well, thanks to the assumption that the

distance can be assumed to be the same for all the objects in the same

group. However, for the richest and far groups, it is more complicated to

obtain such photometric information. According to Bachall (1979), it is

possible to attempt to solve the mentioned difficulty by assuming that the

total luminosity of a rich cluster increases with the number of its members.

Hence, if Lclu expresses the luminosity of the cluster and with ngal(R) the

number of members as function of the richness factor R, it is possible to

write:

Lam ∼ ngal(R) < L/n >0 (2.6)

where < L/n >0 represents the average brightness. So the LF for groups of

galaxies can be written as it follow:

η(L)dL = η0

(

L

L0

)−α

exp

(

− L

L0

)

dL. (2.7)

In 2.7 η0, L0 and α are unknown parameters. In particular η0 is an a-

dimensional normalization factor; L0 is the brightness value where the curve

log η-logL exhibits a marked slope change; α is the LF slope at faint light

intensities (L < L0). According to results by Turner & Gott (1976,[15]),

the application of 2.7 to small galaxies groups gives L∗ = 3.4 × 1010L⊙,

corresponding to an absolute magnitude of M∗ = −20.85.

2.3 Multiplicity Function

The multiplicity function (MF) is used to calculate the amount of objects

as function of the mass, or as a function of brightness, or as function of any

other arbitrary parameter used to define the objects into account.
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2.3.1 MF as function of the brightness

Taking into account a region of the universe large enough to be a sta-

tistically significant sample then, let us to compute its average brightness 2.

Selecting inside the region the largest sphere that exhibits internal bright-

ness satisfying the relationship:

ρL,sphere > XρL (2.8)

where XρL is a well chosen contrast factor. The matter present inside the

mentioned sphere is the constituent of the first group that has total bright-

ness L1. Selecting the second largest sphere in the region which satisfies the

relationship 2.8, it is possible to build a second group and so on. The re-

cursive application of the mentioned method allows selecting all the groups

contained inside the region taken into account. As a result it is possible

to obtain a complete catalogue of groups at specified density values. It is

now possible to define the MF as the function of groups luminosity, ηg(L)dL

or, in others words, the number of groups having luminosity in the range

between L and L + dL. It is also possible to approximate ηg(L)dL with

ηg(N)dN using the relationship L ≈ 3NL∗, where N is the number of the

group members. The mentioned approximation is based on the fact that

in a complete survey, until the magnitude does not reach a certain limit

value, the mean of the luminosity is expressed by the formula L = 3L ∗ /2

[7]. Moreover at the average distance where the galaxies are, about half of

the total group luminosity comes from visible components. However, the

mentioned approximation has its limitation: the brightness of the closest

groups might be over-estimated.

2.3.2 MF as functions of the mass

In a similar way, it is possible to define the MF as function of the mass. In

this definition ηg(M)dM represents the numerical density for groups with

mass value that falls in the range between M and M + dM . According

to Press & Schechter (1975), the MF follows an exponential law, and in

particular it is possible to write:

2Turner & Gott (1976) [15] estimated the value of such density as:ρL = 4.7 ×

107L⊙Mpc−3
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ηg(M)dM = (2π)−1/2
(

ρ̄
Mc

)

(1 +
(

n
3

)

)
(

M
Mc

)−(3/2−n/6)

×exp

[

−
(

1
2

)

(

M
Mc

)(1+n/3)
]

(

dM
Mc

)

where Mc is called cutoff mass (1). It is important to highlight that if

the ratio M/L is known for a different class of objects, it becomes possible

to link the MF as function of the luminosity and as function of the mass.

Additionally, if the ratio M/L is a constant, the MF as function of luminosity

and mass are consistent.

2.4 The Integrated MF

Often it is convenient to introduce the integral of the MF, directly on

a chart, namely f(N) represents the portion of galaxies inside groups with

components ≤ N . The integrals of MF across catalogues with different

magnitude integration limits, leads to different Nmax values. It represents

the maximum number of components inside a group. This is due to the

finite number of galaxies present in the sample. Furthermore, the size of the

largest group inside the sample is obviously limited by the finite sample size

itself.

In fact: the deeper is the survey, the flatter are the curves of MF correspond-

ing to large N values. Also, we can express the MF as the integral of the

luminosity

fg(L) =
1

ρL

∫ L

0
Lηg(L)dL (2.9)

where fg is the portion of the total luminosity in the universe included in

groups with brightness ≤ L. This portion is expressed normalized to values

between 0 and 1. Recalling the approximation in 2.3.2 it is possible to write:

fg(L) ≈ fg(3NL∗) (2.10)

2.5 The importance of the MF

The CF do not give a complete description of the clustering. In fact

many different clustering could have the same first order CF but completely
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different three-, four-,five-, etc. points CF. Thus it is necessary to have a

complete set of CFs to give a complete description of the clustering. How-

ever, it is not trivial to obtain CF of higher order: in fact, for a sample

containing N galaxies, the k − th order CF requires ∼ nk operations. Ad

example the CF of the third order ζ it is definite as cumulative probability

to find the three galaxies centered into the three volumes dV1, dV2 and dV3:

dP = n3dV1dV2dV3[1 + ξ12 + ξ23 + ξ31 + ζ] (2.11)

Additionally, one of the heaviest limitations is that on a scale larger than

10h−1Mpc, the CF exhibits a fast decreasing behavior, while the errors are

proportional to the uncertainty of the numerical density of the galaxies:

∆ξ = ∆n̄
n̄ .

This means that to measure the fluctuations on the largest scales it is much

more convenient to use the power spectrum (hereby PS) that reflect the

fluctuation amplitude as a function of the scale used. However, the experi-

mental measurement of the PS requires a number of normalizations due to

the different nature of the objects used. As a result of the normalizations,

a biasing factors b is present:

b ≡
(

∆ρ

ρ

)

gal

/

(

∆ρ

ρ

)

m

(2.12)

It is possible to say that the bias factor b (expressed above) represents the

over-density of the objects taken into account related to the over-density

of the mass present into the sample. The MF is complementary to the CF

because it gives the ratio between the amplitude of the CF of superior orders

and the 2-points function. Hence, the MF is a well built instrument that

allows the study the power spectrum of the density fluctuation. In particular

the MF provides clues on the index of the initial fluctuations.

The most important advantage of the MF is that it is not so difficult to

calculate because once known the group catalogue, it is required to know

only the number of galaxies belonging to each shell around each one of the

galaxies. Additionally, it is worth to highlight once again that both MF and

LF follow the same mathematical rule (see eq.2.5). In fact both follow an

exponential bright end power law. However, one problem remains, the LF

is not a natural extrapolation of the gravitational clustering phenomenon.

In addition, the slope of the average LF correspond to a n value in contrast
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with the one that is possible to find using the MF and CF methodology [7].

Another problem in the precise characterization of the MF is the production

of a groups and clusters catalogue with a high statistically significance and

covering a large portion of the sky. In other words, the catalogue should

include structures on a large range of richness (from structures with very

low multiplicity, such as triplets of galaxies, up to the largest clusters with

hundreds of members).
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Chapter 3

Friends Of Friends Algorithm

In this chapter, two different versions of Friends of Friends (hereby, FOF)

algorithm are presented. The first is based on the algorithm presented by

Huchra & Geller [10], to be used on spectroscopic data. The second one

is based on the changes proposed by Botzler et al. [4] for applying the

same method to photometric data. Before describing these two different

versions, it is important to emphasize the differences between photometric

and spectroscopic redshifts. As mentioned in Chapter 1, the redshift of a

galaxy is defined by

z =
δλ

λ
=

(λ − λ0)

λ0
(3.1)

where λ0 is the wavelength observed into laboratory frame of reference. So

the redshift is the displacement toward lower frequencies of electromagnetic

spectrum due to Universe expansion. The measure of ∆λ is an operation

which can be complex and expensive in terms of observing time: for each

galaxy, in fact, medium-high dispersion spectra must be obtained (few tenths

of Angostrom per mm) and so it is necessary to use medium large telescopes

and long exposure times. Redshifts can be estimated spectroscopically rec-

ognizing absorption or emission lines and their wavelengths (λ) in the spec-

trum, and measuring their position with respect to the positions that the

same lines have in the laboratory frame reference (wavelengths at rest λ0).

This is the reason why until a few years ago, spectroscopic redshift were

available only for a few thousand galaxies.

Photometric Redshift use instead large band photometry: they are obtained

using photometric data in different bands: magnitudes or color indexes. To

explain this approach, an example may be needed: macroscopic features of

51
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spectrum ( such as the break observed around 4000 Å) of the same galaxy

at different distances fall at different wavelengths, and so they are weighted

in different ways within each photometric band. The result is that galax-

ies at different distance have different colors, by inverting the problem it

is possible to obtain an estimate of the redshift (the so called photometric

redshifts). A measure of photometric redshift is substantially a measure of

color and so therefore: it is necessary to distinguish intrinsic colour changes

of galaxies from those produced by cosmological effects.

Photometric redshifts are faster and easier to obtain than spectroscopic ones;

their measurements provide a method to evaluate distances when it becomes

impossible to make spectroscopic estimations due to either poor signal to

noise ratios, or the instrumental systematic error. Photometric redshifts

have lower accuracy (∼ ±0.02) than spectroscopic ones (∼ ±0.001), but if

available in large numbers and for statistically well controlled samples, they

can provide information on the 3-D distribution of objects of Universe, thus

reducing the effects of projection of galaxies due to foreground and back-

ground galaxies.

3.1 The Friends Of Friends algorithm

The Friends Of Friends algorithm (hereby, FOF) was created to search

for groups in spectroscopic galaxy surveys and has been modified to find

structures in simulated galaxy data sets. This algorithm presented by Huchra

& Geller has several attractive features: it can be applied to a variety of sam-

ples, it is easy to apply and to implement on a computer and it can handle

many different selection effects.

The procedure is outlined in Figure 3.1. Firstly, the algorithm chooses a

galaxy in the catalog which has not been previously assigned to a group.

Then, searches around it for companions with small projected separation.

In other words, if i and j are two galaxies with angular separation θij and

redshift zi, zj , they have a projected separation Dij given by:

Di,j = 2 sin(
θ

2
)

V̄

H0
(3.2)
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where V is

V =
(V i + V j)

2
(3.3)

and their line of sight separation is

V = |(V i − V j)| (3.4)

Now, the algorithm defines i and j “friends” if

Di,j ≤ DL(Vi, Vj , mi, mj) (3.5)

Vi,j ≤ VL(Vi, Vj , mi, mj) (3.6)

where mi, mj are their magnitudes, DL and VL are respectively projected

and the line of sight “linking lengths”. If both these conditions are not

satisfied, (rather no companion of i are found), the galaxy i is entered in

a list of “isolated” galaxies. All companions found, are instead added to a

list of group members. The neighbors of each companion are then searched.

This process is repeated until no further members can be found.

It is important to observe that this procedure is commutative: if a galaxy

i is as companion the galaxy j than galaxy j is a companion galaxy i.

Commutativity means that for any particular galaxy catalog and choice of

selection parameters, a unique group catalog results.

3.1.1 Linking Lengths

The most important ingredients of this group finding algorithm is in the

choice of the linking length parameters. In fact, if the linking lengths are

too small, then the group finder will break up single structures into several

groups. If the linking lengths are too large, then different structures will be

merged together into a single one. There are no a priori and optimal criteria

to fix these parameters that will work optimally on any catalog. The right

choice of linking lengths depends on the purpose for which groups are being

identified.

The method adopted by Huchra & Geller was designed specifically to com-

pensate for variations in the sampling of the galaxy luminosity function as

a function of the distance of the group (Malmquist bias). They assumed

that the LF is independent on the distance and position and that at larger
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Figure 3.1: Flow chart for group selection algorithm
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distances the fainter galaxies are missing. So, they used

DL = D0

[
∫Mij

−∞ Φ(M)dM
∫Mlim

−∞ Φ(M)dM

]1/3

(3.7)

where

Mlimit = mlimit − 25 − 5log(VF /H0)

and

Mij = mlimit − 25 − 5log(V/H0)

Φ(M) is the differential galaxy luminosity function1 for the sample, D0 is

the projected separation in Mpc chosen at some fiducial redshift VF .

Additionally, Huchra and Geller choose the limiting velocity difference as:

VL = V0

[
∫Mij

−∞ Φ(M)dM
∫Mlim

−∞ Φ(M)dM

]1/3

(3.8)

The ratio V0/D0 is related to an assumed cosmological mean density. Other

authors use in their work different criteria to select the linking length pa-

rameters. Berlind et al. (2006,[3]) define the linking lengths as:

DL = b⊥n̄g
1/3 VL = b‖n̄g

1/3 (3.9)

where n̄g is the mean number density of galaxies, b⊥ and b‖ are the projected

and line of sight linking lengths in units of the mean intergalaxy separation,

respectively. In geometrical terms, the resulting linking volume around each

galaxy is very similar to a cylinder, oriented along the line of sight, width

equal to the projected linking length and whose height is equal to twice the

line of sight linking length. It is not a perfect cylinder because its radius

increases with redshift, making it slight wider at the far end with respected

to the near one, and its base is slightly curved. However, for small linking

lengths a cylinder is a good approximation.

1The number of galaxies per Mpc per magnitude interval.
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3.2 Why Are We Looking for a New Algorithm?

The main feature of the FOF algorithm is that it does not assume or

enforce any particular geometry for groups (e.g., spherical), but identifies

structures that are approximately enclosed by isodensity surface whose den-

sity is monotonically related to the linking lengths. Finally, FOF satisfies

a nesting condition: all the members of a group identified with one set the

linking lengths are also members of the same group identified using larger

linking lengths. The main difficulty is the choice of linking criteria, because

the FOF can easily mistake for groups filaments or huge chains of galaxies.

Furthermore, the FOF version by Huchra & Geller was designed for spec-

troscopic data set and due to the relatively large errors in the photometric

redshift, it cannot be used for this type of data set without some in deep

modifications.

If the photometric errors are not taken into account, then a large fraction

of the resulting groups and clusters turn out not to be physically bound

objects. The photometric redshift errors are normally larger by a factor 50

with respect to the linking length of the original FOF.

On the other hand, galaxies, with true position on the velocity axis which

can be deviant by about 100VL, could be combined into groups.

Including the redshift errors in the linking criteria does not solve the men-

tioned issue, because the resulting structures become unreasonably extended

in redshift. Moreover, if large value of linking lengths are used, the FOF

find huge chains of galaxies.

For this reason, a new version of this algorithm becomes necessary for pho-

tometric redshift dataset. The new algorithm must have the same attractive

features of the old one and must take into account the redshift error for each

galaxy.

In next section, a new version of FOF based on the idea of Botzler & al.

(2004) is presented.

3.3 The NEW FOF

According to Botzler & al. (2004, [4]), the modified version of the FOF

algorithm combines the same information as the original FOF, such as Right

Ascensions and Declinations, with the use of the photometric redshifts and
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takes into account the individual redshift errors of each galaxiy.

The algorithm consists of three parts (see 3.2). In the inner loop, the tech-

nique is almost identical to the Huchra & Geller method, with slightly altered

linking conditions. The search for groups is carried out in a priori defined

redshift slices and only galaxies that are compatible with a given value of the

redshift are taken into account. This redshift slicing constitutes the outer

loop. So, there is a catalogue of structures for every slice. In a given slice, a

galaxy can be the member of only one structure. However, it is important

to notice that a galaxy can belong to other structures in other slices.

The third part of the algorithm is the unification across adjacent slices of

all structures that have at least a member in common. The a priori redshift

slices zini approximates roughly the mean redshift V̄ of the original FOF

technique. So equation 3.2 and 3.4 change into

Dij = 2 sin

(

θij

2

)

D(zini) ≤ DL (3.10)

Where D(zini) is the distance to zini in Mpc, or

D(zini) =
czini

H0

The line of sight linking condition is translates into two equations for each

galaxy

Vi = |vi − czini| ≤
VL

2
(3.11)

Vj = |vj − czini| ≤
VL

2
(3.12)

If the individual redshift errors δzi and δzj are taken into account, the 6.3

change in

Vi ≤ [(VL/22 + (cδzi)
2]1/2 ≤ VL

2
(3.13)

Vj ≤ [(VL/22 + (cδzj)
2]1/2 ≤ VL

2
(3.14)

The first step for this algorithm consists in the choice of the minimal redshift

zini = zmin. Hence a catalogue of groups that belong to this zini -slice, is

created as it follows.

An object i belonging to this redshift slice that has not yet been assigned
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to any group, is chosen from the catalogue.

This galaxy has to be compatible with the chosen zini. The galaxy j, can-

didate to be a i friends, must satisfy equation 6.3 and must be closer to i

than the cutoff distance DL. If no friends are found, object i is moved to a

list of isolated objectes (like original FOF). If the friends are found, objects

i and j are added in the k -list. Finally, a group candidate is called a “real

group” if the number of galaxies into the group is:

Nk(zini) ≥ Nmin

The group is then added to the catalogue of structures for the given redshift

slice. If it not is case, the galaxy i and its friends are moved to the list of

isolated objects. The algorithm goes ahead with the next galaxy from the

catalog and its surrounding are searched for friends.

When all galaxies into the z − slice have been processed, the search routine

continues in the next redshift slice.

The zini is increased by a value ∆zini and the original catalog of galaxies is

restored. The search for friends is then repeated as described above.

The algorithm produces (zmax−zmin)/∆zini catalogs of clusters and groups,

where zmax and zmin are the minimum and maximum redshift of the galax-

ies into input catalog. The loop ends when zini = zmax. When all z − slice

are been considered, the unification of structures starts.

This new algorithm, like Huchra & Geller’s version, is commutative and

yields reproducible result.

3.4 Purpose of this thesis

In order to derive parameter values (such as link lengths, the number of

slices, etc.) that are as accurate as possible, the two algorithms are tested on

simulated catalogs. These catalogs are derived through the use of software

within the GODFinGER project, that is fully described in Chapter 4. Two

catalogs are generated: the first provides a simulation of the universe, the

galaxies which have spectroscopic redshift, the second one generates the

same portion of the universe (thus the same number of galaxies and the

same number of simulated teams), but the galaxies which have photometric

redshift with an error ∼ ±0.02.
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Figure 3.2: Flow chart for the NEW FOF algorithm
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As mentioned in the section 3.1.1, the fundamental step is the choice of the

correct values for the linking lengths.

The right combination of linking lengths is calculated studying the results

obtained from the output of the original FOF run on the mock catalogues

for a grid of values of linking lengths.

The right choice of the slicing step for the NEW FOF is calculated running

this algorithm on the spectroscopic simulated sample.

Once the linking lengths and the number of slices that must be created,

the NEW FOF is applied to the photometric sample generated from the

simulation.

The result of this test are discussed in Chapter 5. Finally, the two algorithms

are applied to the real data extracted from the Sloan Digital Sky Survey (see,

chapter 6)



Chapter 4

GODFinGER

The GODFinGER (Galaxy Objects Detection Finalized to Groups Exten-

sive Recognition) project plays the role to fulfill the requested availability

of a simulated universe model, populated by groups of galaxies, having a

simple structure close as much as possible to the reality. It is worth to high-

light that its main purpose consists of the design and implementation of a

set of data mining/exploring tools, working on the simulations, aimed at the

characterization of a portion of realistic universe. So far, the principle is to

create a simulated universe based on real data and cosmological constraints.

The real data are coming from those already published by the SDSS.

Usually a mock catalogue of galaxies groups is created by a simulation of

universe which requires size, internal structure and the fulfillment of the

principal physical and cosmological principles.

Main difference between the GODFinGER methodology and other types of

simulations, is that in this case, it is not necessary to simulate the internal

dynamics of the Universe, based on the gravitational pull between bodies

and their dynamic evolution, because the ultimate aim of the project is the

synthesis of a static catalog of groups in place useful to validate reconstruc-

tion algorithmssuch as the 3D FoF.

Therefore, instead of complex N-body simulations, the algorithm is designed

to model a realistic 3D Universe populated by selected groups of galaxies and

background. By Identifying them with point objects, respecting the main

constraint coming from the spatial distribution of internal mass, each group

is assigned on the basis of their richness. Next sections describe the pro-

cedure as it is designed and implemented starting from the scientific space
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parameters, proceeding with the software architecture and concluding with

preliminary results.

4.1 The Scientific Purpose

The primary purpose of the model is to provide a 3D simulation of a

defined portion of the universe, populated by groups and clusters of galax-

ies, with variable richness, hosted into a cosmic background. So far the

basic elements are galaxies, represented by objects or approximated points

(mass unit). It is important to clarify that for this methodology, the choice

of topology should be made in such a way that the groups or clusters can

be randomly positioned but maintaining still identifiable their composite

structure, i.e. being able to distinguish between over-density objects (galac-

tic structures in spherical symmetry) and pure cosmic background. In other

words the number of groups of a given richness and their 3D structure must

comply with specific topological and physical requirements, including the

size of the universe limited to the considered volume, the inter-distances

between the member galaxies, the variety and range as a function of rich-

ness. Finally, it is not possible to neglect that the resulted mock catalogue

must be compliant with the physical constants of the cosmological model

used. From the mock catalogue it is expected that the size related to object

depth (redshift coordinate) will apply an approximately realistic distortion

(z = 0.02, corresponding to about 6000km/sec). Hence, in this way, the

mock data set can be considered quite realistic, in comparison with the data

obtained from the Sloan Digital Sky Survey.

In order to implement the simulated universe and to populate it with groups

and clusters of galaxies, MATLAB results to be the best and flexible mod-

eling environment. The detailed flow-chart for the designed algorithm is

shown in 4.1. It reports all basic steps, starting from the parameters defini-

tion up to output files creation containing the created model. The simulation

results are summarized in the table 3.1 4.1.

4.2 Simulation Model

In order to match the astrophysical requirements, the simulated model

requires the definition of some input parameters, such as for instance the
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Figure 4.1: Flow chart of GODfiGER PROJECT.
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Groups Galaxies Background Galaxies Volume

470 2495 5408 4.22 × 105Mpc

Table 4.1: Features of mock catalogue.
In this table the features of the mock catalogue are summarized: the number of generated
groups ,with the number of galaxies that form both groups and the cosmic background
in the mock universe. The last column shows the volume of the mock universe. The size
of three dimensions are: Lx = 20Mpc, Ly = 20Mpc, Lz = 1056.3Mpc. It is important
to observe that for the third coordinate (redshift) the limit must be 0.25, with a step
compliant with phototometric redshift error (∼ 0.02) resolution.

size of the universe to be created (L(x), L(y), L(z)), obtaining the universe

volume, the value of Hubble constant used (H0 = 72Mpc−1kms−1) and the

cosmological constants (ΩM = 0.3,ΩL = 0.7).

Another fundamental parameter needed to set up the mock catalogue is the

value of multiplicity function. For this purpose the values for the multi-

plicity functions are taken in according to Bachall table (1996). However,

this table uses Bachall specific cosmological constants, while for this algo-

rithm has been chosen the (H0,h) as defined above. Thus, it is necessary

a further step to convert these values according to cosmological model in

use. Moreover, based on the volume and the multiplicity per unit of volume

under consideration, the number of possible groups is estimated according

to the richness that can be inserted into the simulated portion of Universe.

Furthermore, based on the number of allowed groups and their wealth, the

number of galaxies in a group is then created. In addition, each group is

selected, based on the simulated radius that defines the maximum dimen-

sion limits for both x and y coordinates, defining the number of galaxies

allowed to belong to the group. This number is calculated and assigned to

each group as follows:

∀Ri, R(Ri) =
(Ri − 2)0.3

4
(4.1)

It is now possible, to randomly generate the list of 3D coordinates of galaxy

members for each group.This list is generated following both uniform and

Gaussian distributions. First of all, the centers are calculated in the three

coordinates and then the galaxies are distributed within the range consid-

ered. In practice, given the center of the group, its members are distributed

in a sphere of radius R (see fig.4.2).
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Finally, a randomly population of galaxies is also generated (see fig.4.3).
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Figure 4.2: The galaxies members of groups.

This additional population represents the galaxies of the cosmic background

for the mock universe.

The output of the simulation is a set of galaxy coordinates (x, y, z [Mpc]),

together with radius and the multiplicity of each group.
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.



Chapter 5

Testing the FOF algorithm

Properties of groups and clusters of galaxies depend on the algorithm

used for their selection. Groups are difficult to find in galaxy catalogs, be-

cause the selection suffers from projections and contamination from fore/back

ground galaxies. Most previous identifications of group members have been

based either on limited or subjective data, or on two-dimensional criteria.

The members of the de Vaucouleurs (de Vaucouleurs, 1975) groups, for ex-

ample, were identified on the basis of similarity in redshift, apparent mag-

nitude, and morphology as well as on positional coincidence. This method

suffers from poorly defined sampling and selection criteria.

The two-dimensional method of Turner and Gott [15] identified group mem-

bers on the basis of regions were number counts are enhanced with respect

to the surrounding environment. This technique suffers from many biases

among which the fact that the projected spatial separations vary with the

distance and nearby groups projected on large angular scales become so

diluted that they cannot be identified. This technique, in fact is usually ap-

plied to different magnitude -limited sample different distances. Moreover,

this method will not lead to the selection of the same groups when applied

to samples which cover the same region of the sky but have different limiting

magnitudes.

Moreover, the ongoing quest for a much more robust detection algorithm

found more motivation with the necessity of analyzing wide areas of the sky

[10].
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5.1 The choice of Linking Lengths

It is important to remark that the original FOF algorithm can be used

only for data set of galaxies which have spectroscopic redshift, to finalize the

algorithm we built a mock catalogue containing 7903 galaxies distributed

among 470 groups and an uniform background. As mentioned in sec. 3.1.1,

the choice of linking lengths is the most important step. In order to find the

right combination of linking lengths in fact, results obtained from the output

of the original FOF fed with the mock catalogue for a grid of linking lengths

are evaluated. Particularly, two are the features of the obtained group dis-

tribution that were evaluated: the first one is the relationship between the

number of galaxies within the group which are present in the simulation

catalogue, Ntrue true groups, and the galaxies number,Nobs, present in the

group catalogue calculated by the FOF algorithm. The second one gives the

multiplicity function.

Since the original FOF can be used only for data set of galaxies which have

spectroscopic redshift, the mock catalogue was generated with this kind of

redshift. The two linking lengths are defined (see 5.1) according to Berlind

et al. ([3]), as

DL = b⊥n̄g
1/3 VL = b‖n̄g

1/3 (5.1)

where n̄g is the mean number density of galaxies; while the two parameters

b⊥ andb‖ are free to vary within the set of linking length values generated

as follows:

0.14 ≤ b⊥ ≤ 0.2 0.5 ≤ b‖ ≤ 2.0

Usually in original FOF algorithm, the ratio of radial and transversal linking

lengths b‖/b⊥ is taken as constant. In according with the choice of these

parameters made by Berlind et al. [3], wider ranges were excluded from

ours analysis. So, considering the value of b‖ and b⊥ described above, the

value of this ratio are included between

1.3 ≤ b‖/b⊥ ≤ 14.29

. For each set of parameters, resulting catalogue groups are analyzed and

compared with the simulated one. Particularly are compared both galaxies

in group and multiplicity function for both simulated catalogue and derived
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catalogue.

5.1.1 Ntrue vs Nobs

The group multiplicity function is an average statistical property showing

the abundance of structures as a function of richness. Therefore, at least

in principle, it is possible that the resulting MFs are identical without the

need for the individual groups being identical. For the mentioned reason,

before deriving the multiplicity functions for each set, an unbiased relation

between the multiplicity of individual groups, and Ntrue is required.

This was done performing a match between simulated and recovered groups

of galaxies on a one-to-one basis. In this way, it is possible to estimate the

number of galaxies present in the simulation but not in FOF catalogue and

vice versa. Additionally, it is possible to evaluate the differences between

the two distributions.

The linking length ratio was chosen to minimize the differences between two

samples:

• the spurious sample: the FOF group (or galaxies) that are not asso-

ciated with any simulated group;

• undected sample: the groups (or galaxies) that are not found by FOF;

Results are listed in table 5.1. In this table there are result obtained by

running the FOF algorithm on the simulated data set, varying the linking

lengths. In tables 5.2 and 5.3, are completeness and contamination for each

pair of parameters b‖ and b⊥.

Furthermore, the comparison between mock and FOF catalogues allows

to understand how the galaxies are distributed into FOF groups. Most of

undetected galaxies are associated by FOF into groups that have one or two

galaxies more than the corresponding mock group.

It is important to observe that it is possible that FOF groups are a combi-

nation of mock groups but also some mock structures can be split into more

FOF groups. This depends on the choice of linking parameter. Increasing

the value of linking lengths, in fact, the rate of these groups increases. The

best choice turns out to be b‖/b⊥ = 2.5. In this catalogue, only one group is

the combination of two mock ones. Similarly, only one mock group is split

into two groups by FOF.
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b‖/b⊥ FOF

Groups Ngal

Number

Spurious

Group

Number

Spurious

Galaxies

Number

Unde-

tected

Groups

Number

Unde-

tected

Galaxies

14,29 470 2479 226 1285 224 1301
10,71 464 2429 17 142 25 208
8,58 487 2704 32 252 5 45
7.14 453 2366 2 46 28 215
5,36 453 2343 4 67 28 219
5,00 361 1702 0 21 134 814
4,29 468 2561 9 112 6 46
4,17 453 2366 0 33 25 208
3,57 452 2325 20 52 29 222
2,86 466 2514 2 67 6 48
2,50 466 2562 2 80 2 13
1,33 602 6582 153 4087 0 0

Table 5.1: Comparison of the FOF (and mock) catalogue In the col. 1
there are different linking lengths ratio used; in col. 2 and 3 there are the groups found
by FOF and the galaxies in these groups, respectively. Spurious galaxies and groups are
shown in col.4 and 5; in col. 6 and 7 are listed ”Undetected” groups and galaxies.

b⊥ → 0.10 0.12 0.14 0.17 0.20

0.50 134 25 29 6 2
0.75 121 67 28 6 2
1.00 118 66 28 6 2
1.50 116 64 25 5 210
2.00 112 59 224 4 2

b‖ ↑

Table 5.2: Undetected groups for each linking lenghts pairs
This table shows how the number of spurious groups changes for each linking lengths pair.
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b⊥ → 0.10 0.12 0.14 0.17 0.20

0.50 0 0 20 2 2
0.75 0 1 4 9 13
1.00 1 2 2 18 29
1.50 3 6 17 32 258
2.00 4 9 226 47 2

b‖ ↑

Table 5.3: Spurious groups number for each linking lengths pairs
This table shows how to change the number of spurious groups for each linking lengths
pair.

5.2 Comparison of Multiplicity Function

Another feature analyzed for each catalogue is the MF. Such comparison

results more easily when both MFs are plotted in the same chart. In fact in

figure 5.1 and 5.2 the MF for the mock catalogue and for the one resulted

from the application of FOF algorithm are plotted in black and in red,

respectively.

Analyzing more in details the graphs, particularly panel a) in Fig. 5.1, it is

possible to observe that this curve reflects the good performance of MF for

low-richness (3 ≤ R ≤ 10) groups; however it is underestimated the number

of intermediate richness groups. Panel b) in the same figure it is obtained

making use of the parameters b⊥ = 0.12 b‖ = 0.5. The graph clearly show

that these parameters underestimate the linking lengths, hence the number

of groups found by FOF is lower when compared with the simulation groups

number (453 compared with 470). In fig 5.2 panel a), the MF of the catalogue

obtained with b⊥ = 0.14 b‖ = 1.5 is then compared with simulation one. As

it is possible to infer from the chart, these are the best values, in fact, the

two curves are similar for groups of low and average richness. In panel b) it

is compared the MF obtained making use of the parameters value: b⊥ = 0.14

b‖ = 0.75, (that are the ones used by Berlind et al [3]), with the simulation

MF. The graph clearly shows that the MF of this catalogue differs very much

from the simulation, especially for groups at high multiplicity.

Objective comparison analysis between the mock MF and the FOF one is

also performed through a Kolmogorov-Smirnov statistical test. The results

of this test are shown in tab 5.4. As it is possible to read from the table, the

best value for the linking lengths ratio turns out to be 2.5. In fact according
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Figure 5.1: Examples of Multiplicity Function Original FOF.
In this figure, the multiplicity functions derived from Original FOF with different linking lenghts are shown. a)b⊥ = 0.14 b‖ = 1.5. b)b⊥ = 0.12
b‖ = 0.5.
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Figure 5.2: Multiplicity Function Original FOF.
In this figure, the multiplicity functions derived from Original FOF with are shown.
a) b⊥ = 0.2 b‖ = 0.5; b) b⊥ = 0.14 b‖ = 0.75.



74 CHAPTER 5. TESTING THE FOF ALGORITHM

b‖/b⊥ P D

14.29 0.070 0.44
10.71 0.087 0.43
8.57 0.11 0.41
7.5 0.09 0.42
7.14 0.07 0.44
5.36 0.08 0.43
5.0 0.024 0.52
4.29 0.05 0.46
4.17 0.14 0.40
3.57 0.11 0.42
2.86 0.07 0.44
2.5 0.17 0.38
1.3 0.02 0.46

Table 5.4: Result of Kolmogorov-Sminorv Test. In the column 1 there
are the linking lengths ratio used to generate the catalogue. In the column 2 there are
the probabilities that two distributions of data values are drawn from the same distribu-
tion. The value in the column 3 specify the maximum deviation between the cumulative
distribution of the data and the supplied function.

to the tests, the FOF catalogue that exhibits the smallest fraction of spurious

groups and the highest completeness is obtained using the linking lengths

ratio 2.50 and in particular,

b⊥ = 0.2 b‖ = 0.5.

Using these values, the obtained catalogue just has two undetected groups

and two spurious groups. Moreover, the richness of the undetected groups

is always equal to 3, while all the richer mock groups are found by FOF.

5.3 New FOF runs on simulated data set

The modified FOF algorithm (see Chapter 3), was tested on the mock

catalogues and its performances were evaluated against those of the original

FOF. For this reason, the New FOF is firstly tested on a the same spectro-

scopic mock catalogue, used for the original FOF.

It is important to recall that even though the New FOF was specifically

built to work on photometric redshifts, it can also be used on spectroscopic
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data. In this case, the individual redshift errors δzi, δzj are not taken into

account, so the linking lengths conditions on the line of sight become,

Vi = |vi − czini| ≤
VL

2
(5.2)

Vj = |vj − czini| ≤
VL

2
. (5.3)

As for the projected linking length, the correct value depends on the surface

density of each slice, so that

DL = b⊥n̄gs
1/2 (5.4)

In this way, DL varies with redshift, while for the original FOF it was a

constant. In this part of the test, the number of slices to be created and the

value of incremental step per z -slice, ∆zini, must be chosen as well.

It is evident that the choice of a large ∆zini, led to loose a large number

of galaxies, both increasing the possibility that rich structures can be sep-

arated and loosing low multiplicity structures. As summarized in Figure

5.3, increasing the steps ∆zini, the number of group reaches a plateau. In

order to obtain a number of groups as close as possible to the one present in

the simulated data set, and at the same time to improve the computational

time, the better methodology consists in to the use of ∆zini = 0.1Mpc.

Considering that the maximum values of the line of sight distance and the

smallest one are

Dzmax =
cz

H0
= 1056Mpc

and

Dzmin
=

cz

H0
= 0.024Mpc

respectively, the corresponding number of slice is

(Dzmax − Dzmin
)/∆zini = 10564

.
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Figure 5.3: Trend in the number of groups (Ng) in function of the
number of slices (Ns) per New FOF.
This plot is obtained varying the step between 0.004Mpc and 50Mpc. It is possible to
observe, that if the number of slice increases (decreasing the step value ) the number of
groups in the sample gets to a plateau. These catalogue are obtained using b⊥ = 0.2 and
b‖ = 0.5, that is the best value compared with the one fond by the original FOF running
on the same catalogue.
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5.4 Comparison of group catalogue

A second spectroscopic catalogue of groups was obtained by running the

New FOF algorithm on the mock galaxies sample. The linking lengths are

the same used for the original FOF algorithm; moreover the slicing step

value is ∆zini = 0.1Mpc, as already mentioned above.

The resulting catalogue of structures contains 430 groups, for a total number

of 1994 galaxies. We then analyzed the differences between this catalogue

and the simulated groups catalogue, in order to provide the number of spuri-

ous and undected groups. Then, a comparison between the results obtained

by the NEW FOF and ones obtained by the original FOF is provided.

5.4.1 New FOF and Simulated Data

The completeness of the catalogue, obtained with the NEW FOF ∼
85%. Although this is a high value, it is low compared to the completeness

obtained by the original FOF (∼ 99%).

By comparing the multiplicities function, it is possible to observe, that the

linking lengths value seem to be too low (see, fig.5.4). In fact, there is a

good match for groups with low richness, but a noticeable fraction of groups

with high richness remains undetected. This difference might be related to

the fact that the two algorithms differ in both the linking lengths and in

the calculation of the distance between two galaxies i and j. In fact, the

Orginal FOF algorithms uses a constant projected linking length, while the

New FOF uses a linking length which varies with z. In addition, the Original

FOF calculates the distance between two galaxies using the relationship

D⊥i,j
=

c

H0
(zi + zj) sin(

θij

2
) (5.5)

where θij is the angular separation between i and j, zi and zj are the redshift

of two galaxies. The New FOF, instead, uses

D⊥i,j
=

c

H0
zslice sin(

θij

2
) (5.6)

where zslice is the redshift corresponding to particular slice analyzed.

Taking into account this observation, a catalogue was derived using the New
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Figure 5.4: Multiplicity Function New FOF. This is multiplicity function (red
line)for the catalogue obtained by New FOF compared with multiplicity function of simu-
lation catalogue of groups(black line). The linking lengths used by New FOF are b⊥ = 0.2
and b‖ = 0, 5.
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FOF algorithm leaving unchanged the ratio b‖/b⊥ = 2.5, but with value for

the b−parameters scoring: b‖ = 1 and b⊥ = 0.4. With these parameters

value, the New FOF algorithm finds 494 (about 64 groups more than in

the previous catalogue) groups, comprising 2761 galaxies which 39 groups

resulted to be spurious (comprising 289 spurious galaxies) and 2 groups

are undetected (with 20 undetected galaxies). With this new values the

catalogue completeness reaches ∼ (99)%.

Unfortunately, the rate of spurious galaxies and spurious groups increases

with respect to the catalogue obtained by original FOF. In the previous

catalogue, the contamination of spurious groups was ∼ (0.43)%, with ∼ (3)%

of galaxies in group that are spurious; in the NEW catalogue, the fraction

of spurious groups is ∼ (7.89)% (and out of 2761 galaxies in groups, 10%

are spurious).

Nevertheless, it is possible to observe that the multiplicity function obtained

from this catalogue and from the simulated one, share the same trend (see,

5.5). In the next sections, a more detailed comparison between the results

of the two algorithms is provided.

5.4.2 New FOF and Original FOF: analysis of discrepancies

In table 5.5 are summarized the results obtained from both the original

and the new FOF algorithms running on the same spectroscopic mock data

set. A match between the two catalogues has been done on a one to one

Groups Galaxies
in groups

Original
FOF

466 2761

New FOF 494 2562
Simulation 470 2495

Table 5.5: The result obtained from both the original and the new
FOF algorithms. Comparison of the results obtained to running Original FOF and
New FOF on the same input data set. The Total Groups column contains the total
number of group found and the Total Galaxies column the number of galaxies distributed
in structures. The total “true” number and the true number of galaxies are shown too.

basis. In particular, four types of groups have been identified in the New

FOF catalogue:
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Figure 5.5: Multiplicity Function of spectroscopic catalogue ob-
tained by running New FOF on the simulation data set.
The blue line is the multiplicity function obtained running New FOF on the mock cat-
alogue, using b‖ = 1 and b⊥ = 0.4 and step 0.1Mpc. The black line is the simulation
multiplicity function.

1. Structures that are combinations of original FOF groups.

2. Structures that differ by few members.

3. Groups that are found only by the New FOF : no galaxy in a group is

a member of the original FOF groups.
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4. Identical groups. Groups that have identical composition.

This classification scheme facilitates the examination of the intrinsic char-

acteristic of the two FOF algorithms. Results are shown in the table. 5.6

New FOF FOF %FOF % New FOF

Only FOF structures − 2 0.40% −
Only New FOF struc-

tures

39 − − 8%

Structures different in

a few members

66 27 6% 13%

Identical 362 362 77% 73%

Table 5.6: Comparison of the Orginal FOF structure and New FOF ones

In fig 5.6, the multiplicity functions for the original FOF catalogue and

the New FOF one are compared.

5.5 New FOF testing on the photometric simula-

tion

The New FOF algorithm is now applied to the photometric data set.

Important parameters such as the slicing step, and the number of slices, were

evaluated through the previous test, particularly the slicing step is fixed to

be equal to ∆zini = 0.1Mpc. Moreover, as it was already mentioned, in the

photometric data set it is necessary to take into account the photometric

redshift errors of each galaxy, therefore for this reason, the linking length

criteria in the line of sight direction becomes

Vi ≤ [(VL/2)2 + (cδzi)
2]1/2 ≤ VL

2
(5.7)

where δzi is the individual redshift errors equal to 0.02 ( the 3σ uncertainty

on the redshift slice).

The first test performed with the linking lengths parameters found above,

b‖ = 1 and b⊥ = 0.4 gave as result a group catalog containing 149 groups

(for a total of 664 galaxies) a maximum of 33. To understand this, the low

richness of retrieved groups, the trend of average density on each slice is

studied and compared with the distribution of galaxies in the slice, when
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Figure 5.6: Multiplicity Function of spectroscopic catalogue obtained by
running New FOF on the simulated data set.
The blue line is the multiplicity function obtained running New FOF on the
mock catalogue, using b‖ = 1 and b⊥ = 0.4 and step 0.1Mpc. The red line is
the multiplicity function calculated for the spectroscopic data set with the
original FOF b‖ = 0.5 and b⊥ = 0.2
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the photometric errors is taken into account. From Fig.5.7, it is possible

to observe that when the errors are not considered, or else the δzi
= 0 into

(5.7), the number of galaxies does not change with the z − slice. When

δzi
6= 0, there is a strong dependence on z − slice (see panel b). Therefore,

the density of each slice changes with respect to the above mentioned case,

and so the projected linking length (recalling that DL it is defined to be

equal b⊥ · n̄−1/2. Thus it is necessary to define a new value for b⊥, to correct

for this factor.

The choice of the new value was been made complying with the criteria

of completeness and contamination as described in the previous sections.

The best value resulting from the test was b⊥ = 0.9. The resulting catalogue,

contained 415 groups, comprising a total of 2960 galaxies. The completeness

of this catalogue was 74% and the contamination is 29%.

In order to improve these result, a further test was carried out. The b⊥ value

was kept fixed, and other catalogs was generated by choosing the error value

1σ, 0.6σ. Results are shown in 5.7.

Using the errors at 0, 6σ value, the completeness improved (increasing its

Total
Groups

Undetected
Groups

Spurious
Groups

0, 6σ 580 93 154
1σ 479 50 213
3σ 415 122 123

Table 5.7: The result obtained varying errors.
Comparison of the results obtained at different σ values.

value from 74% up to 80%). However, also the contamination increased to

8%. Unfortunately it is not possible to vary b⊥ in a manner that would

allows to obtain a catalog that results at the same time complete and not

contaminated. In this case, comparing the multiplicity functions (see, fig.

5.8), the value for the errors to 3σ resulted to better fit our needs.
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(a)

(b)

Figure 5.7: Comparison between the galaxies distribution into a
slice.
Taking into account the individual redshift errors, the galaxies distribution into each slice
changes with respect the slices distribution of galaxies when the spectroscopic (without
redshift errors) data set is used.
The figure a) shows the trend for the spectroscopic data set. The data used in this plot
are obtained running the same algorithms with same linking lengths. The figure b) shows
the trend of the galaxies number respect to z-slice, when used photometric redshifts. As
it is possible to observe, the number of galaxies in the slice is not constant.
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(a)

(b) (c)

Figure 5.8: Multiplicity function varying errors.
The figures a), b), c) are the multiplicity functions calculated 3σ, 1σ,0.6σ
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Chapter 6

Application to the

Photometric Redshift

Catalogue

Before presenting the results obtained from the application of the New

FOF on the photometric redshift catalogue, it is worth to clarify an im-

portant issue arising from the lack in literature of such kind of catalogue.

A broadly accepted way to evaluate the performance of such an algorithm

requires the evaluation of the resulting catalogue obtained by the same al-

gorithm turned to run on a photometric sample. Such evaluation usually

consists into a performance assessment of the catalogue compared with the

one obtained using the original FOF algorithm proposed by Berlind run-

ning on his sample. However, it is worth to highlight that in such kind of

comparison (and in any case when it is attempted the comparison between

two or more catalogues), it is compulsory to pay attention about the type of

algorithm used to generate them, about the possible existence of a selection

criteria in the data and so on. Failing to comply with the last observation,

could result into an imprecise or, even worst, a biased performance evalua-

tion.

Across the following sections, the New FOF algorithm is evaluated following

the criteria mentioned above. Firstly, for the sake of clarity, it is necessary

to spend a few words about the real dataset used (the Sloan Digital Sky

Survey: Fifth Data Release).

87
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6.1 Sloan Digital Sky Survey: Fifth Data Release

The Sloan Digital Sky Survey (hereafter SDSS) is an imaging survey

over a contiguous 7646 deg2 high-latitude elliptical region in the Northern

Galactic Cap, plus an additional 750 deg2 in the Southern Galactic Cap.

The SDSS provides a uniform, well-calibrated map in five broad bands (u,

g, r, i, z) spanning a wide wavelength range: 3000 − 1000 Å. The catalog

derived from the images includes more than 350 million celestial objects,

and spectra of 930.000 galaxies, 120.000 quasars, and 460.000 stars. The

data are fully calibrated and reduced, carefully checked for quality, and

publically accessible through efficient databases (http:www.sdss.org). The

data have been publicly released in a series of annual data releases. The

imaging survey is accompanied by almost a million spectra of two complete

samples of galaxies and more than 120,000 spectra of quasars, covering about

8200 square degrees. The basic properties of the SDSS are summarized in

Table.6.1 6.2. In the Fig.6.1 the distribution on the sky of SDSS imaging

(top) and the spectroscopy (bottom) included in DR5, are shown in J2000.0

equatorial coordinates. In this work the Fifth Data Release (hereafter DR5)

was used.

In the Fig. 6.1 are shown the regions of the sky in DR5 covered by

imaging (top) and spectroscopy (bottom). In contrast to DR4, the imaging

available in DR5 covers an essentially contiguous region of the North Galac-

tic cap, with a few small parches totaling ∼ 200 deg2 still remaining. The

area covered by DR5 primary imaging survey is 8000 deg2.

The area covered by the spectroscopic survey is 5713 deg2. In Tables 6.1

and 6.2 are summarized the characteristics of the DR5 imaging and spec-

troscopic surveys, respectively. Note that ”stars” and ”galaxies” division in

tab. 6.1 refer to the photometric pipeline classifications. Classification in

6.2 are those returned by the spectroscopic pipeline.

6.2 Photometric Redshift

Despite the huge effort for a wide spectroscopic coverage, spectroscopic

redshift are available only for a small minority of objects. Photometric

estimates of the redshift are instead available for all SDSS galaxies. The

photometric redshift catalogue used for this work, has been constructed by
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Figure 6.1: Distribution on the sky of SDSS imaging.
Distribution on the sky of SDSS imaging (top) and the spectroscopy (bottom) included in
DR5, shown in J2000.0 equatorial coordinates.
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Parameter Value

Footprint area 8000deg2

Imaging catalog 217 million objects
Magnitude limits:
u 22.0mag
g 22.2mag
r 22.2mag
i 21.3mag
z 20.5mag
Median PSF width 1.4′′ in r
rms photometric calibration
errors:
r 2%
u − g 3%
g − r 2%
r − i 2%
i − z 3%
Astrometry errors < 0.1′′ rms absolute per coordi-

nate
Object counts:
Stars primary 85, 383, 971
Stars, secondary 28, 201, 858
Galaxies, primary 131, 721, 365
Galaxies, secondary 33, 044, 047

Table 6.1: Characteristics of DR5 Imaging Survey.

D’Abrusco et al. (2007) with a neural network approach based on Multi-

Layer Perceptron, or MLP. Neural Networks have long been known to be

excellent tools for interpolating data and for extracting patterns and trends.

In the last few years they have also dug their way into the astronomical

community. In practice, a neural network is a tool which takes a set of in-

put values (input neurons), applies a non-linear transformation and returns

an output. The optimization of the output is performed by using a set of

examples for which the output is known a prior [5].

6.2.1 Photometric and Spectroscopic Redshift Catalogue

In order to generate this catalogue two steps are adopted [5]: firstly, an

MLP was trained to recognize nearby (z < 0.25) and distant (z > 0.25) ob-
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Parameter Value

Footprint area 5713deg2

Wavelength coverage 3800 − 9200 Å
Resolution λ/∆λ 1800 − 2100
S/N > 4pixel−1 at g = 20.2
Redshift accuracy < 5kms−1

Number of plates 30kms−1 rms for main galaxies
Number of spectra 1, 048, 960
Galaxies 674, 741
Science Primary galaxies 561, 530
Stars 212, 781

Table 6.2: Characteristics of DR5 Spectroscopic Survey.
This table summarizes the characteristics of DR5 Spectroscopic Survey. The
redshift accuracy refers to main galaxies, ∼ 99% of classifications and red-
shifts are reliable. The science primary objects define the set of unique
science spectra of objects from main survey plates (i.e., they exclude repeat
observations, sky fibers, spectrophotometric standards.)

jects, than two separated MLPs were trained to work in these two different

redshift regimes. Such approach finds a strong support in the fact that in

the SDSS DR5 catalogue, the distribution of galaxies inside the two differ-

ent redshift intervals is dominated by two different galaxy populations: the

Main Galaxies (hereby, MG) sample in the nearby region, and the Luminous

Red Galaxies (LRG) in the distant one. The use of two separate networks,

ensures that the NNs achieve a good generalization capability in the nearby

sample, leaving the biases in the distant. To perform the separation between

MG and LRG objects, a spectroscopic sub-sample was extracted from SDSS-

DR4.

After this step, the evaluation of photometric redshift was performed work-

ing separately, in the two regimes. The results are summarized as [6]:

• For the MG sample, the robust variance turned out to be 3σ = 0, 028

over the whole redshift range, 3σ = 0.0197 and 3σ = 0.0245 for the

nearby and distant objects, respectively.

• For LRG sample the variance obtained is 3σ ≈ 0.0163 over the whole

range, 3σ ≈ 0.0154 and 3σ ≈ 0.0189 for the nearby and distant objects,

respectively.
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6.3 Catalogue of Berlind

For evaluating the New FOF algorithm, its performance are compared

against performance obtained by the FOF algorithm described by Berlind

[3]. Firstly, it is worth to recall that the Berlind FOF algorithm is opti-

mized to find galaxy groups and clusters in volume-limited samples of the

Sloan Digital Sky Survey (SDSS), and in particular from a part of the Data

Release 3. The authors of this work are interested in using galaxy groups

to constrain the properties of galaxies as a function of their underlying dark

matter halo mass. It is therefore important that the population of galaxies

constituting the groups is homogeneous within the sample volume. Thus,

this is the main reason why they chose to construct volume-limited subsam-

ples of the full SDSS redshift sample that are each complete in a specified

redshift range down to a limiting r-band absolute magnitude threshold.

To the extent of this thesis it is in fact more important to understand how

important parameters such as the linking lengths are chosen. As mentioned,

the most important ingredient of our group-finding algorithm is our choice

for the linking lengths b‖ and b⊥. Since that the final aim of both, this thesis

and Berlind’s work, is to obtain a balance between being inclusive (groups

together every galaxy inhabiting the same halo), and reducing contamina-

tion, while producing groups that have an unbiased multiplicity function, it

is very interesting to compare the New FOF with the Berlind one, partic-

ularly about the linking lengths. Berlind finds for the linking lengths the

following optimum values of b⊥ = 0.14 and b‖ = 0.75. Such values beside

the mentioned analytical relationships, are refined making an extensive use

of the mock catalogue, in order to achieve a catalogue composed by galaxy

groups with N ¿= 10 that have

• an unbiased multiplicity function;

• an unbiased median relation between the multiplicities of groups and

their associated halos;

• a spurious group fraction of less than ∼ 1%;

• a halo completeness (fraction of halos that are associated one-to-one

with groups) of more than ∼ 97%;
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• a velocity dispersion distribution that is ∼ 20% too low at all multi-

plicities.

• the correct projected size distribution as a function of multiplicity;

6.4 The original FOF:running on the real data set

6.4.1 The Data

The evaluation started by letting the original FOF algorithm run on the

spectroscopic subsample SDSS-DR4 which covers 6670 deg2 on the sky and

contains ∼ 449271 objects. Since the apparent magnitude limit of the red-

shift sample varied across the sky, in the commissioning phase of the survey,

the r-band magnitude limit was cut to 17.5.

Then three volume-limited subsamples of the full DR4 spectroscopic data

set are isolate, each of those complete in a specified redshift range down a

limiting r-band absolute magnitude. Hence, the three samples are built by

selecting galaxies within three redshift range: 0.015 < z < 0.1, 0.015 < z <

0.068,0.015 < z < 0.045, within limiting absolute magnitudes equal to M r20,

Mr19, Mr18 respectively. The absolute magnitudes are quoted for Ωm = 0.3,

ΩΛ = 0.7, h ≡ H0/100kms−1Mpc−1 = 0.7.

In the figure 6.2, all galaxies belonging to the three samples are shown

in the luminosity redshift plane.

The sharp cutoff curve along the lower right part of the plot, shows the

survey apparent magnitude limit r = 17.5. The limiting absolute magnitude

of each sample changes slightly with z due to evolution corrections applied

to galaxies luminosity: as a galaxies moves to the outer edge of a given

volume-limited sample, its luminosity somewhat increases, allowing lower

redshift galaxies to make it into the sample at lower luminosities that they

do at higher redshift. The maximum redshift value was chosen since this

yields the largest possible volume limited samples; the value of zmin, used

for all three samples, is chosen to alleviate some of the problems associated

with obtaining accurate photometry of nearby extended galaxies.
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Figure 6.2: Absolute r-band magnitude vs. redshift for galaxies in
SDSS redshift survey.
Mr20 (blue), Mr19 (green), Mr18 (red) show the three catalogs and each dot show the
three spectroscopic subcatalogues used in this word.

Name zmin zmax < Mr Ng n̄g

M r18 0.015 0.048 18 39253 0, 0400
M r19 0.015 0.068 19 72722 0, 0213
M r20 0.015 0.100 20 140233 0, 0131

Table 6.3: Volume-limited Sample Parameters.
This table summarizes the parameters of the volume limited samples. In
the col.2 and 3 are the redshift limits of each sample. In col.4 is the limiting
magnitude. In the col.5 and 6 the number of galaxies and the galaxy density
in units of h3Mpc−3 for each sample.
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6.4.2 Group and Cluster Spectroscopic Catalogue

The original friends of friends algorithm was applied on each of the three

volume limited samples.

According to the results obtained on mock simulations, the linking lengths

are chosen to be equal:

DL ≤ b⊥n̄−1/3 = 0.2n̄−1/3

in the transverse direction, and

VL ≤ b‖n̄
−1/3 = 0.5n̄−1/3

in the line of sight directions. The resulting group catalogues for the three

samples contain a total of 8116, 4760 and 2420 groups,respectively. For each

group, an unweighted centroid is calculated, as the average right ascension,

declination and mean redshift of all galaxies belonging to the group. An

rms projected radius is also estimated as:

R⊥,rms =

√

√

√

√

1

N

N
∑

i=1

ri
2 (6.1)

The results are shown in table 6.4. In the Figures 6.3,6.4,6.5, the multiplicity

function of Mr18 sample is shown.

Name Ngr Ngal RichnessMax

M r18 2420 13789 470
M r19 4706 26125 312
M r20 8116 39922 184

Table 6.4: Results obtained.
In the col. 2 there are the number of groups obtained, in the col. 3 it is shown the number
of galaxies within groups and in the col4. are listed the maximum richness of catalogues.

6.5 The New FOF applied to a photometric data

set

We used the photometric sample by D’Abrusco et al. (2007) From that,

we extracted three samples Mr18, Mr19, Mr20 with the same selection criteria



96CHAPTER 6. APPLICATION TO THE PHOTOMETRIC REDSHIFT CATALOGUE

Figure 6.3: Multiplicty Function Mr20 sample.
The multiplicity function of Berlind’s catalogue [3] is shown too.
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Figure 6.4: Multiplicty Function Mr19 sample.
The multiplicity function of Berlind’s catalogue [3] is shown too.
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Figure 6.5: Multiplicty Function Mr18 sample.
The multiplicity function of Berlind’s catalogue [3] is shown too.
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as for the spectroscopic data set. The absolute magnitudes of each galaxies

were calculated using the same cosmology above, but were calculated using

mr − Mr = 5 log Dz − 5 (6.2)

where mr and Mr are respectively the apparent and absolute magnitude,

and d is the object distance as Dz = H−1
0 czphot. The linking lengths are

chosen to be equal to:

DL ≤ b⊥n̄−1/2 = 0.16n̄−1/2

in the transverse direction, and

VL ≤ b‖n̄
−1/2 = 1n̄−1/2

in the line of sight directions (see, Cap. 5). It is important to recall that

when dealing with photometric redshifts, photometric errors are taken into

account, so the linking condition along line of sight becomes:

Vi ≤ [(VL/22 + (vδzi)
2]1/2 ≤ VL

2
(6.3)

Vj ≤ [(VL/22 + (vδzj)
2]1/2 ≤ VL

2
(6.4)

where δzi = 0.02. Making use of the values calculated from the simulated

data such as b⊥ = 0.4, the finding algorithm generates very long galaxies

chains that result not physically bound objects. Thus, in attempt to solve

the mentioned problem, the trend of the projected linking length was been

evaluated considering b⊥ = 1. From the application of this methodology, it

is been observed that the linking length value increases for decreasing slice

density. This effect is due to the well known fact that while the redshift

value increases, the density of the particles decreases, hence the average

distance between objects within the group grows up in value. Making use

of above mentioned value for the parameter b⊥ = 1, it is been observed that

the linking length reaches the value of 7 Mpc. Therefore, several values for

the linking length (starting from 1 down to 0.1) were been evaluated before

the proper value was found: b⊥ = 0.16. In the Fig 6.6 the trend of this

linking length is shown as function of z-slice. The results are shown in the

Table 6.5.
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Figure 6.6: Trend of DL as function of z slice.

σ Ngr Ngal Rmax K-S
D P

0.3 1347 9266 610 0.09 96%
0.4 1280 9027 487 0.14 67%
0.8 1338 9890 517 0.18 32%
1 1338 9890 517 0.18 32%
3 1595 9767 395 0.11 93%

Table 6.5: The photometric groups results.
This table summarizes the results obtained by New FOF on the Mr18 volume limited
sample with b⊥ = 0.16. These results were obtained at different σ values. In the column 2
and 3 there are the number of groups and the number of galaxies within. In the column 4 is
the maximum value of richness in the catalogue. For each catalogue, Kolmogorov-Smirnov
statistical test was performed, in order to compare the both MF of Mr18 photometric
catalogue with MF of the Mr18 spectroscopic one. The results are shown in the column
3. In the “D” column, the maximum deviation between comulative distribution of the
data and supplied function is shown. In the “P”column, there are hte probabilities that
the two distribution of data are drawn from the same distribution.
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In figure 6.7, the comparison of the richest groups in the two catalogues

(the photometric catalogues (red) and the spectroscopic one (blue). The

multiplicity Function of each catalogue was proved (see fig 6.8 and 6.9).

Whereas the spectroscopic data set is a subsample of the DR4, while photo-

metric one is derived from DR5, the two multiplicity functions have different

standards. However, from a comparison of their trend it is possible to ob-

serve that NEW FOF reproduces results in agreement with those derived

from original FOF.
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(a)

(b)

Figure 6.7: Comparison between the richest groups in the two cat-
alogues.
The figure a) shows the projection of galaxies in the sky. The red circle represents the
group ID35 of the Mr18photometric catalogue and the blue points are the ra and dec
coordinates of the ID1802 of the Mr18spectroscopic catalogue. The figure b) shows a plot
in 3D of the same groups: the red circles are the ra, dec and Dz of the ID35 photometric
group and the blue points are the same coordinates of ID1802 spectroscopic group.
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Figure 6.8: Multiplicity Function Mr18 photometric sample.
The groups catalogue was generated by original FOF with b‖ = 1 and b⊥ = 0.16. In the fig a) is shown the MF of catalogue obtained with 0.3σ and
in fig. b) the MF at 0.4σ.
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Figure 6.9: Multiplicity Function Mr18 photometric sample.
The groups catalogue was generated by original FOF with b‖ = 1 and b⊥ = 0.16. In the fig a) is shown the MF of catalogue obtained with 3σ and
in fig. b) the MF at 1σ.



Summary and Conclusions

In this thesis, a new finding algorithm for galaxies structures and clus-

ters was been described, together with the complete set of necessary tests,

starting from simulated data, up to an application to real ones.

The choice for the name of the presented algorithm (New FOF) it is not ca-

sual, this is in fact an evolution of the well known FOF (Friend Of Friends)

finding algorithm, presented for the first time by Huchra & Geller in 1982s

[10]

The performances of the algorithm and of course, the necessary choice of pa-

rameters, as recommended by the literature, was performed as follow: firstly,

the original FOF algorithm is applied to a spectroscopic mock data set in

order to determinate the values of the most important set of parameters:

the linking lengths. Then, the application of the NEW FOF to the same

sample data set, allows the selection of the z−slicing step and the number

of slices to be created within the data sample.

However, as it is possible to observe from the discussion held in Chapter 5,

the passage from spectroscopic data photometric ones, has some huge impli-

cations that must be considered in the parameters choice. It is in fact worth

to highlight that it is not possible to use only one pair of linking lengths for

both algorithms. Namely, because in the original FOF, the linking length

remain constant (there is in fact no dependence with redshift), for the NEW

FOF there is a strong dependence of it with z.

Recalling that for the original FOF the projected linking length is defined

as

DL = b⊥n̄1/3
g VL = b‖n̄g

1/3
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where n̄g is the mean number density of galaxies in the sample while, for

the NEW FOF linking length becomes

DL = b⊥n̄1/2
gs

where n̄gs the surface density of each z−slice and the linking condition on

the line of sight becomes

Vi ≤ [(VL/22 + (vδzi)
2]1/2 ≤ VL

2

where δzi is the individual redshift errors equal to 0.02 and VL is defined

VL = b‖n̄
1/2
gs

Data evaluation on both simulated and real data sets needs to take into

account the mentioned observation. The resulted spectroscopic catalogue

obtained running the Original FOF on the mock catalogue of a completeness

of ∼ 99%, while the catalogue obtained running with New FOF on the

photometric mock data set is complete to ∼ 80%.

Logically, the next step of the algorithm evaluation was run it on real

data set. In order to compare the results with those obtained from spectro-

scopic data, the same cuts in magnitude and redshift were applied. For each

catalogue of spectroscopic structures, the Multiplicity Function is calculated

and compared with Berlind’s groups catalogues. Although there are differ-

ences between the catalogs derived in this work and those in the literature,

these are due to different choices of Linking Lengths, but primarily to the

fact that the samples studied are different. Berlind searched for groups on

NYGC that is a subsample of SDSS-DR3, while in this work the real data are

derived from a subsample of DR4 (spectroscopic redshifts). The photometric

redshift catalogue used for this work, has been constructed by D’Abrusco et

al. (2007) with a neural network approach based on Multi-Layer Perceptron,

or MLP. The results of Mr18 photometric subsamples, obtained by running

NEW FOF, were compared with the Mr18 spectroscopic one. In conclusion,

given the results obtained from the trend evaluation of both the Multiplic-

ity Functions as shown in chapter 6 it is possible to say that the presented

algorithm clearly fulfill the targeted aim of extending the capabilities of the
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original FOF algorithm to photometric redshifts datasets without any loss in

the mentioned (Chapter 3), important peculiarity and features that made of

the original FOF one of the election methodologies in the structure finding

branch of modern Cosmology.



108CHAPTER 6. APPLICATION TO THE PHOTOMETRIC REDSHIFT CATALOGUE



Bibliography

[1] Agekyan, T. A., Anosova, Zh. P., 1967, SvA,44,1261

[2] Bahcall, N.A., 1996 astro-ph/9612046

[3] Berlind, A. A., Frieman, J., Weinberg, D. H., et al. (the SDSS Collab-

oration), 2006, ApJS, 167, 1

[4] Botzler,C.S., Singula, J., Bender,R., Hopp, U., 2004,MNRAS,349..425B

[5] D’Abrusco, R., Staiano, A., Longo, G., Brescia, M., Paolillo, M., De

Filippis, E., Tagliaferri, R., 2007,Ap.J.,663-752

[6] D’Abrusco, R., Staiano, A., Longo, G., Brescia, M., Paolillo, M., De

Filippis, E., Tagliaferri, R., 2007,astro-ph/0701135v2

[7] Gott,J.R., Turner,E. L, 1977,Ap.J.,212:357-371

[8] Governato, F., Tozzi, P., Cavaliere, A., 1996. Ap.J. 458,18

[9] Hickson, P.,1982, Ap.J.,255,382

[10] Huchra, J. P. & Geller, M.J., 1982, Ap.J.,257:423-437

[11] Liddle, Andrew, An Introduction to Modern Cosmology, University of

Sussex,UK

[12] Mamon,G.A., 1996,Ap.J.,307,426

[13] Press, W. H., Schechter, P., 1974, Ap.J,187:425-438

[14] Sanchez, F., Collados, M.,Rebolo,R., Observational and Cosmology,

Cambridge

[15] Turner,E. L,Gott,J.R., 1976,Ap.J. Suppl,32:409-427

109



110 BIBLIOGRAPHY

[16] Zheng, J.Q., Valtonen, M. J., Chernin, A. D., 1993, AJ,105,2047Z



BIBLIOGRAPHY 111


	Introduction
	Formation of Structure in the Universe
	Elements of Cosmology
	Hubble's law
	Scale Factors
	 The Hubble's constant
	Density Parameter
	The Cosmological Constant
	Deceleration

	Standard Model 
	Structure Formation in different Scenarios
	The Jeans Instability 
	The origin of the matter fluctuations

	The Evolution of Perturbations
	Scenario Hot Dark Matter
	Scenario Cold Dark Matter

	Groups and Clusters of galaxies
	Galaxies groups
	Compact Groups: Morphology
	Dynamical state of compact groups
	Triplets of galaxies
	Cluster
	Morphology of clusters
	Mass, luminosity and mass-luminosity ratio
	Mass density estimation: 
	The mass function


	The Multiplicity function 
	Correlation Function
	Luminosity Function
	Multiplicity Function
	 MF as function of the brightness
	MF as functions of the mass

	The Integrated MF
	The importance of the MF

	Friends Of Friends Algorithm
	 The Friends Of Friends algorithm
	Linking Lengths

	Why Are We Looking for a New Algorithm?
	The NEW FOF
	Purpose of this thesis

	GODFinGER 
	The Scientific Purpose
	 Simulation Model

	Testing the FOF algorithm
	The choice of Linking Lengths
	Ntrue vs Nobs

	Comparison of Multiplicity Function 
	New FOF runs on simulated data set
	Comparison of group catalogue 
	New FOF and Simulated Data
	New FOF and Original FOF: analysis of discrepancies

	New FOF testing on the photometric simulation

	Application to the Photometric Redshift Catalogue
	Sloan Digital Sky Survey: Fifth Data Release 
	Photometric Redshift
	Photometric and Spectroscopic Redshift Catalogue

	Catalogue of Berlind
	The original FOF:running on the real data set
	The Data
	Group and Cluster Spectroscopic Catalogue

	The New FOF applied to a photometric data set

	Summary and Conclusions
	Bibliography

