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Five slides on what is Data Mining. I 

Data mining (the analysis step of the Knowledge Discovery in Databases process, 
or KDD), a relatively young and interdisciplinary field of computer science, is the 
process of extracting patterns from large data sets by combining methods from 
statistics and artificial intelligence with database management …. 
 
With recent technical advances in processing power, storage capacity, and 
inter-connectivity of computer technology, data mining is an increasingly 
important tool by modern business to transform unprecedented quantities of 
digital data into business intelligence giving an informational advantage.  
 
The growing consensus that data mining can bring real value has led to an 
explosion in demand for novel data mining technologies…. 
 

From Wikipedia 



… Excusatio non petita, accusatio manifesta … 
 
• There is a lot of confusion which can discourage people.  

 
 Initially part of KDD (Knowledge Discovery in Databases) 
 together with data preparation, data presentation and data 
 interpretation, DM has encountered a lot of difficulties in defining 
 precise boundaries… 
  
 In 1999 the NASA panel on the application of data mining to scientific 
 problems concluded that: “it was difficult to arrive at a consensus for 
 the definition of data mining… apart from the clear importance of 
 scalability as an underlying issue”.  

 

• people who work in machine learning, pattern recognition or 
exploratory data analysis, often (and erroneously) view it as an 
extension of what they have been doing for many years… 

  



 
• DM inherited some bad reputation from initial applications.  

Data Mining and Data dredging (data fishing, data snooping, etc…) 
were used to sample parts of a larger population data set that were 
too small for reliable statistical inferences to be made about the 
validity of any patterns 
 

 For instance, till few years ago, statisticians considered DM 
 methods as an unacceptable oversimplification 
 

People also wrongly believe that DM methods are a sort of black 
box completely out of control… 

 
 



DATA MINING: my definition 

Data Mining is the process concerned with automatically 
uncovering patterns, associations, anomalies, and statistically 
significant structures in large and/or complex data sets 
 
Therefore it includes all those disciplines which can be used to 
uncover useful information in the data 
 
What is new is the confluence of the most mature offshoots of 
many disciplines with technological advances 
 
As such, its contents are «user defined» and more than a new 
discipline it is an ensemble of different methodologies originated 
in different fields 



There are known knowns, 
There are known unknowns,  

and 
There are unknown unknowns 

Donald Rumsfeld’s  
about Iraqi war 

Classification 
Morphological classification 
of galaxies 
Star/galaxy separation, etc. 

 
Regression 
Photometric redshifts 

 

Clustering 
Search for peculiar and rare 
objects, 
Etc. 

D. Rumsfeld on DM functionalities… 

Courtesy of S.G. Djorgovski 



Is Data Mining useful? 
• Can it ensure the accuracy required by scientific applications? 

Finding the optimal route for planes, Stock market, Genomics, 
Tele-medicine and remote diagnosis, environmental risk 
assessment, etc… HENCE…. Very likely yes 

 
• Is it an easy task to be used in everyday applications (small data 

sets, routine work, etc.)? 
NO!! 

 
• Can it work without a deep knowledge of the data models and 

of the DM algorithms/models? 
NO!! 
 

• Can we do without it? 
On large and complex data sets (TB-PB domain), NO!!! 



http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaKDDguideScience  

Prepared and Mantained by N. Ball at the IVOA – IG-KDD pages 

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaKDDguideScience
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaKDDguideScience
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaKDDguideScience
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaKDDguideScience


Scalability of some algorithms relevant to astronomy 
 

• Querying: spherical range-search O(N), orthogonal range-search O(N), spatial join 
O(N2), nearest-neighbor O(N), all-nearest-neighbors O(N2) 

• Density estimation: mixture of Gaussians, kernel density estimation O(N2), kernel 
conditional density estimation O(N3) 

• Regression: linear regression, kernel regression O(N2), Gaussian process regression 
O(N3) 

• Classification: decision tree, nearest-neighbor classifier O(N2), nonparametric 
Bayes classifier O(N2), support vector machine O(N3) 

• Dimension reduction: principal component analysis, non-negative matrix 
factorization, kernel PCA O(N3), maximum variance unfolding O(N3) 

• Outlier detection: by density estimation or dimension reduction O(N3) 
• Clustering: by density estimation or dimension reduction, k-means, meanshift 

segmentation O(N2), hierarchical (FoF) clustering O(N3)  
• Time series analysis: Kalman filter, hidden Markov model, trajectory tracking O(Nn) 
• Feature selection and causality: LASSO, L1 SVM, Gaussian graphical models, 

discrete graphical models 
• 2-sample testing and testing and matching: bipartite matching O(N3), n-point 

correlation O(Nn) 

Courtesy of A. Gray – Astroinformatics 2010 



 

N =  no. of data vectors,  
D =  no. of data dimensions 
K =  no. of clusters chosen,  
Kmax =  max no. of clusters tried 
I =  no. of iterations,  
M =  no. of Monte Carlo trials/partitions 
 

K-means:   K  N  I  D 
Expectation Maximisation:   K  N  I  D2 
Monte Carlo Cross-Validation:  M  Kmax

2  N  I  D2 

Correlations ~  N log N or N2,  ~ Dk  (k ≥ 1) 

Likelihood, Bayesian ~ Nm (m ≥ 3),  ~  Dk  (k ≥ 1) 

SVM > ~ (NxD)3 

 

Other relevant parameters 



Statistics & 
Statistical  
Pattern 

Recognition 

DATA MINING 

Mathematical 
Optimization 

Machine  
Learning 

Image 
Understanding 

Data 
Visualization 

HPC 
 
 



Use cases and domain knowledge…. 

… which are 
implemented by specific 
models and algorithms 
 
• Neural Networks (MLPs, 

MLP-GA, RBF, etc.) 
• Support Vector Machines  

&SVM-C 
• Decision trees 
• K-D trees 
• PPS 
• Genetic algorithms 
• Bayesian networks 
• Etc… 

… define workflows of 
functionalities 
 
• Dim. reduction 
• Regression 
• Clustering 
• Classification 

Modes 
  

• supervised 
• Unsupervised 
• hybrid 



STARTING POINT: 
 THE DATA 



Some considerations on the Data 

Data set: collection of data objects and their attributes 
 
Data Object: a collection of objects. Also known as record, point, 
case, sample, entity, or instance 
 
Attributes: a property or a characteristic of the objects. Also 
called: variables, feature, field, characteristic 
 
Attribute values:are numbers or symbols assigned to an attribute 
 
The same attribute can be mapped to different attribute values 
Magnitudes or fluxes 
 
 
 



DATA SET: HCG90 

ID RA DEC z B Etc. 

NGC7172 22h02m01.9s  -31d52m11s  0.008683  12.85 … 

NGC7173 22h02m03.2s  -31d58m25s  0.008329 13.08 … 

NGC7174 22h02m06.4s  -31d59m35s  0.008869  14.23 … 

NGC7176 22h02m08.4s -31d59m23s  0.008376 12.34 

attributes 
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Calibrated data  1/160.000 of the sky, moderately 

deep (25.0 in r) 
 
55.000 detected sources  
(0.75 mag above m lim) 



The scientific exploitation of a multi band, multiepoch (K epochs) universe implies to search 
for patterns, trends, etc. among  N points in a DxK dimensional parameter space:   

 
N >109, D>>100, K>10 
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concentration indexes, shape parameters, etc.} 

The exploding parameter space… 
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 Any observed (simulated) datum p  defines a point (region) 

in a subset of RN. Es: 
•  RA and dec 
•  time 
•   

•  experimental setup (spatial and spectral resolution, limiting mag, 
limiting surface brightness, etc.) parameters 

• fluxes 
• polarization 
• Etc. 100 Np N     

The parameter space concept is crucial to: 
 
1. Guide the quest for new discoveries 

(observations can be guided to explore poorly 
known regions), … 
 

2. Find new physical laws (patterns)  
 

3. Etc, 

The parameter space Vesuvius, now 



Every time a new technology enlarges the parameter space or allows a better sampling 
of it, new discoveries are bound to take place 

Every time you improve the coverage of the PS…. 

quasars 

LSB 

Discovery of  
Low surface brightness 
Universe 

Malin 1  

Fornax dwarf 

Sagittarius  



Projection of parameter space along  
(time resolution & wavelength)  

Improving coverage of the Parameter space - II 

Projection of parameter space along  
(angular resolution & wavelength)  



Attribute Type 

 

Description 

 

Examples 

 

Operations 

 

Nominal 

 

The values of a nominal attribute are 

just different names, i.e., nominal 

attributes provide only enough 

information to distinguish one object 

from another. (=, ) 

 

NGC number, SDSS 

ID numbers, spectral 

type, etc.) 

 

mode, entropy, 

contingency 

correlation, 2 test 

 

Ordinal 

 

The values of an ordinal attribute 

provide enough information to order 

objects. (<, >) 

 

Morphological 

classification, spectral 

classification ?? 

 

median, percentiles, 

rank correlation, 

run tests, sign tests 

 

Interval 

 

For interval attributes, the 

differences between values are 

meaningful, i.e., a unit of 

measurement exists.   

(+, - ) 

 

calendar dates, 

temperature in Celsius 

or Fahrenheit 

 

mean, standard 

deviation, Pearson's 

correlation, t and F 

tests 

 

Ratio 

 

For ratio variables, both differences 

and ratios are meaningful. (*, /) 

 

temperature in Kelvin, 

monetary quantities, 

counts, age, mass, 

length, electrical 

current 

 

geometric mean, 

harmonic mean, 

percent variation 

 

Types of Attributes  



Attribute 

Level 

 

Transformation 

 

Comments 

 

Nominal 

 

Any permutation of values 

 

If all NGC numbers were 

reassigned, would it make 

any difference? 

 
Ordinal 

 

An order preserving change of 

values, i.e.,  

new_value = f(old_value)  

where f is a monotonic function. 

 

An attribute encompassing 

the notion of good, better 

best can be represented 

equally well by the values 

{1, 2, 3} or by { 0.5, 1, 

10}. 

 Interval 

 

new_value =a * old_value + b 

where a and b are constants 

 

Thus, the Fahrenheit and 

Celsius temperature scales 

differ in terms of where 

their zero value is and the 

size of a unit (degree). 

 

Ratio 

 

new_value = a * old_value 

 

Length can be measured in 

meters or feet. 

 



Discrete and Continuous Attributes  

• Discrete Attribute 
– Has only a finite or countably infinite set of values 
– Examples: SDSS IDs, zip codes, counts, or the set of words in a 

collection of documents  
– Often represented as integer variables.    
– Note: binary attributes (flags) are a special case of discrete attributes  

 

• Continuous Attribute 
– Has real numbers as attribute values 
– Examples: fluxes,    
– Practically, real values can only be measured and represented using a 

finite number of digits. 
– Continuous attributes are typically represented as floating-point 

variables.   
 



LAST TYPE: Ordered Data  

GGTTCCGCCTTCAGCCCCGCGCC

CGCAGGGCCCGCCCCGCGCCGTC

GAGAAGGGCCCGCCTGGCGGGCG

GGGGGAGGCGGGGCCGCCCGAGC

CCAACCGAGTCCGACCAGGTGCC

CCCTCTGCTCGGCCTAGACCTGA

GCTCATTAGGCGGCAGCGGACAG

GCCAAGTAGAACACGCGAAGCGC

TGGGCTGCCTGCTGCGACCAGGG

Data where the position in a sequence matters:  
 
Es. Genomic sequences 
Es. Metereological data 
Es. Light curves 
 



Ordered Data  

•  Genomic sequence data 
GGTTCCGCCTTCAGCCCCGCGCC

CGCAGGGCCCGCCCCGCGCCGTC

GAGAAGGGCCCGCCTGGCGGGCG

GGGGGAGGCGGGGCCGCCCGAGC

CCAACCGAGTCCGACCAGGTGCC

CCCTCTGCTCGGCCTAGACCTGA

GCTCATTAGGCGGCAGCGGACAG

GCCAAGTAGAACACGCGAAGCGC

TGGGCTGCCTGCTGCGACCAGGG



Data Quality  

• What kinds of data quality problems? 

• How can we detect problems with the data?  

• What can we do about these problems?  
 

 

• Examples of data quality problems:  
– Noise and outliers  

– duplicate data 

– missing values  



Missing Values 

• Reasons for missing values 
– Information is not collected  

(e.g., instrument/pipeline failure) 
– Attributes may not be applicable to all cases  

(e.g. no HI profile in E type galaxies) 
 

• Handling missing values 
– Eliminate Data Objects 
– Estimate Missing Values (for instance upper limits) 
– Ignore the Missing Value During Analysis (if method 

allows it) 
– Replace with all possible values (weighted by their 

probabilities) 



Data Preprocessing 

• Aggregation 

• Sampling 

• Dimensionality Reduction 

• Feature subset selection 

• Feature creation 

• Discretization and Binarization 

• Attribute Transformation 

 



Aggregation 

• Combining two or more attributes (or objects) 
into a single attribute (or object) 

 

• Purpose 
– Data reduction 

•  Reduce the number of attributes or objects 

– Change of scale 
•  Cities aggregated into regions, states, countries, etc 

– More “stable” data 
•  Aggregated data tends to have less variability  



Aggregation 

Standard Deviation of 
Average Monthly 
Precipitation 

Standard Deviation of 
Average Yearly Precipitation 

Variation of Precipitation in Australia 



Sampling  

• Sampling is the main technique employed for data selection. 
– It is often used for both the preliminary investigation of the data and 

the final data analysis. 

  

• Statisticians sample because obtaining the entire set of data of 
interest is too expensive or time consuming. 

  

• Sampling is used in data mining because processing the entire 
set of data of interest is too expensive or time consuming. 



Sampling …  

• The key principle for effective sampling is the 
following:  

 
– using a sample will work almost as well as using the 

entire data sets, if the sample is representative 

(remember this when we shall talk about phot-z’s) 
 

– A sample is representative if it has approximately the same 
property (of interest) as the original set of data  

 (sometimes this may be verified only a posteriori)  



Types of Sampling 
• Simple Random Sampling 

– There is an equal probability of selecting any particular item 
 

• Sampling without replacement 
– As each item is selected, it is removed from the population  

 

• Sampling with replacement 
– Objects are not removed from the population as they are selected for 

the sample.    
•   In sampling with replacement, the same object can be picked up more 

than once 
 

• Stratified sampling 
– Split the data into several partitions; then draw random samples from 

each partition 



Sample Size matters 

 

  

8000 points           2000 Points   500 Points 



Sample Size 

• What sample size is necessary to get at least 

one object from each of 10 groups. 



3-D is always better than 2-D 

N-D is not always better than (N-1)-D 



Curse of Dimensionality (part – II) 

• When dimensionality 
increases (es. Adding more 
parameters), data becomes 
increasingly sparse in the 
space that it occupies 

 

• Definitions of density and 
distance between points, 
which is critical for 
clustering and outlier 
detection, become less 
meaningful 

• Randomly generate 500 points 

• Compute difference between max and min 

distance between any pair of points 



Dimensionality Reduction 
• Purpose: 

 
– Avoid curse of dimensionality 
– Reduce amount of time and memory required by data 

mining algorithms 
– Allow data to be more easily visualized 
– May help to eliminate irrelevant features or reduce noise 

 

• Some Common Techniques 
– Principle Component Analysis 
– Singular Value Decomposition 
– Others: supervised and non-linear techniques 



Feature Subset Selection 
First way to reduce the dimensionality of data 

 
Redundant features  

duplicate much or all of the information contained in one or 
more other attributes 
Example: 3 magnitudes and 2 colors can be represented as 1 
magnitude and 2 colors 

 
Irrelevant features 

contain no information that is useful for the data mining task at 
hand … Example: ID is irrelevant to the task of deriving 
photometric redshifts 

 
Exploratory Data Analysis is crucial. 
Refer to the book by Kumar et al.  



Dimensionality Reduction: PCA 

• Find the eigenvectors of the covariance matrix 

• The eigenvectors define the new space of 
lower dimensionality 

• Project the data onto this new space 
x2 

x1 

e 



Dimensionality Reduction: ISOMAP 

• Construct a neighbourhood graph 

• For each pair of points in the graph, compute the shortest path 
distances – geodesic distances 

By: Tenenbaum, de Silva, 

Langford (2000) 



Feature Subset Selection 

• Techniques: 

– Brute-force approch: 

• Try all possible feature subsets as input to data mining 
algorithm (backwards elimination strategy) 

– Embedded approaches: 

•  Feature selection occurs naturally as part of the data 
mining algorithm (E.G. SOM) 

– Filter approaches: 

•  Features are selected before data mining algorithm is run 



Regions of   low   

values (blue color) 

represent clusters 

themselves 

Regions of high values     

(red color) represent 

cluster borders 

SOME DM methods have built in capabilities to operate feature 
selection 

SOM: U-Matrix 





… bar charts 



Feature Creation 
• Create new attributes that can capture the 

important information in a data set much 
more efficiently than the original attributes 

 

• Three general methodologies: 
– Feature Extraction 

•  domain-specific 

– Mapping Data to New Space 

– Feature Construction 
•  combining features  



Mapping Data to a New Space 

 

 

Two Sine Waves Two Sine Waves + Noise Frequency 

 Fourier transform 

 Wavelet transform  



Discretization Using Class Labels 

• Entropy based approach (see later in 

clustering) 

 

3 categories for both x and y 5 categories for both x and y 



Attribute Transformation 
• A function that maps the entire set of values of 

a given attribute to a new set of replacement 
values such that each old value can be 
identified with one of the new values 

– Simple functions: xk, log(x), ex, |x| 

– Standardization and Normalization  



Similarity and Dissimilarity 

• Similarity 
– Numerical measure of how alike two data objects are. 
– Is higher when objects are more alike. 
– Often falls in the range [0,1] 

• Dissimilarity 
– Numerical measure of how different are two data 

objects 
– Lower when objects are more alike 
– Minimum dissimilarity is often 0 
– Upper limit varies 

• Proximity refers to a similarity or dissimilarity 



Similarity/Dissimilarity for Simple Attributes 

p and q are the attribute values for two data objects. 



Euclidean Distance 

• Euclidean Distance 
 

 

 
    

   Where n is the number of dimensions (attributes) and pk and qk are, 
respectively, the kth attributes (components) or data objects p and q. 

 

• Standardization is necessary, if scales differ. 
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Euclidean Distance 

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

Distance Matrix 

p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0



Minkowski Distance 

• Minkowski Distance is a generalization of Euclidean Distance 
 

 
 
    
   Where r is a parameter, n is the number of dimensions (attributes) 

and pk and qk are, respectively, the kth attributes (components) or 
data objects p and q. 
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Minkowski Distance: Examples 

• r = 1.  City block (Manhattan, taxicab, L1 norm) distance.  
– A common example of this is the Hamming distance, which is just the number of 

bits that are different between two binary vectors 
 

• r = 2.  Euclidean distance 
 

• r  .  “supremum” (Lmax norm, L norm) distance.  
– This is the maximum difference between any component of the vectors 

 

• Do not confuse r with n, i.e., all these distances are defined for 
all numbers of dimensions. 

 



Minkowski Distance 

Distance Matrix 

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

L1 p1 p2 p3 p4

p1 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

L p1 p2 p3 p4

p1 0 2 3 5

p2 2 0 1 3

p3 3 1 0 2

p4 5 3 2 0



The drawback is that we assumed that the sample points are distributed 
isotropically 
 
Were the distribution non-spherical, for instance ellipsoidal, then the probability 
of the test point belonging to the set depends not only on the distance from the 
center of mass, but also on the direction.  
 
Putting this on a mathematical basis, in the case of an ellipsoid, the one that best 
represents the set's probability distribution can be estimated by building the 
covariance matrix of the samples.  
 
The Mahalanobis distance is simply the distance of the test point from the 
center of mass divided by the width of the ellipsoid in the direction of the test 
point. 



Consider the problem of estimating the probability that a test point in N-dimensional 
Euclidean space belongs to a set, where we are given sample points that definitely 
belong to that set.  
 
find the average or center of mass of the sample points: the closer the point is to the 
center of mass, the more likely it is to belong to the set. 
 
However, we also need to know if the set is spread out over a large range or a small 
range, so that we can decide whether a given distance from the center is noteworthy or 
not.  
 
The simplistic approach is to estimate the standard deviation of the distances of the 
sample points from the center of mass.  
 
quantitatively by defining the normalized distance between the test point and the set to 
be  
 
 
and plugging this into the normal distribution we can derive the probability of the test 
point belonging to the set. 
 

http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Standard_deviation


Formally, the Mahalanobis distance of a multivariate vector  
 
from a group of values with mean  
 
and covariance matrix S ,  is defined as: 
 
 
 
Mahalanobis distance (or "generalized squared interpoint distance" for its squared 
value) can also be defined as a dissimilarity measure between two random vectors x 
and y and of the same distribution with the covariance matrix S : 
 
 
 
 
If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to 
the Euclidean distance.  If the covariance matrix is diagonal, then the resulting 
distance measure is called the normalized Euclidean distance: 
 
 
 
 
 
where σi is the standard deviation of the xi over the sample set.. 
 

http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Random_vector
http://en.wikipedia.org/wiki/Random_vector
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Diagonal_matrix
http://en.wikipedia.org/wiki/Standard_deviation


Mahalanobis Distance 
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Mahalanobis Distance 
Covariance Matrix: 











3.02.0

2.03.0

B 

A 

C 

A: (0.5, 0.5) 

B: (0, 1) 

C: (1.5, 1.5) 

 

Mahal(A,B) = 5 

Mahal(A,C) = 4  



Common Properties of a Distance 

• Distances, such as the Euclidean distance, 
have some well known properties. 
 

1. d(p, q)  0   for all p and q and d(p, q) = 0 only if  
p = q. (Positive definiteness) 

2. d(p, q) = d(q, p)   for all p and q. (Symmetry) 

3. d(p, r)  d(p, q) + d(q, r)   for all points p, q, and r.   
(Triangle Inequality) 

 where d(p, q) is the distance (dissimilarity) between points 
(data objects), p and q. 

 

• A distance that satisfies these properties is 
a metric 



Common Properties of a Similarity 

• Similarities, also have some well known 
properties. 
 

1. s(p, q) = 1 (or maximum similarity) only if p = q.  
 

2. s(p, q) = s(q, p)   for all p and q. (Symmetry) 
 

 where s(p, q) is the similarity between points (data 
objects), p and q. 

 



Similarity Between Binary Vectors 

• Common situation is that objects, p and q, have only 
binary attributes 

 

• Compute similarities using the following quantities 
 M01 = the number of attributes where p was 0 and q was 1 

 M10 = the number of attributes where p was 1 and q was 0 

 M00 = the number of attributes where p was 0 and q was 0 

 M11 = the number of attributes where p was 1 and q was 1 
 

• Simple Matching and Jaccard Coefficients  
 SMC =  number of matches / number of attributes  
            =  (M11 + M00) / (M01 + M10 + M11 + M00) 

 
 J = number of 11 matches / number of not-both-zero attributes values 
       = (M11) / (M01 + M10 + M11)  



Cosine Similarity 

• If d1 and d2 are two document vectors, then 

             cos( d1, d2 ) =  (d1  d2) / ||d1|| ||d2|| ,  

   where  indicates vector dot product and || d || is  the   length of vector d.   
 

• Example:  
 

   d1 =  3 2 0 5 0 0 0 2 0 0   

    d2 =  1 0 0 0 0 0 0 1 0 2  

 
    d1  d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 

   ||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481 

    ||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245 

 

     cos( d1, d2 ) = .3150 

 



Outliers 

• Outliers are data objects with characteristics 
that are considerably different than most of 
the other data objects in the data set 

 



Sometimes attributes are of many different 
types, but an overall similarity is needed. 



Using Weights to Combine Similarities 

• May not want to treat all attributes the same. 

– Use weights wk which are between 0 and 1 and 
sum to 1.  



Density 

• Density-based clustering require a notion of 
density 

 

• Examples: 
– Euclidean density 

•  Euclidean density = number of points per unit volume 

 

– Probability density  

 

– Graph-based density 



Euclidean Density – Cell-based 

• Simplest approach is to divide region into a 
number of rectangular cells of equal volume 
and define density as # of points the cell 
contains 



Euclidean Density – Center-based 

• Euclidean density is the number of points 
within a specified radius of the point 

 


