Probing the QSOs distribution within the Virtual Observatory

R. D'Abrusco^I

with G. Barentsen², O. Laurino¹, P. Nayak³, K. Borne³, G. Longo¹

¹University Federico II (Italy) ² Armagh Observatory (UK) ³George Mason University (US)

AAS 213th Meeting - 1/6/09

Candidate QSOs

Raw distribution of points in the parameter space (PS).

Clusters in the PS

Labelled clusters in the PS

(D'Abrusco et al., sub. to MNRAS)

Start

spectroscopic data

Candidates QSOs selection

The selection of candidates from photometric catalogues of stellar sources exploits the determined clustering in the PS and a specific distance (Mahalanobis' distance).

Photometric redshifts

Multicolour photometry maps physical parameters:

If the relation can be inverted then:

u,g,r,i,z,H,J,K,... $\xrightarrow{f-1}$ z, L,T

The function f^{-1} can be approximated by regression in the photometric parameter space using the NNs trained on a set of sources for which the z_{spec} are available.

The ingredients for Zphot

Generalization of the approach described in D'Abrusco et al., 2007 for machine learning-based QSOs z_{phot} reconstruction.

VO capability of gathering and crossmatching multiwavelength data.

- Unsupervised fuzzy clustering algorithm (k-means).
- Neural Networks (MLP architecture).
- A criterion: maximization of z_{phot} accuracy.

- Optical colours (u-g,gr,r-i,i-z)
- z_{spec} from SDSS-DR6
- Optimal number of clusters: 4
- Robust sigma $\sigma_{rob} = 0.27$
- Outliers < 5%

 z_{spec} vs z_{phot} scatter plot for QSOs candidates (D'Abrusco et al. 2009 \cap Richards et al. 2008) using optical colours (SDSS).

Optical candidates

 z_{spec} vs z_{phot} scatter plot for QSOs candidates (D'Abrusco et al. 2009 \cap Richards et al. 2008) using optical colours (SDSS).

Optical + NIR candidates

 z_{spec} vs z_{phot} scatter plot for QSOs candidates (D'Abrusco et al. 2009) using optical (SDSS) and near infrared colours (UKIDSS).

Conclusions

- Working on uncertainty of z_{phot} estimates.
- Applications: LF and CF of candidate QSOs.
- This method achieves better results than those found in the literature for QSOs z_{phot}.
- \blacktriangleright QSOs extraction and z_{phot} estimation methods are strictly complementary and data-mining/VO oriented.
- Web application: http://dame.na.infn.it