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ABSTRACT

Context. Since the advent of modern multiband digital sky surveys, photometric redshifts (photo-z’s) have become relevant if not
crucial to many fields of observational cosmology, such as the characterization of cosmic structures and the weak and strong lensing.
Aims. We describe an application to an astrophysical context, namely the evaluation of photometric redshifts, of MLPQNA, which is
a machine-learning method based on the quasi Newton algorithm.
Methods. Theoretical methods for photo-z evaluation are based on the interpolation of a priori knowledge (spectroscopic redshifts or
SED templates), and they represent an ideal comparison ground for neural network-based methods. The MultiLayer Perceptron with
quasi Newton learning rule (MLPQNA) described here is an effective computing implementation of neural networks exploited for the
first time to solve regression problems in the astrophysical context. It is offered to the community through the DAMEWARE (DAta
Mining & Exploration Web Application REsource) infrastructure.
Results. The PHAT contest (Hildebrandt et al. 2010, A&A, 523, A31) provides a standard dataset to test old and new methods
for photometric redshift evaluation and with a set of statistical indicators that allow a straightforward comparison among different
methods. The MLPQNA model has been applied on the whole PHAT1 dataset of 1984 objects after an optimization of the model
performed with the 515 available spectroscopic redshifts as training set. When applied to the PHAT1 dataset, MLPQNA obtains the
best bias accuracy (0.0006) and very competitive accuracies in terms of scatter (0.056) and outlier percentage (16.3%), scoring as the
second most effective empirical method among those that have so far participated in the contest. MLPQNA shows better generalization
capabilities than most other empirical methods especially in the presence of underpopulated regions of the knowledge base.

Key words. techniques: photometric – galaxies: distances and redshifts – galaxies: photometry – cosmology: observations –
methods: data analysis

1. Introduction

Estimating redshifts of celestial objects is one of the most press-
ing technological issues in observational astronomy and, since
the advent of modern multiband digital sky surveys, photometric
redshifts (photo-z) have become fundamental when it is neces-
sary to know the distances of million of objects over large cos-
mological volumes. Photo-z’s provide redshift estimates for ob-
jects fainter than the spectroscopic limit and turn out to be much
more efficient in terms of the number of objects per telescope
time with respect to spectroscopic ones (spec-z). For these rea-
sons, after the advent of modern panchromatic digital surveys,
photo-z’s have become crucial. For instance, they are essential
in constraining dark matter and dark energy studies by means of
weak gravitational lensing for the identification of galaxy clus-
ters and groups (e.g. Capozzi et al. 2009), for type Ia super-
novae, and for the study of the mass function of galaxy clusters
(Albrecht et al. 2006; Peacock et al. 2006; Keiichi et al. 2012).

The need for fast and reliable methods of photo-z evaluation
will become even greater in the near future for exploiting ongo-
ing and planned surveys. In fact, future large-field public imag-
ing projects, such as KiDS (Kilo-Degree Survey1), DES (Dark
Energy Survey2), LSST (Large Synoptic Survey Telescope3),

1 http://www.astro-wise.org/projects/KIDS/
2 http://www.darkenergysurvey.org/
3 http://www.lsst.org/lsst/

and Euclid (Euclid Red Book 2011), require extremely accurate
photo-z’s to obtain accurate measurements that do not compro-
mise the survey’s scientific goals. This explains the very rapid
growth in the number of methods that can be more or less effec-
tively used to derive photo-z estimates and in the efforts made
to better understand and characterize their biases and system-
atics. The possibility of achieving a very low level of residual
systematics (Huterer et al. 2006; D’Abrusco et al. 2007; Laurino
et al. 2011) is in fact strongly influenced by many factors: the
observing strategy, the accuracy of the photometric calibration,
the different point spread function in different bands, the adopted
de-reddening procedures, etc.

The evaluation of photo-z’s is made possible by the existence
of a rather complex correlation existing between the fluxes, as
measured in broad band photometry, the morphological types
of the galaxies, and their distance. The search for such a cor-
relation (a nonlinear mapping between the photometric param-
eter space and the redshift values) is particularly suited to data
mining methods. Existing methods can be broadly divided into
two large groups: theoretical and empirical. Theoretical methods
use templates, such as libraries of either observed galaxy spec-
tra or model spectral energy distributions (SEDs). These tem-
plates can be shifted to any redshift and then convolved with the
transmission curves of the filters used in the photometric survey
to create the template set for the redshift estimators (e.g. Koo
1999; Massarotti et al. 2001a,b; Csabai et al. 2003). However, for
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datasets in which accurate and multiband photometry for a large
number of objects are complemented by spectroscopic redshifts,
and for a statistically significant subsample of the same objects,
the empirical methods offer greater accuracy, as well as being
far more efficient. These methods use the subsample of the pho-
tometric survey with spectroscopically-measured redshifts as a
training set to constrain the fit of a polynomial function map-
ping the photometric data as redshift estimators.

Several template-based methods have been developed to
derive photometric redshifts with increasingly high precision
such as BPZ4, HyperZ5, Kcorrect6, Le PHARE7, ZEBRA8, LRT
Libraries9, EAzY10, and Z-PEG11. Moreover there are also
training-based methods, such as AnnZ12 and RFPhotoZ13. The
variety of methods and approaches and their application to dif-
ferent types of datasets, as well as the adoption of different and
often not comparable statistical indicators, make it difficult to
evaluate and compare performances in an unambiguous and ho-
mogeneous way. Blind tests of photo-z’s that one useful but lim-
ited in scope have been performed in Hogg et al. (1998) on spec-
troscopic data from the Keck telescope on the Hubble Deep Field
(HDF), in Hildebrandt et al. (2008) on spectroscopic data from
the VIMOS VLT Deep Survey (VVDS; Le Févre et al. 2004)
and the FORS Deep Field (FDF; Noll et al. 2004, and in Abdalla
et al. 2011) on the sample of luminous red galaxies from the
SDSS-DR6.

A significant advance in comparing different methods has
been introduced by Hildebrandt and collaborators (Hildebrandt
et al. 2010), with the so-called PHAT (PHoto-z Accuracy
Testing) contest, which adopts a black-box approach that is typ-
ical of benchmarking. Instead of insisting on the subtleties of
the data structure, they performed a homogeneous comparison
of the performances, concentrating the analysis on the last link
in the chain: the photo-z’s methods themselves.

As pointed out by the authors, in fact, “it is clear that the
two regimes – data and method – cannot be separated cleanly
because there are connections between the two. For example,
it is highly likely that one method of photo-z estimation will
perform better than a second method on one particular dataset
while the situation may well be reversed on a different data set.”
(cf. Hildebrandt et al. 2010).

Considering that empirical methods are trained on real data
and do not require assumptions on the physics of the formation
and evolution of stellar populations, neural networks (NNs) are
excellent tools for interpolating data and extracting patterns and
trends (cf. the standard textbook by Bishop 2006). In this paper
we show the application in the PHAT1 contest of the multi layer
perceptron (MLP) implemented with a quasi Newton algorithm
(QNA) as a learning rule that has been employed for the first
time to interpolate the photometric redshifts.

The present work follows the same path, by having the test-
ing and probing of the accuracy of the quasi Newton based
Neural Model (MLPQNA) as its aim for deriving of photometric

4 http://acs.pha.jhu.edu/~txitxo/bpzdoc.html
5 http://webast.ast.obs-mip.fr/hyperz/
6 http://cosmo.nyu.edu/blanton/kcorrect/
7 http://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.
html
8 http://www.exp-astro.phys.ethz.ch/ZEBRA
9 http://www.astronomy.ohio-state.edu/~rjassef/lrt/

10 http://www.astro.yale.edu/eazy/
11 http://imacdlb.iap.fr:8080/cgi-bin/zpeg/zpeg.pl
12 http://www.homepages.ucl.ac.uk/~ucapola/annz.html
13 http://www.sdss.jhu.edu/~carliles/photoZ/RFPhotoZ/

redshifts. The application of MLPQNA to the photometric red-
shift estimation of QSO will be presented in Brescia et al.
(in prep.).

In Sect. 2 we shortly describe the PHAT contest and the
PHAT1 data made available to the contestants and used for the
present work. In Sect. 3 we describe the MLPQNA method
that was implemented by us and used for the contest, while in
Sect. 4 we describe the experiments performed, and in Sect. 5 we
present the results derived for us by the PHAT board. Summary
and conclusions are wrapped up in Sect. 6.

2. The PHAT dataset

First results from the PHAT contest were presented in
Hildebrandt et al. (2010), but the contest still continues on the
project’s web site. PHAT provides a standardized test environ-
ment that consists of simulated and observed photometric cata-
logs complemented by additional materials like filter curves con-
volved with transmission curves, SED templates, and training
sets. The PHAT project has been conceived as a blind contest,
still open to host new participants who want to test their own
regression method performances, as in our case, since we de-
veloped our model in the past two years. However, the subsets
used to evaluate the performances are still kept secret in order to
provide a more reliable comparison of the various methods. Two
different datasets are available (see Hildebrandt et al. 2010, for
more details).

The first one, indicated as PHAT0, is based on a very lim-
ited template set and a long-wavelength baseline (from UV to
mid-IR). It is composed of a noise-free catalog with accurate
synthetic colors and a catalog with a low level of additional
noise. PHAT0 represents an easy case for testing the most ba-
sic elements of photo-z estimation and identifying possible low-
level discrepancies between the methods.

The second one, which is the one used in the present work,
is the PHAT1 dataset, which is based on real data originat-
ing in the Great Observatories Origins Deep Survey Northern
field (GOODS-North; Giavalisco et al. 2004). According to
Hildebrandt et al. (2010), it represents a much more complex en-
vironment to test methods to estimate photo-z’s, pushing codes
to their limits and revealing more systematic difficulties. Both
PHAT test datasets are made publicly available through the
PHAT website14, while in Hildebrandt et al. (2010) there is a
detailed description of the statistical indicators used for com-
paring the results provided by the 21 participants who have so
far participated by submitting results obtained with 17 different
photo-z codes.

The PHAT1 dataset consists of photometric observations,
both from ground and space instruments, presented in Giavalisco
et al. (2004), complemented by additional data in other bands
derived from Capak et al. (2004). The final dataset covers the
full UV-IR range and includes 18 bands: U (from KPNO), B, V,
R, I, Z (from Subaru), F435W, F606W, F775W, F850LP (from
HST-ACS), J, H (from ULBCAM), HK (from QUIRC), K (from
WIRC), and 3.6, 4.5, 5.8, and 8.0 μ (from IRAC Spitzer).

The photometric dataset was then cross correlated with spec-
troscopic data from Cowie et al. (2004), Wirth et al. (2004), Treu
et al. (2005), and Reddy et al. (2006). Therefore, the final PHAT1
dataset consists of 1984 objects with 18-band photometry and
accurate spectroscopic redshifts. In the publicly available dataset

14 http://www.astro.caltech.edu/twiki_phat/bin/view/
Main/GoodsNorth
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a little more than one quarter of the objects comes with spectro-
scopic redshifts and can be used as the knowledge base (KB) for
training empirical methods. In this contest, in fact, only 515 ob-
jects were made available with the corresponding spectroscopic
redshift, while for the remaining 1469 objects the related spec-
troscopic redshift has been hidden from all participants. The im-
mediate consequence is that any empirical method exploited in
the contest was constrained to using the 515 objects as training
set (knowledge base) and the 1469 objects as the test set, to be
delivered to PHAT contest board in order to receive the statis-
tical evaluation results back. While it is clear that the limited
amount of objects in the knowledge base is not enough to en-
sure the best performances of most empirical methods, the fact
that all methods must cope with similar difficulties makes the
comparison consistent.

3. The MLPQNA regression model

MLPQNA stands for the traditional neural network model
named Multi Layer Perceptron (MLP; cf. Bishop 2006) im-
plemented with a QNA as learning rule. This particular im-
plementation of the traditional MLP’s has already been de-
scribed in Brescia et al. (2012a), and we refer to that paper for
a more detailed description in the classification problem con-
text. MLPQNA is made available to the community through the
DAMEWARE (DAta Mining and Exploration Web Application
REsource; Brescia et al. 2011, 2012a,b). In the text we also pro-
vide the details and the parameter settings for the best perform-
ing MLPQNA model so that anyone can easily reproduce the
results using the web application. User manuals are available
on the DAMEWARE web site15. A complete mathematical de-
scription of the MLPQNA model is available on the DAME web
site16. Feed-forward neural networks provide a general frame-
work for representing nonlinear functional mappings between a
set of input variables and a set of output variables (Bishop 2006).
One can achieve this goal by representing the nonlinear function
of many variables by a composition of nonlinear activation func-
tions of one variable, which formally describes the mathematical
representation of a feed-forward neural network with two com-
putational layers (Eq. (1)):

yk =

M∑

j=0

w(2)
k j g

⎛⎜⎜⎜⎜⎜⎜⎝
d∑

i=0

w(1)
ji xi

⎞⎟⎟⎟⎟⎟⎟⎠ (1)

A multi-layer perceptron may be also represented by a graph, as
also shown in Fig. 1: the input layer (xi) is made of a number
of perceptrons equal to the number of input variables (d); the
output layer, on the other hand, will have as many neurons as the
output variables (K). The network may have an arbitrary number
of hidden layers (in most cases one), which in turn may have an
arbitrary number of perceptrons (M). In a fully connected feed-
forward network, each node of a layer is connected to all the
nodes in the adjacent layers.

Each connection is represented by an adaptive weight, which
represents the strength of the synaptic connection between
neurons (w(l)

k j). The response of each perceptron to the inputs is
represented by a nonlinear function g, referred to as the acti-
vation function. The above equation assumes a linear activation
function for neurons in the output layer. We refer to the topol-
ogy of an MLP and to the weights matrix of its connections as

15 http://dame.dsf.unina.it/beta_info.html
16 http://dame.dsf.unina.it/machine_learning.html#
mlpqna

Fig. 1. The classical feed-forward architecture of a multi layer percep-
tron represented as a graph. There are three layers, respectively, input
with black nodes, hidden with white nodes and the output represented
by a single gray node. At each layer, its nodes are fully connected with
each node of the next layer. Each connection is identified by a nu-
merical value called weight, usually a real number normalized in the
range [−1,+1].

to the model. To find the model that fits the data best, one has to
provide the network with a set of examples: the training phase
thus requires the KB, i.e. the training set. The learning rule of
our MLP is the QNA, which differs from the Newton algorithm
in terms of the calculation of the Hessian of the error function. In
fact Newtonian models are variable metric methods used to find
local maxima and minima of functions (Davidon 1968) and, in
the case of MLPs, they can be used to find the stationary (i.e. the
zero gradient) point of the learning function and are the general
basis for a whole family of so-called quasi Newton methods.

The traditional Newton method uses the Hessian of a func-
tion to find the stationary point of a quadratic form. The Hessian
of a function is not always available and in many cases it is far
too complex to be computed. More often we can only calculate
the function gradient, which can be used to derive the Hessian
via N consequent gradient calculations.

The gradient in every point w is in fact given by

∇E = H × (w − w∗) , (2)

where w corresponds to the minimum of the error function,
which satisfies the condition

w∗ = w − H−1 × ∇E. (3)

The vector −H−1 × ∇E is known as Newton direction and it is
the traditional base for a variety of optimization strategies,

The step of this traditional method is thus defined as the
product of an inverse Hessian matrix and a function gradient. If
the function is a positive definite quadratic form, the minimum
can be reached in just one step, while for an indefinite quadratic
form (which has no minimum), we will reach either the max-
imum or a saddle point. To solve this problem, quasi Newton
methods proceed with a positive definite Hessian approximation.
So far, if the Hessian is definitely positive, we take the step using
the Newton method. If, instead it is indefinite, we first modify it
to make it definitely positive, and then perform a step using the
Newton method, which is always calculated in the direction of
the function decrement.

In practice, QNA is an optimization of learning rule based
on a statistical approximation of the Hessian by cyclic gradient
calculation, which, as already mentioned, is the basis of the clas-
sical back propagation (BP; Bishop 2006) method.

Instead of calculating the H matrix and then its inverse, the
QNA uses a series of intermediate steps of lower computational
cost to generate a sequence of matrices that are more and more
accurate approximations of H−1. During the exploration of the
parameter space and in order to find the minimum error direc-
tion, QNA starts in the wrong direction. This direction is chosen
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because at the first step the method has to follow the error gradi-
ent, so it takes the direction of steepest descent. However, in sub-
sequent steps, it incorporates information from the gradient. By
using the second derivatives, QNA is able to avoid local minima
and to follow the error function trend more precisely, revealing
a “natural” capability to find the absolute minimum error of the
optimization problem.

However, this last feature could be a downside of the model,
especially when the signal-to-noise ratio of data is very poor.
But with “clean” data, such as in the presence of high-quality
spectroscopic redshifts, used for model training, the QNA per-
formances result extremely precise.

The experiment described in Sect. 4 consists of a supervised
regression based on the MLP neural network trained by the quasi
Newton learning rule. As already described, the MLP is a net-
work model composed of input and two computational layers
of neurons (see Eq. (1)), which propagate submitted data from
the input to the output layer. Each neuron of a hidden layer is
represented by a nonlinear activation function (in our case hy-
perbolic tangent) of the sum of inputs from all previous layer
neurons, multiplied by weights (normalized values in [−1, +1]
representing the connections between neurons, see Fig. 1). After
propagating the input data, at the final (output) layer, the learn-
ing error is evaluated (in our case by means of the mean square
error, MSE, between calculated vs desired outputs), and then the
backward phase is started, in which a learning rule is applied,
by adapting the neuron connection weights in such a way that
the error function is minimized. Then the input data are submit-
ted again and a new cycle of learning is achieved. The algorithm
stops after a chosen number of iterations or if the error becomes
less than a chosen threshold. The error is calculated at each itera-
tion by comparing the calculated value (on all input data) against
the desired (a priori known) target value. This is the typical ap-
proach called “supervised”. When the learning phase is stopped,
the trained network is used like a simple function. Input data not
used for training, or a mix in case of learning validation, can be
submitted to the network, which, if trained well, is able to pro-
vide correct output (generalization capability). By looking at the
local squared approximation of the error function, it is possible
to obtain an expression of minimum position. It is in fact known
that the gradient in every point w of the error surface is given by
Eq. (2). The network is trained in order to learn to calculate the
correct photometric redshift given the input features for each ob-
ject (see Sect. 4). This is indeed a typical supervised regression
problem.

In terms of computational cost, the implementation of QNA
can be problematic. In fact, to approximate the inverse Hessian
matrix, it requires generating and storing N × N approxima-
tions, where N is the number of variables, hence the number
of gradients involved in the calculation. So far, given nI the
number of iterations chosen by the user, the total computational
cost is about nI ∗ N2 floating point per second (flops). For this
reason a family of quasi-Newton optimization methods exists
that allow the complexity of the algorithm to be improved. In
particular, in our implementation, we use the limited-memory
BFGS (L-BFGS; Byrd et al. 1994; Broyden 1970; Fletcher 1970;
Goldfarb 1970; Shanno 1970), where BFGS is the acronym com-
posed of the names of the four inventors.

L-BFGS never stores the full N approximations of the
Hessian matrix, but only the last M steps (with M � N). As
a result, given M the stored approximation steps, the compu-
tational cost could be reduced to about nI ∗ (N ∗ M) flops,
which in practice trasforms the total cost of the algorithm from
an exponential form to a polynomial one. Moreover, to give a

complete computational complexity evaluation for implement-
ing the MLPQNA model, it remains to analyze the feed-forward
part of the algorithm, for instance the computational flow of
input patterns throughout the MLP network, up to the calcula-
tion of the network error (as said the MSE between the desired
spectroscopic redshift and the one calculated by the network), at
each training iteration after a complete submission of all input
patterns.

The feed-forward phase involves the flow of each input pat-
tern throughout the network, from the input to the output layer,
passing through the hidden layer. This phase can be described
by the following processing steps (Mizutani & Dreyfus 2001):

– Process 1 (P1): network node input computation;
– Process 2 (P2): network node activation function

computation;
– Process 3 (P3): error evaluation.

The computational cost, in terms of needed flops, for the above
three processing steps, can be summarized as follows:
Given d the number of training data, Nw the number of network
weights, Af and Nn respectively, the flops needed to execute the
activation function (strongly depending on the hosting computer
capabilities) and number of nodes present in the hidden plus out-
put layers, On the number of output nodes, we obtain

P1 � d × Nw (4)

P2 � d × Af × Nn (5)

P3 � d × On. (6)

In conclusion, the computational cost of the feed-forward phase
of the MLPQNA algorithm has a polynomial form of about nI ∗
d × [Nw + (Af × Nn) + On]. The total complexity of MLPQNA
implementation is thus obtained by the polynomial expansion of
Eq. (7), as the sum of feed-forward and backward phases multi-
plied by the number of training iterations.

f lops � nI ∗ [(d × (Nw + (Af × Nn) + On)) + (N ∗ M)]. (7)

Considering our training experiment described in Sect. 4.3 and
using parameters reported in Table 2, from Eq. (7) we obtain
about 1200 Gflops, which corresponds to about 15 min of exe-
cution time.

4. The experiment workflow

In this section we describe the details of the sequence of con-
catenated computational steps performed in order to determine
photometric redshifts. This is what we intended as a workflow,
whick can be seen also as the description of the procedure build-
ing blocks. The MLPQNA method was applied by following
the standard machine learning (ML) workflow (Bishop 2006),
which is summarized here: i) extraction of the KB by using
the 515 available spectroscopic redshifts; ii) determination of
the “optimal” model parameter setup, including pruning of data
features and training/test with the available KB; iii) applica-
tion of the tuned model to measure photometric redshifts on the
whole PHAT1 dataset of N = 1984 objects, by including also
the re-training on the extended KB. We also follow the rules
of the PHAT1 contest by applying the new method in two dif-
ferent ways, first to the whole set of 18 bands and then only
to the 14 non-IRAC bands. In order to better clarify what is
discussed more in the next sections, it is important to stress
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Table 1. Percentages of Not a Number (NaN) in the whole dataset (Col. 3), with 1984 objects and in the trainset (Col. 4) with 515 objects, for
each band.

BAND Dataset column ID % NaN in whole set % NaN in Training NaN % absolute difference
m5.8 17 19.35 17.28 2.07
K 14 17.14 18.64 1.5
HK 13 5.65 6.21 0.57
m8 18 3.48 3.5 0.02
F435W 7 2.67 1.75 0.92
H 12 2.37 2.52 0.16
J 11 1.16 1.55 0.39
U 1 1.01 1.17 0.16
R 4 0.15 0.19 0.04
B 2 0.1 0.19 0.09
V 3 0.05 0.19 0.14
F606W 8 0.05 0 0.05
m 3.6 15 0.05 0 0.05
I 5 0 0 0
Z 6 0 0 0
F775W 9 0 0 0
F850LP 10 0 0 0
m4.5 16 0 0 0

Notes. The last column reports the absolute differences between the two NaN percentages.

that the 515 objects, the publicly available spectroscopic red-
shifts, have been used to tune our model. In practice, 400 ob-
jects have been used as a training set and the remaining 115 as a
test/validation set (steps i) and ii) of the workflow, see Sects. 4.1
and 4.2). After having tuned our model, we performed a full
training on all 515 objects, in order to exploit all the available
knowledge base (see Sect. 4.3).

4.1. Extraction of the knowledge base

For supervised methods it is common praxis to split the KB into
at least three disjoint subsets: one (training set) to be used for
training purposes, i.e. to teach the method how to perform the
regression; the second one (validation set) to check against loss
of generalization capabilities (also known as overfitting); and the
third one (test set) to evaluate the performances of the model.
As a rule of thumb, these sets should be populated with 60%,
20% and 20% of the objects in the KB. In order to ensure a
proper coverage of the parameter space (PS), objects in the KB
are divided up among the three datasets by random extraction,
and usually this process is iterated several times to minimize the
biases introduced by fluctuations in the coverage of the PS.

In the case of MLPQNA described here, we used cross-
validation (cf. Geisser 1975) to minimize the size of the vali-
dation set (∼10%). Training and validation were therefore per-
formed together using ∼80% of the objects as a training set and
the remaining ∼20% as test set (in practice 400 records in the
training set and 115 in the test set). To ensure proper cover-
age of the PS, we checked that the randomly extracted popula-
tions had a spec-z distribution that is compatible with that of the
whole KB. The automatized process of the cross-validation was
done by performing ten different training runs with the following
procedure: (i) we split the training set into ten random subsets,
each one composed of 10% of the dataset; (ii) at each training
run we apply the 90% of the dataset for training and the ex-
cluded 10% for validation. This procedure is able to avoid over-
fitting on the training set (Bishop 2006). There are several vari-
ants of cross validation methods (Sylvain & Celisse 2010). We
have chosen the k-fold cross validation in particular, because it is
particularly suitable in the presence of a scarcity of known data
samples (Geisser 1975). Since Eq. (7) refers to a single training

run, for application of the k-fold cross validation procedure, the
execution time could be estimated by multiplying the Eq. (7) by
the factor k − 1, where k is the total number of runs.

4.2. Model optimization

As is known, supervised machine learning models are powerful
methods for learning the hidden correlation between input and
output features from training data. Of course, their generaliza-
tion and prediction capabilities strongly depend on the intrinsic
quality of data (signal-to-noise ratio), level of correlation inside
of the PS, and the amount of missing data present in the dataset.
Among the factors that affect performances, the most relevant
is that most ML methods are very sensitive to the presence of
Not a Number (NaN) in the dataset to be analyzed (Vashist &
Garg 2012). This is especially relevant in astronomical dataset
where NaNs may either be nondetections (i.e. objects observed
in a given band but not detected since they are below the de-
tection threshold) or related to patches of the sky that have not
been observed. The presence of features with a large fraction
of NaNs can seriously affect the performances of a given model
and lower the accuracy or the generalization capabilities of a
specific model. It is therefore good praxis to analyze the perfor-
mance of a specific model in presence of features with large frac-
tions of NaNs. This procedure is strictly related to the so called
feature selection or “pruning of the features” phase which con-
sists in evaluating the significance of individual features to the
solution of a specific problem. In what follows we briefly discuss
the outcome of the “pruning” performed on the PHAT1 dataset.

4.2.1. Pruning of features

It is also necessary to underline that especially in the presence of
small datasets, there is a need for compromise. On the one hand,
it is necessary to minimize the effects of NaNs; on the other, it
is not possible to simply remove each record containing NaNs,
because otherwise too much information would be lost.

In Table 1 we list the percentage of NaNs in each photomet-
ric band, both in the training and the full datasets. Poor features,
namely the fluxes in the K and m5.8 bands, were not used for the
subsequent analysis. As shown this difference remains always
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Table 2. Description of the best experiments for the 18 bands (Exp. n. 37) and the 14 bands datasets (Exp. n. 26).

Exp. n Missing features Feat. Hid. Step Res. Dec. MxIt CV Scatter Outliers% Bias
37 m5.8, K, HK, m8 14 29 0.0001 30 0.1 3000 10 0.057 22.61% –0.0077
26 m5.8, K, m3.6, m4.5, HK, m8 12 25 0.0001 30 0.1 3000 10 0.062 17.39% 0.0078

Notes. Column 1: sequential experiment identification code; Col. 2: features not used in the experiment; Cols. 3–4: number of input (features)
and hidden neurons; Cols. 5–9: parameters of the MLPQNA used during the experiment; Col. 10: scatter error evaluated as described in the text;
Col. 11: fraction of outliers; Col. 12: bias.

under 3%, demonstrating that the two datasets are congruent in
terms of NaN quantity.

The pruning was performed separately on the two PHAT1
datasets (18-bands and 14-bands). A total of 37 experiments was
run on the two datasets, with the various experiments differing
in the groups of features removed. We started by considering all
features (bands), removing the two worst bands, for instance K
and m5.8, whose outlier quantity was over the 15% of patterns.
Then a series of experiments was performed by removing one
band at a time, by considering the NaNs percentage shown in
Table 1.

4.2.2. Performance metrics

The performances of the various experiments were evaluated (as
done in the PHAT contest) in terms of

– scatter: the rms of Δz
– bias: the mean of Δz
– fraction of outliers: where outliers are defined by the

condition: |Δz| > 0.15,

where

Δz ≡ zspec − zphot

1 + zspec
· (8)

At the end of this process, we obtained the best results, reported
in Table 2.

4.3. Application to the PHAT1 dataset

We performed a series of experiments in order to fine tune the
model parameters, whose best values are
MLP network topology parameters (see Table 2):

– feat: 14 (12) input neurons (corresponding to the pruned
number of input band magnitudes listed in Table 1),

– hid: 29 (25) hidden neurons,
– 1 output neuron.

QNA training rule parameters (see Table 2):

– step: 0.0001 (one of the two stopping criteria. The algorithm
stops if the approximation error step size is less than this
value. A step value equal to zero means to use the parameter
MxIt as the unique stopping criterion.);

– res: 30 (number of restarts of Hessian approximation from
random positions, performed at each iteration);

– dec: 0.1 (regularization factor for weight decay. The term
dec∗||networkweights||2 is added to the error function, where
networkweights is the total number of weights in the net-
work. When properly chosen, the generalization error of the
network is highly improved);

– MxIt: 3000 (max number of iterations of Hessian approxima-
tion. If zero the step parameter is used as stopping criterion);

– CV: 10 (k-fold cross validation, with k = 10. This parameter
is described in Sect. 4.1).

With these parameters, we obtained the statistical results (in
terms of scatter, bias, and outlier percentage) as reported in the
last three columns of Table 2.

Once the model optimization described above had been
determined, the MLPQNA was re-trained on the whole KB
(515 objects) and applied to the whole PHAT1 dataset (1984 ob-
jects), which was then submitted to the PHAT contest for final
evaluation (see below).

Details of the experiments can be found on the DAME web
site17, while the parameter settings and the results for the best
models are summarized in Table 3.

5. The PHAT1 results and comparison
with other models

With the model trained as described in the above section, we cal-
culated photometric redshifts for the entire PHAT1 dataset, i.e.
also for the remaining 1469 objects, for which the correspond-
ing spectroscopic redshift was hidden to the contest partici-
pants, obtaining a final photometric catalog of 1984 objects. This
output catalog has finally been delivered to the PHAT contest
board, receiving the statistical results (scatter, bias and out-
lier’s percentage) as feedback coming from the comparison be-
tween spectroscopic and photometric information, in both cases
(18 and 14 bands).

So far, the statistical results and plots have referred to the
whole data sample, which is kept secret from all participants as
required by the PHAT contest, were provided by Hildebrandt and
also reported in the PHAT Contest wiki site 18. So far, the results
obtained by analyzing the photometric redshifts calculated by
MLPQNA, are shown in Table 3.

The most significant results can be summarized as follows:

i) 18-band experiment: 324 outliers with |Δz| > 0.15, corre-
sponding to a relative fraction of 16.33%. For the remaining
1660 objects bias and rms are 0.000604251± 0.0562278;

ii) 14-band experiment: 384 outliers with |Δz| > 0.15, corre-
sponding to a relative fraction of 19.35%; 1600 objects with
bias and variance 0.00277721± 0.0626341.

A more detailed characterization of the results can be found
in the first line of parts A, B, and C in Table 3, while Fig. 2,
provided by Hildebrandt, gives the scatter plots (spec-z’s vs.
photo-z’s) for the 18 and 14 bands.

To compare our results with other models, we also report in
Table 3 the statistical indicators for the other empirical methods
that competed in the PHAT1 contest. The methods are

– AN-e: ANNz, artificial neural network, an empirical photo-z
code based on artificial neural networks (Collister & Lahav
2004);

17 http://dame.dsf.unina.it/dame_photoz.html
18 http://www.astro.caltech.edu/twiki_phat/
bin/view/Main/GoodsNorthResults#
Cavuoti_Stefano_et_al_neural_net
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Table 3. Comparison of the performances of our MLPQNA (here labeled as QNA) method against all other empirical methods analyzed by PHAT
board.

A 18-band; |Δz| ≤ 0.15 14-band; |Δz| ≤ 0.15 18-band; R < 24; |Δz| ≤ 0.15 14-band; R < 24; |Δz| ≤ 0.15
Code bias scatter outliers % bias scatter outliers % bias scatter outliers % bias scatter outliers %
QNA 0.0006 0.056 16.3 0.0028 0.063 19.3 0.0002 0.053 11.7 0.0016 0.060 13.7
AN-e –0.010 0.074 31.0 –0.006 0.078 38.5 –0.013 0.071 24.4 –0.007 0.076 32.8
EC-e –0.001 0.067 18.4 0.002 0.066 16.7 –0.006 0.064 14.5 –0.003 0.064 13.5
PO-e –0.009 0.052 18.0 –0.007 0.051 13.7 –0.009 0.047 10.7 –0.008 0.046 7.1
RT-e –0.009 0.066 21.4 –0.008 0.067 24.2 –0.012 0.063 16.4 –0.012 0.064 18.4
B 18-band; |Δz| ≤ 0.5 14-band; |Δz| ≤ 0.5 18-band; R < 24; |Δz| ≤ 0.5 14-band; R < 24; |Δz| ≤ 0.5
Code bias scatter outliers % bias scatter outliers % bias scatter outliers % bias scatter outliers %
QNA –0.0028 0.114 3.8 –0.0046 0.125 3.8 –0.0039 0.101 1.7 –0.0039 0.101 1.7
AN-e –0.036 0.151 3.1 –0.035 0.173 4.2 –0.047 0.130 1.4 –0.047 0.130 1.4
EC-e –0.007 0.120 3.6 –0.003 0.114 3.6 –0.015 0.106 1.9 –0.015 0.106 1.9
PO-e –0.013 0.124 3.1 0.001 0.107 2.3 –0.020 0.098 1.2 –0.020 0.098 1.2
RT-e –0.031 0.126 3.2 –0.028 0.137 3.6 –0.034 0.111 1.4 –0.034 0.111 1.4
C 18-band; zsp ≤ 1.5, |Δz| ≤ 0.15 14-band; zsp ≤ 1.5, |Δz| ≤ 0.15 18-band; zsp > 1.5, |Δz| ≤ 0.15 14-band; zsp > 1.5, |Δz| ≤ 0.15

Code bias scatter outliers % bias scatter outliers % bias scatter outliers % bias scatter outliers %
QNA –0.0004 0.053 14.6 0.0001 0.061 16.6 0.0074 0.072 26.3 0.0222 0.070 35.0
AN-e –0.017 0.070 27.6 –0.010 0.076 33.6 0.051 0.078 50.7 0.045 0.077 66.4
EC-e –0.003 0.065 16.1 –0.000 0.064 14.5 0.015 0.077 32.3 0.015 0.077 29.5
PO-e –0.012 0.049 12.6 –0.011 0.047 9.4 0.019 0.075 48.3 0.026 0.074 37.7
RT-e –0.016 0.062 19.6 –0.014 0.064 21.1 0.040 0.072 31.8 0.039 0.071 41.9

Notes. For a description of other methods (namely AN-e, EC-e, PO-e and RT-e) see the text. The table is divided into three parts (namely A, B
and C). Data for the other empirical method have been extracted from Hildebrandt et al. (2010). In each part of the table we list the results (on
both the 18 and the 14 bands datasets) for a specific subsample of the PHAT objects. Part A: statistical indicators (bias and scatter) for the 18
and 14 bands computed on objects with |Δz| ≤ 0.15 and for objects with |Δz| ≤ 0.15 and R < 24. The column “outliers” gives the fraction of outliers
defined as objects with |Δz| > 0.15. Part B: the same but for |Δz| ≤ 0.5. Part C: the same but for objects with spectroscopic redshift zsp ≤ 1.5
and |Δz| ≤ 1.5, and for zsp > 1.5 and |Δz| ≤ 1.5. The definitions of bias, scatter, and outliers fraction are given in the text. Values were computed by
the PHAT collaboration on the whole PHAT1 dataset.

(a) (b)

Fig. 2. Results obtained by our model and
provided by the PHAT contest board in
terms of direct comparison between our
photometric and blind spectroscopic in-
formation. The a) panel plots the pho-
tometric vs. spectroscopic redshifts for
the whole dataset using 10 photomet-
ric bands (Experiment 37). In panel b)
the same but using only 14 photomet-
ric bands (Experiment 26). (Courtesy of
H. Hildebrandt).

– EC-e: Empirical χ2, a subclass of kernel regression methods;
which mimics a template-based technique with the main dif-
ference that an empirical dataset is used in place of the tem-
plate grid (Wolf 2009);

– PO-e: Polynomial fit, a “nearest neighbor” empirical photo-z
method based on a polynomial fit so that the galaxy redshift
is expressed as the sum of its magnitudes and colors (Li &
Yee 2008);

– RT-e: Regression Trees, based on random forests which are
an empirical, non-parametric regression technique (Carliles
et al. 2010).

More details can be found in the quoted references and in
Hildebrandt et al. (2010).

For each of the datasets (18 and 14 bands), statistics in
Table 3 refer to several regimes: the first one (A) defines all ob-
jects having |Δz| > 0.15 as outliers and it is divided into two

sections: the left hand side includes all objects, while the right
hand side includes objects brighter than R = 24; the second
one (B) defines objects having |Δz| > 0.50 as outliers; the third
one (C) defines as outliers objects having |Δz| > 0.50 and di-
vided into a left side, for objects with z ≤ 1.5 and a right side
having z > 1.5.

By analyzing the MLPQNA performance in the different
regimes, we obtained:

All objects: in the 18 bands experiment, QNA scores the
best results in term of bias, and gives comparable results
with PO-e in terms of scatter and number of outliers. In fact,
while the scatter is slightly larger in Part A than those of
PO-e method (0.052 against 0.056), the number of outliers is
lower (18.0% against 16.3%), and in Part. B is the viceversa
(0.124 against 0.114 and 3.1% against 3.8%). In the 14-band ex-
periment QNA obtains values slightly higher than PO-e in terms
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of scatter (0.051 against 0.063) and than EC-e in terms of bias
(0.002 against 0.0028). For the fraction of outliers, QNA scores
turn out to be larger than PO-e and EC-e (13.7% and 16.7%
against 19.3%).

Bright objects: for bright objects (R < 24), the QNA result-
ing bias is again the best within the different empirical meth-
ods, while for scatter and number of outliers, QNA obtains
slightly higher values than PO-e in both the 18 (0.047 against
0.053 and 10.7% against 11.7%) and the 14 band datasets (0.046
against 0.060 and 7.1% against 13.7%).

Distant vs. near objects: in the distant sample (zsp > 1.5)
QNA scores as first in terms of bias, scatter, and number of
outliers for 18 bands. In the 14-band dataset case, it is the
best method in terms of scatter, but with a bias (0.015 against
0.0222) and number of outliers (29.5% against 35.0%) higher
than EC-e. In the near sample (zsp < 1.5) QNA is the best
in terms of bias. The scatter is slightly higher than PO-e’s
for both 18 (0.049 against 0.053) and 14 bands (0.047 against
0.061). For outliers, PO-e performs better at 18 bands (12.6%
against 14.6%), while PO-e and EC-e perform better at 14 bands
(9.4% and 14.5% against 16.6%).

6. Summary and conclusions

For the first time the MultiLayer Perceptron with quasi Newton
learning rule described here has been exploited to solve regres-
sion problems in the astrophysical context. This method was
applied on the whole PHAT1 dataset of N = 1984 objects
Hildebrandt et al. (2010) to determine photometric redshifts after
an optimization of the model performed by using the 515 avail-
able spectroscopic redshifts as a training set.

The statistics obtained by the PHAT board, by analyzing the
photometric redshifts derived with MLPQNA, and the compar-
ison with other empirical models are reported in Table 3. From
a quick inspection of Table 3, no empirical method exists that
can be regarded as the best in terms of all the indicators (e.g.
bias, scatter, and number of outliers) and that EC-e (Empirical χ2

method), PO-e (Polynomial Fit method), and MLPQNA produce
comparable results. However, the MLPQNA method, on aver-
age, gives the best result in terms of bias in any regime.

By considering the dataset with 18 bands reported in Parts A
and B of Table 3, MLPQNA obtains results for the scatter com-
parable to the PO-e method. In fact, in Part A, PO-e’s scatter is
better than MLPQNA, but with more outliers, while the trend is
reversed in Part B. In the other cases both the scatter and number
of outliers are slightly worse than with PO-e and EC-e methods.

In general, MLPQNA seems to have better generalization ca-
pabilities than most other empirical methods especially in the
presence of underpopulated regions of the knowledge base. In
fact, ∼500 objects with spectroscopic redshifts spread over such
a large redshift interval are by far not sufficient to train most
other empirical codes on the data. This has also been pointed out
by Hildebrandt et al. (2010), who noticed that the high fraction
of outliers produced by empirical methods is on average higher
than what is currently found in the literature (∼7.5%) and ex-
plained it as an effect of the small size of the training sample,
which poorly maps the very wide range in redshifts and does not
include enough objects with peculiar SED’s.

In this respect we wish to stress that, as already shown in
another application (cf. Brescia et al. 2012a) and as will be
more extensively discussed in a forthcoming paper, MLPQNA
enjoys the very rare prerogative of being able to obtain good
performances, also when the KB is small and thus undersampled
(Brescia et al., in prep.).
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