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THE SCIENTIFIC USE CASE

The scientific use case (recall of past Astromeeting by M. Paolillo)

NGC1399 Dataset

NGC1399 (~20 Mpc) is an ideal target because
allows to probe a large fraction of the galaxy and still +
resolve GC sizes.

9 HST V-band (f606w) observations, drizzled to .
super-Nyquist sampling the ACS PSF (2.9 pc/pix).

Chandra ACIS-I + ACIS-S

ACS g-z colors for central region

Ground-based C-R photometry for part of the sources
over the whole field
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THE SCIENTIFIC USE CASE
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THE SCIENTIFIC USE CASE

Measured using Galfit (Peng et al. 2002);
validated through simulations produced with
the MULTIKING code
(http://www.na.infn.it/~paolillo/Software.html)

accounting for dithering, PSF variations,
sampling pattern etc.

Our selection is incomplete only for the largest
GC with Reff>5 pc (but can be recovered
through DM techniques, see later)

Complete analysis of optical structural
parameters in Puzia et al. (in prep.)

GC structural parameters
-Sample completeness-
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THE SCIENTIFIC USE CASE

THE DATA-MINING SELECTION APPROACH
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THE SCIENTIFIC USE CASE e

400 “mvmie. Boimiike Secvay ources ** -
THE DATA-MINING SELECTION APPROACH : j

300 =
Wide-field, multi-band observations are g ook |
expensive. Easier to get single-band mosaics | E
and possibly ground-based colors, or colors on 100k |
subset of sources. : - | ‘
Using the subsample of sources with colors, of e s T TR
we trained a Neural Network to recognize GCs, it i i H 26 e
not relying on arbitrary criteria. B =

MLPQNA selected GC with color «ooevviene R

The experiments yields a sample 97% MLPONA selected &€ — =27 |]
complete and <b5% contaminated, with respect
to color selected samples.

Furthermore this subset suffers less from

100

selection biases, such as Refr cutoff. j
10
(Brescia et al. 2011- MNRAS, accepted) .
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Trained Neural Network selection
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THE DATA MINING APPROACH

The problem tackled in this case is a typical supervised classification task

N

Evaluation Validation
& Test Sets
Scale

Raw

ata

Set
>

Apply
Model

KNOWLEDGE

v' To select and create the data parameter space, i.e. to create the data input patterns (or features) to
be submitted to the classifiers. It is important in this phase to build a homogeneous Knowledge Base
(KB) , i.e. with each pattern having the same type and number of parameters;

v' To prepare the data sets which are needed for the different experiment steps: training, validation
and test sets (the data set must include also target values for each input pattern, i.e. the desired
output values, coming from any available knowledge source), by splitting the KB into variable subsets
to be submitted at each phase;

v To analyze and select classification model, based on theoretical principles and on the user experience
about the content of the KB;

v" To perform complete sequences of experiments with all model candidates and compare their results
in terms of training error, learning robustness, output correctness; this phase might also require a
pruning of the parameter space;

v" Finally, to identify the best model as the final classifier to be applied to new incoming data sets.



THE KNOWLEDGE BASE FOR GCs

All experiments were performed on the KB sample presented in the introduction,
assuming that bona fide GCs are represented by sources selected according to the
discussed color cuts. We used as features (columns of patterns) the following quantities:

&

)

» isophotal magnitude (feature 1);

» 3 aperture magnitudes (features 2—4) obtained through circular apertures of radii 2,
6 and 20 arcsec, respectively;

» Kron radius, ellipticity and the FWHM of the image (features 5-7);

» 4 structural parameters (features 8-11) which are, respectively, the central surface

brightness, the core radius, the effective radius and the tidal radius;

One target value ONLY for training set: class labels 0 (no GC), 1 (yes GC);

(AR )

L)

L)

&

L)

(R )

L)

L)

00

L)

KB 24.4753,26.7468,24.3789,0.0205,3.72,0.067,4.12,16.25,-0.1139,1.822,51.29,0
24.2342,26.5263,24.1632,0.0196,3.5,0.027,4.01,16.61,0.1321,1.856,35.38,0
23.1554,25.5964,23.1654,0.016,3.5,0.032,4.09,14.47,-0.3295,2.638,129.2,1
22.6316,25.3519,22.6808,0.0151,3.5,0.039,4.69,16.33,0.8065,5.002,80.45,1
22.4708,24.4951,22.4699,0.0216,3.5,0.066,3.45,12.81,-0.3912,-7.425,5.66,0
23.9033,27.5896,23.9168,0.0255,4.49,0.272,9.63,19.99,8.397,14.79,88.5,1
2100 training 24.1972,26.4219,24.0978,0.0192,3.7,0.079,4.04,15.72,-0.1447,1.514,44.77,0
20.2423,22.1866,20.2963,0.017,3.5,0.03,3.23,6.68,-0.6999,-0.1492,1.899,0
23.5134,26.0983,23.511,0.0167,3.76,0.05,4.55,16.6,0.3777,4.75,105.8,1

L
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THE DATA MINING CLASSIFIERS

We selected five home-made models based on the supervised machine learning paradigm

Duda R. O., Hart P. D., Storck D. G., 2004,
O Three variants of Multi Layer Perceptron (MLP)  Pattern Classification, 2nd edn. Wiley, NY
Bishop C. M., 1995, Neural Networks for

0 BP: trained by Back Propagation rule; Pattern Recognition. Oxford Univ. Press,
Oxford

0 GA: trained by Genetic Algorithms; Holland J. H., 1975, Adaptation in Natural
and Artificial Systems. University of Michigan

0 QNA: trained by Quasi Newton rule; Press, Ann Arbor

Shanno D. F., 1970, Math. Comput., 24, 647

O Support Vector Machine (SVM) Chang C.-C., Lin C.-J.,, 2011, ACM Trans.
Intelligent Syst. Technol., 2, 27

del designed b | !
O Genetic Algorithm Model Experiment (GAME) ~~ cW Mode! designed by our group, see nex
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MULTI LAYER PERCEPTRON
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MLP LEARNING PHASE .

P P 2

mvE”E(W):Z—TDZEp(W)Zz—lF,Z(y(X";W)-dp) O

I"
p=1 |IEE '\\_ I ﬂ- ‘G
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i F(W ) Descent gradient (BP)

d¥ = genetic operators Genetic Algorithms (GA)

ZF(Wk)dk - — F(Wk) Hessian approx. (QNA)
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SUPPORT VECTOR MACHINE

It searches the best margin hyperplanes that bound each class and then find the
separation between them.

@ g ) SVM remaps the points in a more dimensional space called feature
@ " space where they are linearly separable.

'1-1_1 @ . This is done with a feature function that is approximated by a
L w5 s " " weighted sum of kernel functions:

-1 ) +1
11 L
o (0) @ Linear: K (x;, %) = x{ x;;

Ty, Polynomial: K (x;, x7) = (rxlxg + 1)y > 0;

. ; . 2

Radial Basis Function (RBF): K (x;, x;) = exp (—y”xi — x| ),y > 0;

Sigmoid: K (x;,x;) = tanh(yx{ x; + 7).
. :‘. s 98 Except for the linear kernel, the others are
° ceey o '°. all able to separate the classes.
Input space
£ - S But the areas, attributed to the classes in
e ‘°°§ %o oo S the input space, are different, so it is crucial
. .°°:° & to validate the result
° ° 0....0.' o

Feature space g-;-':r-srr.‘:‘:':'f,a



GENETIC ALGORITHMS

® A class of probabilistic optimization algorithms
Inspired by the biological evolution process

® Uses concepts as “Natural Selection” and “Genetic
Inheritance” (Darwin 1859)

® Originally developed by John Holland (1975)

&

Search techniques
]
| | 1
Calculus-based techniques Guided random search techniques Enumerative techniques
| |
| | | 1
Direct methods Indirect methods Evolutionary algorithms Simulated annealing Dynamic programming
] ]
| | | |
Fibonacci Newton Evolutionary strategies | Genetic algorithms
|
| |
Parallel Sequential

l_l_ll_|_|

Centralized  Distributed  Steady-state  Generational

THE ORIGIN OF SPECIES

N MEAXS OF NATUEAL SELETION

l
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stochastic operators

A genetic algorithm maintains a population of candidate solutions for the
problem at hand, and makes it evolve by iteratively applying a set of
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GENETIC ALGORITHMS - FLOW

Genetic Algorithms

Create initial population of
chromosomes randomly

v

Create children using crossover
and mutation/inversion

v

Find the best chromosome in
the new population

Nature

parents
selection

initiate &

Update the
best solution

Is this a new best?

Created enough
generations?

Yes

\ 4

/ Return the best solution /

evaluate Evaluated

== OffSOring

modification

modified
offspring

evaluation




GENETIC OPERATORS AND SELECTORS

crossover mutation elitism Rank Tournament
Before: Before: Maintain best N || EXtracts k individuals from
s, = 1111010101 || s, = 11101010 || solutions in the || 1€ POpulation with uniform
next population probability  (without re-
s,= 1110110101 || After: insertion) and makes them
After: s, = 11111010 play a tournament”,

st hlaenol
Sttt Dol o)

Roulette wheel

point

the roulette wheel

aneel is rotate o

F == has smallest share of
the roulette wheel

fitness

i Ly
’_.:)LJ"CJD::LI:"_'J
i b s et et ' bt

where the probability for an
individual to win is
generally proportional to its
fithess. Selection pressure
is directly proportional to
the number K of
participants

All above operators are quite invariant in
respect of the particular problem.

What drastically has to change is the
function
population individuals)

(how to evaluate




THE GC EXPERIMENT

Multi Layer Perceptron O Classification accuracy: fraction of patterns
trained by: (objects) correctly classified (either GCs or
-  Back Propagation non-GCs), with respect to the total number
B |- QuasiNewton of objects in the sample;
o |°__Genetic Algorithm O completeness: fraction of objects correctly
2100 Support Vector Machines classified as GCs;
training patterns [ GaME O contamination: fr.a.ctlon of non-GC objects
SR TL erroneously classified as GCs

5 classifiers : i THHTH
3 quality evaluation criteria

425 pruning experiments (85 for each classifier), by alternately removing subsets of
features, in order to evaluate the minimal set of required (highly correlated) parameters.

v' K-fold (k=10) cross validation to avoid
Overfitting; lonthly Notices @

v’ Cross entropy formula for statistical
evaluation of training error (not simple

ROYAL

Mon. Not. R. Astron. Soc. (2012) doi:10.1111/.1365-2966.2011.20375.x

The detection of globular clusters in galaxies as a data mining problem

Massimo Brescia,' Stefano Cavuoti,> Maurizio Paolillo,”* Giuseppe Longo®t

MSE): i |
.
x5
F [ T l and Thomas Puzia
) q Og 2 q x l LINAF - Astronomical Observatory of Naples, via Moiariello 16, 1-80131 Napoli, Italy

s 1 N =Dipartimento di Scienze Fisiche, University Federico II, via Cinthia 6. I-80126 Napoli, Italy
l F 3 Department of Astronomy and Astrophysics, Pontificia Universidad Catdlica de Chile, 7820436 Macul, Santiago, Chile

Accepted 2011 December 12, Received 2011 November 28; in original form 2011 October 10
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QUALITY AND PRUNING RESULTS

Type of experiment  Missing features  Figure of merit MLPQNA GAME SVM MLPEP MLPGA

Complete patterns -

class.accuracy 599 66.2
completeness 54.1 61.4
contamination 42.2 35.1
No par. 11 11
class.accuracy 59.0 62.4
completeness 56.1 62.2
contamination 43.1 38.8
Only optical 8.9,10, 11
class.accuracy 93.9 B6.4 90.9 70.3 76.2
completeness 91.4 T8.9 88.7 54.0 65.1
contamination 5.9 13.9 8.0 332 24.6
Mixed 5.8,9,10, 11
class.accuracy 94.7 86.7 39.1 68.6 T1.5
completeness 92.3 81.5 38.6 52.8 63.8
contamination 5.0 16.6 8.1 37.6 30.1
s isophotal magnitude (feature 1);
+» 3 aperture magnitudes (features 2—4) obtained through circular apertures of radii 2,

6 and 20 arcsec, respectively;

Kron radius, ellipticity and the FWHM of the image (features 5-7);

4 structural parameters (features 8-11) which are, respectively, the central surface
brightness, the core radius, the effective radius and the tidal radius;

.
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GAME MODEL MATHEMATICS

Given a generic dataset with N features and a target t, pat a generic input pattern of the
dataset,pat = (f1,:*, fy,t) and g(x) a generic real function, the representation of a
generic feature f; of a generic pattern, with a polynomial sequence of degree d is:

G(f;) = ag+ay g(fi) + -+ ag g*(f)

Hence, the k-th pattern (pat,) with N features may be represented by:
Out(paty) = XLy G(f) = ag + XLy X0 a; g7 () (1)

The target t,, concerning to pattern pat,, can be used to evaluate the approximation error
of the input pattern to the expected value:
Ey = (tx — Out(paty))?

With NP patterns number (k = 1, ..., NP), at the end of the “forward” phase (batch) of the
GA, we have NP expressions (1) which represent the polynomial approximation of the
dataset.

In order to evaluate the fitness of the patterns as extension of (9) Mean Square Error
(MSE) or Root Mean Square Error (RMSE) may be used:

WSE — ZE(ti-Out(pati))? Ly \/zﬁfl(tk—ow(patknz
TH NP i NP

'_.:)'.,f"_.ff.':':b_r,a
i Sk )



GAME MODEL FINAL EQUATIONS

We use the trigonometric polynomial sequence, given by the following expression,
g(x) = @ + XPymg @y cOS(M X) + Yoy by Sin(m )

NUMcpromosomes = (B N) + 1 B=2

where N is the number of features of the patterns and B is a multiplicative factor that
depends from the g(x) function, in the simplest case is just 1, but can arise to 3 or 4

NUMggngs = (d-B) + 1

where d is the degree of the polynomial.

With 2100 patterns, 11 features each, the expression for the single (k-th) pattern, using (1)
with degree 6, will be:

Out(paty) = z G(f;) = ay+ ZZ ittt A zz b sin(j f;)

[eiliers =1 j=
fork=1,...,2100.
NUMcyromosomes = (2-11) +1 = 23

ssbrornzsting NUMggnes = (6-2) +1 =13



THE GAME ON GPU EXPERIMENT

The general-purpose GA has been internally designed for classification and regression problems

Genetic Algorithms are embarrassingly parallel (granularity + repetitive operations)

Start

Create initial population of
chromosomes randomly

v

Create children using crossover

Find the best chromosome in — Evaluate the fitness function

e and mutationfinversion
the new population
No : Update the
7
Is this a new best? Yes best solution

No

le

Created enough
generations?

Yes

L 4

/ Return the best solution /

r Parallel on many-core GPU

Generate all population of
chromosomes randomly
at one time

Needed faster execution to
| become scalable for MDS

for all chromosomes in
the new population

Machine Learning with Parallel Computing: A Genetic Classifier
based on GPU Technology

M. Brescial?, 5. Cavuotil, M. Garofale’, A. Pescapé", G. Longozf", G. Ventre?

1 IMAF, Astronomical Obsarvatory of Capodimonts, Via Moiarizlle 16, I-80131 Napoli, I'le}'l
2 Department of Physics, University Fadarico II, Via Cinthia 6, I-80126 Napoli, Italy
3 Department of Computer Enginsering and Swstems, University Faderico II, Via Clandie 21, I-80125 Mapeli, Italy
4 Visiting Associate, California Instituts of Techneology, Pasadena, CA 91125, USA

Paper in preparation + proceedings at WIRN 2012 (lIIASS, Vietri)

Abstract. We present a multi-purpose genetic algonthm, designed and implemented with GPGFU / CUDA parallel
computing technology. The model was denved from a multi-core CPU serial implementation, named GAME, already
scientifically successfully tested and walidated on astrophysical massive data classification problems, through a web
application resource (DAMEWARE), specialized in data muning based on Machine Leaming paradigms. Since genetic
algorithms are inherently parallel, the GPGPU computing paradigm has provided an exploit of the intemal training features
of the model, permitting a strong optimization in tenms of processing performances and scalability.




THE GPU TECHNOLOGY

The Graphical Processing Unit is specialized for compute-intensive, highly parallel
computation (exactly what graphics rendering is about). So, more transistors can be
devoted to data processing rather than data caching and flow control.

. Graphics

Massive . C '5‘]
: Data GPL
« GPU have evolved to the point where many [ (Paralle] Computing)

real world apps are easily implemented on
them and run significantly faster than on multi-

Instruction CPU
core systems. - . | i IIL?veI S Ch )
Future computing architectures will be hybrid [k
systems with parallel-core GPUs working in Data Fits in Cache Larger Data Sets

tandem with multi-core CPUs »
Application Software
(written in C)

DAMEWARE - GAME chFTCUD:;;i:;ariescuDPP

FIRST PARALLEL PROGRAMMING EXPERIMENT

CPU Hardware | CUDA Compiler CUDA Tools

1U  PCI-E Switch C Fortran Debugger Profiler

ijHH‘]j

41 d j 44 .4 4.4 ‘ I
]l]]]]]]]l]]]]]]
1aiianinam
11313931119111999
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Multi-core CPU

ALU ALU
* Composed by few cores, designed to maximize

ALU  ALU the sequential code efficiency;

* Large cache memory to reduce latency time to
access data and/or complex instruction
execution;

* Sophisticate control logic to handle instruction
flow (pipelining and multi-threading).

Many-core GPU

: 1. .1 s Composed by many cores (hundreds), designed
R to execute parallel code;
-ZZZZZZZZZZZZZfZ‘
: : — * Memory structures with negligible access time to
- perform contemporary simple instructions;
[ |1 N I I N ) Y A

e Simple control logic (the only bottleneck could be
_ the communication with the CPU host);

'..r orfiz Jrg

Multithreaded CUDA Program
Block0 Block1 Block2 Block3.
Block4  Block5  Block6  Block 7.
'GPU with 2 Cores GPU with 4 Cores
‘Corcﬂ ‘Cﬂﬂ‘ﬁml 0)!‘02‘0!‘03‘
_\-\- ko dods Shckz Hod
oodt) meks | e [Hods [secs ek
o
| Bk ek
Host Device
Grid 1
Kernel Block | Block
1 0.0 || (10
Blocks| Block
!'f!-"‘l' (1.1 11
“ {
Kernel
2




GAME HW PERFORMANCES

ID CPU GPU Pol. Degree

1 2.0 GHzInteli7
2630QM quad core

1 GeForce
Tesla TM
C1060
(240 cores)

2 3.4 GHzIntel i7
2600 dual core

2 GeForce
GTX 460
(336 cores)

3 2.27 GHz Intel i5
M430 dual core

3 GeForce
GT 320M
(72 cores)

;-;br-arr.‘:‘:b‘f,a

DATASET

2100 patterns
11 features

iterations

40000

Exe time

31092 sec
(~9h)

231 sec
(~0.064 h)

76000 sec
(~21 h)

165 sec
(~0.046 h)

258400 sec
(~72 h)

2489,63 sec
(~0.691 h)



GAME GPU TESLA VS CPU I7

polynomial degree =1 polynomial degree = 2
10000 10000
Kl | v
£ 1000 § 1000 -
-] o
£ £ .
= 100 - — W serial < 100 M serial
2 2
= +opt E ®opt
¥
g w0 A GPU 5 10 X 4 GPU
F
1 T T T T 1 1 T T T 1
1000 11000 21000 31000 41000 1000 11000 21000 31000 41000
Max number of iterations Max number of iterations
polynomial degree =4 polynomial degree =8
100000 100000
T 10000 T 10000
a 7]
pU8 P
£ 1000 - £ 1000
= M serial S __L___——ﬁ—_—_i M serial
2 R — 2 —
s 10 * Opt s 100 * Opt
[ *] (¥}
ks 10 A GPU z 10 - AGPU
A 4
1 T T T 1 1 T T T 1
1000 11000 21000 31000 41000 1000 11000 21000 31000 41000
Max number of iterations Max number of iterations

ol aab i
GSLrerri=suilny

i s s i Vit ) e

J




GAME GPU TESLA VS CPU |7

WfcelcsR vs, Serial  vs. Opt

8X 6X
23X 16x
66X 45x
200x 125x

b o o
GSLf th::LJ)EJ
- d wpdraria

— et s

GPU Speedup

aumento del grado del polinomio porta
ad un aumento delle prestazioni,
I'accelerazione e tanto maggiore quanto
piu dati si devono elaborare;

Speedup (x)

8

250

200

=t
un
=]

/;
7
/ // M zerial vs GPU

/.// # opt vs GPU

T T T T
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DATA MINING & MACHINE LEARNING

Inspired by human brain features: high-parallel data flow, generalization, robustness, self-
organization, pruning, associative memory, incremental learning, genetic evolution.

“m Multi Layer Perceptron

\‘ i :

e : trained by:

C—JSemantic BoK construction y i
 Back Propagation

e Quasi Newton

* @Genetic Algorithm

Selected tool

Support Vector Machines

Genetic Algorithms
-~

knowledge ..
Catalogs and new archives "b Self Organizing Feature Maps

K-Means

Classification Multi-layer Clustering
Bayesian Networks

Regression Principal Probabilistic Surfaces
Random Decision Forest (:: Clustering
MLP with Levenberg-Marquardt Feature Extraction

;-;br-arr.‘:‘:b‘f,a



THE DATA MINING WEB APPLICATION

DAMEWARE - DAta Mining Web Application REsource
web-based app for massive data mining based on a suite of machine learning methods on
top of a virtualized hybrid computing infrastructure.

Intro page http://dame.dsf.unina.it/beta_info.html ==] Beta Release available

+
manuals http://dame.na.astro.it:3080/MyDameFE/
demo videos The release 1.0 will be deployed on a

http://www.youtube.com/user/DAMEmedia CLOUD, including GRID farm of S.Co.P.E.

= Private user account after
registration; —
= Data files (CSV, ASCII, FITS-image, @ = Sl
FITS-table, VOTable); ———— o > S
= (Classification models;
= Regression models; o
=  Clustering models; e - iz =
= Editing files for experiment setup P '
(join, split, sort, shuffle, scale etc.); e
= Qutput scatter plots and text data; S —

' .
< aal i
CJ:)Df'er;::LI:"_')

— et sttt it ) e g



KIND INVITATION

You don’t have to believe our words, but follow St. Tommaso rule: try us!

.
I‘:: i
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