UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Scuola Politecnica e delle Scienze di base

Area didattica Scienze Matematiche Fisiche e Naturali

Corso di Laurea in Informatica

Tecniche di Clustering basate sul Machine Learning

Tesi sperimentale di Laurea Triennale

Tutor Accademico
Prof. Roberto Prevete

Tutor Aziendale
Dr. Massimo Brescia

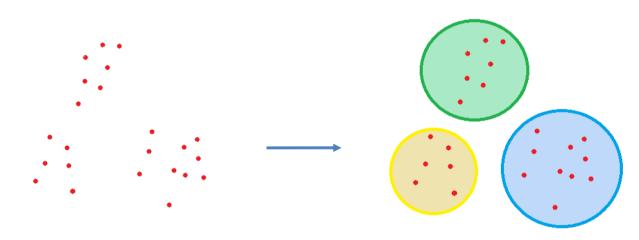
Candidato
Francesco Esposito
Matr. N86/24

Introduzione

Estensione della suite DAMEWARE con modelli per clustering e riduzione dimensionalità **Da**ta **M**ining and **E**xploration **W**eb **A**pplication **RE**sources

Applicazione web dedicata al data mining tramite

tecniche di machine learning



Clustering: raggruppamento di oggetti in base a criteri di similarità

- 1. Introduzione alle reti neurali: modello SOM
- 2. Evoluzioni del modello SOM

Evolving SOM ed Evolving Tree

Two-Stage Clustering

- 3. Tecnologie utilizzate
- 4. Introduzione ai test: indici di qualità

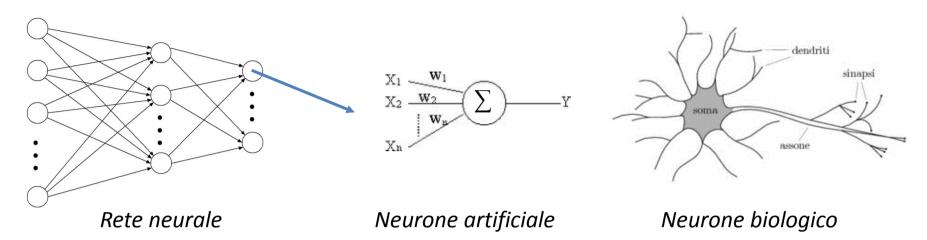
Test 1: Iris (confronto con algoritmo di clustering standard: K-Means)

Test 2: Chainlink

Test 3: Target

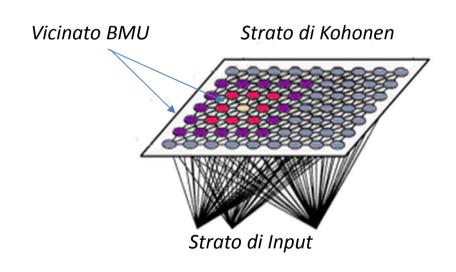
Test 4: M101 (immagine astronomica a banda singola)

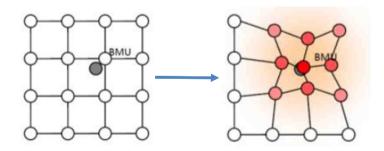
Introduzione alle reti neurali



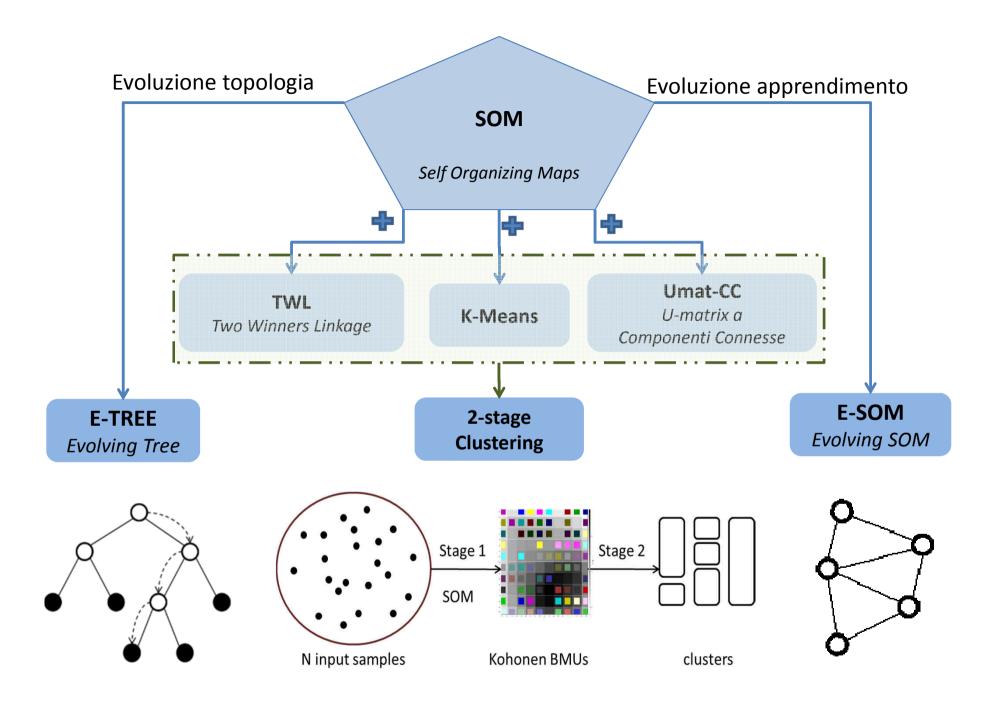
Il modello Self Organizing Map

Kohonen, T. (1990). The self-organizing map. Proceedings of IEEE, 78, 14641480



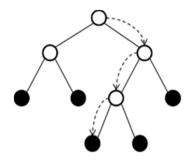


Apprendimento secondo la regola **Winner Takes Most**: la gradazione di rosso indica il
grado di apprendimento che diminuisce
quanto più ci si allontana dal BMU

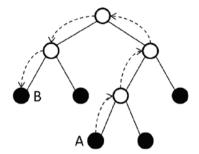


Il modello Evolving Tree (E-TREE)

Pakkanen, J., 2003. The Evolving Tree, a new kind of self-organizing neural network. Workshop on Self-Organizing Maps



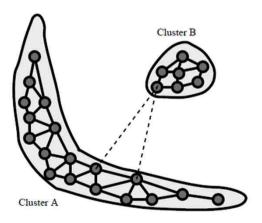
La ricerca del BMU di un nodo avviene a partire dalla radice e scendendo verso i nodi foglia



La vicinanza tra due nodi è definita dal numero di archi che separano due nodi. La distanza tra A e B è uguale a 5

Il modello Evolving SOM (E-SOM)

Deng D., Kabasov N., 2003. On-line pattern analysis by evolving self-organizing maps. Neurocomputing 51, Elsevier, 87-103

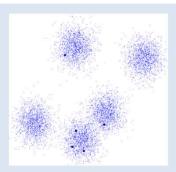


Le componenti connesse rivelano i cluster presenti nel dataset

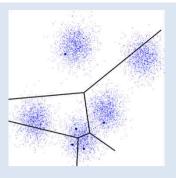
K-Means

Hartigan, J. A., Wong, M. A., 1979. "A K-means clustering algorithm". Applied Statistics, 28

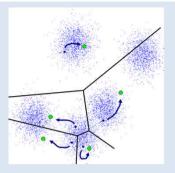
Partizionamento dello spazio in input in K partizioni, assegnando ogni input al centroide più vicino



Centroidi casuali



Partizionamento



Riposizionamento centroidi

U-Matrix a componenti connesse (Umat-CC)

Hamel L., Brown C.W., 2011. Proceedings of the 2011 International Conference on Data Mining

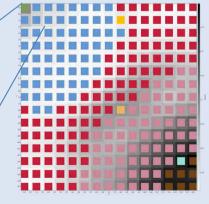
Assegnazione di un nodo ad un cluster seguendo un percorso sulla mappa indicato dal nodo adiacente con gradiente più basso

Sullo sfondo è presente la classica U-Matrix su scala di grigi. I colori sovrapposti indicano il riconoscimento automatico dei cluster

Two Winners Linkage (TWL)

Connessione dei due BMU di ogni pattern. I due nodi da connettere non devono essere nodi esterni sulla U-Matrix

> In verde è indicato un **nodo esterno**



Non connettendo i nodi esterni si riescono ad individuare le diverse zone della mappa e a riconoscere eventuali outliers

Tecnologie utilizzate

Software implementato da zero per rispettare i vincoli imposti dalla piattaforma DAMEWARE

Librerie utilizzate:

CFITSIO

Utilizzata per la conversione delle immagini astronomiche dal formato FITS ad ASCII

DevIL (Developers Image Library)

Utilizzata per la conversione delle immagini dai formati JPEG, GIF e PNG in ASCII, nonché per la creazione delle immagini fornite come output

STILTS (Starlink Table Infrastructure Library Tool Set)

Utilizzata per la conversione di file tabulari dai formati csv, votable e file FITS contenenti tabelle ad ASCII e per la creazione di istogrammi da fornire come output

- 1. Introduzione alle reti neurali: modello SOM
- 2. Evoluzioni del modello SOM

Evolving SOM ed Evolving Tree

Two-Stage Clustering

- 3. Tecnologie utilizzate
- 4. Introduzione ai test: indici di qualità

Test 1: Iris (confronto con algoritmo di clustering standard: K-Means)

Test 2: Chainlink

Test 3: Target

Test 4: M101 (immagine astronomica a banda singola)

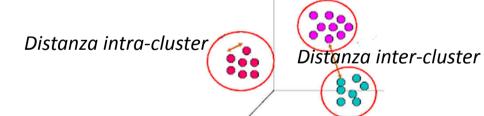
Indici di qualità

Errore di quantizzazione $QE = \frac{1}{N}\sum_{i=1}^{N} ||\overrightarrow{w_{BMUi}} - \overrightarrow{x_i}||$ Similarità degli input assegnati al medesimo BMU $\begin{cases} \overrightarrow{w_{BMUi}} = vettore \ dei \ pesi \ dell' \ i_{esimo} \quad BMU \\ N = numero \ di \ pattern \ che \ compongono \ il \ dataset \\ \overrightarrow{x_i} = i_{esimo} \ vettore \ in \ input \ rappresentato \ dal \ BMU \ considerato \end{cases}$

$$TE = \frac{1}{N} \sum_{i}^{N} u(\overrightarrow{w_i})$$

Errore topografico $TE = \frac{1}{N} \sum_{i}^{N} u(\overrightarrow{w_{i}})$ Dissimilarità degli input assegnati a BMU differenti $\begin{cases} N = numero \ di \ pattern \ che \ compongono \ il \ dataset \\ u(\overrightarrow{x_{i}}) = \begin{cases} 1, \ se \ il \ primo \ e \ il \ secondo \ BMU \ dell'i_{esimo} \ pattern \ non \ sono \ adiacenti \\ 0, \ altrimenti \end{cases}$

Indice di Davies-Bouldin $DB = \frac{1}{k} \sum_{i=1}^{K} \max_{j,j \neq i} \left\{ \frac{s_{i,q} + s_{j,q}}{d_{ij,t}} \right\}$ Rapporto tra distanza intra-cluster ed inter-cluster $\begin{cases}
s_{i,q} = \frac{1}{|c_i|} \sum_{\overrightarrow{x_i} \in C_i} \{|\overrightarrow{x_i} - \overrightarrow{z}|^q\}^{1/q}, i = 1 \dots K \text{ distribuzione interna dei cluster} \\
d_{ij,t} = |\overrightarrow{z_i} - \overrightarrow{z_j}|_t = \left\{ \sum_{s=1}^{D} |z_{si} - z_{sj}|^t \right\}^{1/t} \text{ distanza tra due cluster}
\end{cases}$



Indice di accuratezza

Disgiunzione dei cluster

$$ICA = \frac{|NC_c - NC_t|}{NC_c + NC_t}$$

$$ICC = 1 - \frac{NC_d}{NC_t}$$

Rapporto tra cluster attesi ed individuati
$$ICA = \frac{|NC_c - NC_t|}{NC_c + NC_t}$$
Indice di completezza
Disgiunzione dei cluster
$$ICC = 1 - \frac{NC_d}{NC_t}$$

$$ICC = 1 - \frac{NC_d}{NC_t}$$

$$ICC = 1 - \frac{NC_d}{NC_t}$$

$$NC_c = numero di cluster calcolati$$

$$NC_d = numero di cluster disgiunt$$

- 1. Introduzione alle reti neurali: modello SOM
- 2. Evoluzioni del modello SOM

Evolving SOM ed Evolving Tree

Two-Stage Clustering

- 3. Tecnologie utilizzate
- 4. Introduzione ai test: indici di qualità

Test 1: Iris (confronto con algoritmo di clustering standard: K-Means)

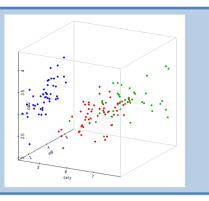
Test 2: Chainlink

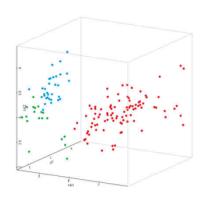
Test 3: Target

Test 4: M101 (immagine astronomica a banda singola)

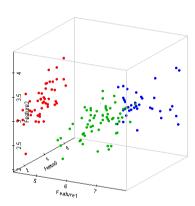
IRIS

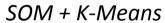
Confronto tra K-Means standard e modelli di clustering proposti

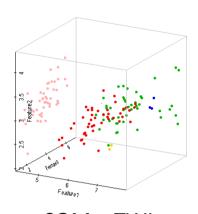




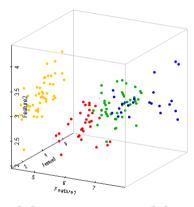
K-Means standard



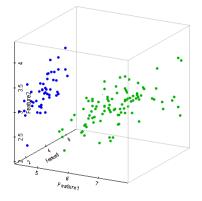




SOM + TWL



SOM + Umat-CC



E-SOM

CLASSE	trovati	persi	%
Iris Setosa	50	0	100%
Iris Virginica	48	2	96%
Iris Versicolor	36	14	72%

Percentuale associazione SOM + K-Means

CLASSE	trovati	persi	%
Iris Setosa	50	0	100%
Iris Virginica	45	5	90%
Iris Versicolor	47	3	94%

Percentuale associazione SOM + TWL

- 1. Introduzione alle reti neurali: modello SOM
- 2. Evoluzioni del modello SOM

Evolving SOM ed Evolving Tree

Two-Stage Clustering

- 3. Tecnologie utilizzate
- 4. Introduzione ai test: indici di qualità

Test 1: Iris (confronto con algoritmo di clustering standard: K-Means)

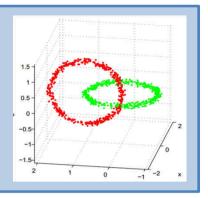
Test 2: Chainlink

Test 3: Target

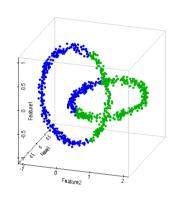
Test 4: M101 (immagine astronomica a banda singola)

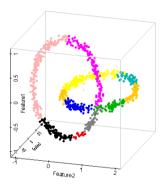
Chainlink

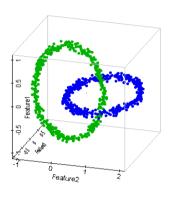
Confronto tra modelli di clustering proposti

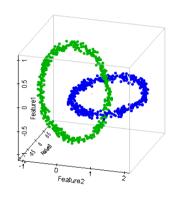


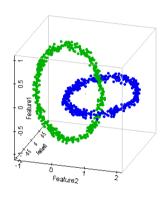
Dataset composto da due cluster con la caratteristica di essere non linearmente divisibili











SOM + K-Means

SOM + Umat-CC

SOM + TWL

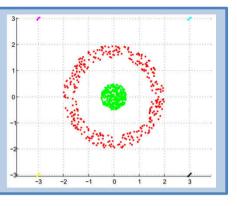
E-SOM

E-TREE

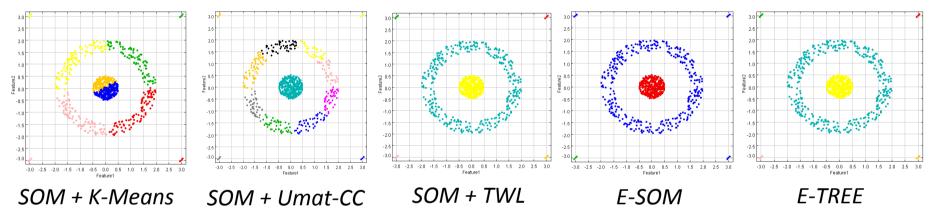
CONFRONTO STATISTICO SU PRESTAZIONI DI CLUSTERING (Chainlink)							
MODELLO	E-TREE	SOM	SOM+K-means	SOM+UmatCC	SOM+TWL	E-SOM	
errore di quantizzazione	-	0.05	0.05	0.05	0.05	0.12	
errore topografico	-	0.28	0.28	0.28	0.28	-	
indice di Davies-Bouldin	-	-	1.15	0.68	2.02	1.99	
Accuratezza	0		0	0.69	0	0	
Completezza	0		1	0	0	0	

Target

Confronto tra modelli di clustering proposti



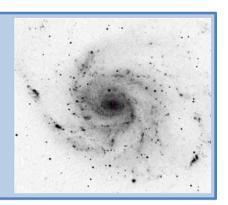
Dataset composto da cluster non linearmente divisibili e con quattro gruppi di outliers agli angoli dell'immagine

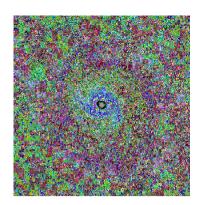


CONFRONTO STATISTICO SU PRESTAZIONI DI CLUSTERING (Target)							
MODELLO	E-TREE	SOM	SOM+K-means	SOM+UmatCC	SOM+TWL	E-SOM	
errore di quantizzazione	-	0.07	0.07	0.07	0.07	0.09	
errore topografico	-	0.07	0.07	0.07	0.07	-	
indice di Davies-Bouldin	-	-	0.86	0.72	12.51	12.09	
Accuratezza	0		0	0.2	0	0.33	
Completezza	0		1	0.48	0	0.34	

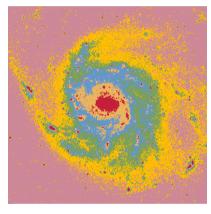
M101

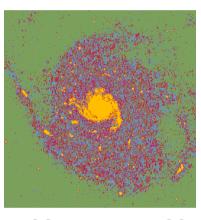
Immagine astronomica monocromatica di una Galassia a spirale



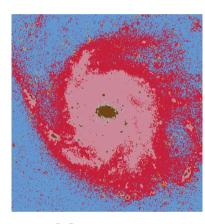


SOM (Single Stage)

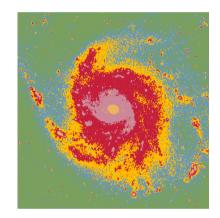




SOM + Umat-CC



SOM + TWL



E-SOM

CONFRONTO STATISTICO SU PRESTAZIONI DI CLUSTERING (Img M101)						
MODELLO	SOM	SOM+K-means	SOM+UmatCC	SOM+TWL	E-SOM	
errore di quantizzazione	0.001	0.001	0.001	0.001	0.03	
errore topografico	0.90	0.90	0.90	0.90	-	
indice di Davies-Bouldin	-	0.53	6.41	0.55	0.60	

Confronto prestazioni tra metodi

	SOM + K-Means	SOM + Umat-CC	SOM + TWL	E-SOM	E-TREE
Dimensione dello strato di output	Ininfluente	Grande numero di nodi migliora i risultati	Grande numero di nodi aumenta la densità del clustering	Grande numero di nodi aumenta la densità del clustering	ininfluente
Outliers	Poco robusto	Poco robusto	Robusto	Robusto (dipendente da parametri)	Robusto
Dimensionalità dataset	Ininfluente	poco adatto su dataset 1D	Ininfluente	Ininfluente	Ininfluente
Dati linearmente non divisibili	Inefficace	Poco efficace	Efficace	Efficace	Efficace
Dipendenza dai parametri input	Alta	Media	Media	Alta	Alta

Conclusioni e sviluppi futuri

- Le diverse combinazioni di tecniche, nel clustering a due stadi, presentano caratteristiche tali da renderli adatti in diverse situazioni.
- Le evoluzioni incrementali del modello SOM possono essere usate in maniera ottimale sia per clustering che per classificazione
- Approfondimento del TWL, per migliorarne le prestazioni e la generalità d'uso