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1 Introduction

Computing has rapidly established itself as esaergnd important to many
branches of science, to the point wheoenputational sciencis a commonly used
term. Indeed, the application and importance of matng is set to grow
dramatically across almost all the sciences. Coimguias started to change how
science is done, enabling new scientific advanbesugh enabling new kinds of
experiments. These experiments are also generaigg kinds of data of
increasingly exponential complexity and volume. idefing the goal of being able
to use, exploit and share these data most effégiiva huge challenge.

It is necessary to merge the capabilities of aditlstem to store and transmit bulk
data from experiments, with logical organization fies into indexed data
collections, allowing efficient query and analytioperations. It is also necessary to
incorporate extensive metadata describing eachriexpet and the produced data.

8
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Rather than flat files traditionally used in sciotdata processing, the full power of
relational databases is needed to allow effectiveractions with the data, and an
interface which can be exploited by the extensidiergific toolkits available, for
purposes such as visualization and plotting.

Different disciplines require support for much madligerse types of tasks than we
find in the large, very coherent and stable virtagdanizations. Astronomy, for
example, has far more emphasis on the collatiofiedérated data sets held at
disparate sites (Brescia et al. 2010). There is feassive computation, and large-
scale modeling is generally done on departmentghHrerformance Computing
(HPC) facilities, where some communities are fornoédvery small teams and
relatively undeveloped computational infrastructurneother cases, such as the life
sciences, the problems are far more related tadggaeous, dispersed data rather
than computation. The harder problem for the futarketerogeneity, of platforms,
data and applications, rather than simply the soflihe deployed resources. The
goal should be to allow scientists to explore thatadeasily, with sufficient
processing power for any desired algorithm to pgsede Current platforms require
the scientists to overcome computing barriers betmteem and the data (Fabbiano
et al. 2010).

Our convincement is that most aspects of compwlitigsee exponential growth in
bandwidth, but sub-linear or no improvements atrallatency. Moore’s Law will
continue to deliver exponential increases in mensizg but the speed with which
data can be transferred between memory and CPUsremiain more or less

constant and marginal improvements can only be rttadeigh advances in caching
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technology. Certainly Moore’s law will allow the eation of parallel computing
capabilities on single chips by packing multiple CPBores onto it, but the clock
speed that determines the speed of computatiamst@ined to remain limited by a
thermal wall (Sutter 2005). We will continue to see exponengadwth in disk
capacity, but the factors which determine latentyata transfer will grow sub-
linearly at best, or more likely remain constariu$ computing machines will not
get much faster. But they will have the parallempaiting power and storage
capacity that we used to only get from specialstdivare. As a result, smaller
numbers of supercomputers will be built but at ewdgher cost. From an
application development point of view, this willgigre a fundamental paradigm
shift from the currently sequential or parallel gm@mming approach in scientific
applications to a mix of parallel and distributedgramming that builds programs
that exploit low latency in multi core CPUs. Bugeyhare explicitly designed to cope
with high latency whenever the task at hand reguinere computational resources
than can be provided by a single machine. Computiaghines can be networked
into clouds or grids of clusters and perform tabkd were traditionally restricted to
supercomputers at a fraction of the cost. A consecgl of building grids over wide-
area networks and across organizational boundari#sat the currently prevailing
synchronous approach to distributed programming e to be replaced with a
fundamentally more reliable asynchronous programgnapproach. A first step in
that direction is &rvice-Oriented ArchitecturgSOA) that has emerged and support

reuse of both functionality and data in cross-orgional distributed computing

10
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settings. The paradigm of SOA and the web-serviéastructures facilitate this
roadmap (Shadbolt et al. 2006).

Traditionally, scientists have been good at sharamgl reusing each other's
application and infrastructure code. In order t&etaadvantage of distributed
computing resources in a grid, scientists will @asingly also have to reuse code,
interface definitions, data schemas and the digedh computing middleware
required to interact in a cluster or grid. The famntal primitive that SOA
infrastructures provide is the ability to locatedanvoke a service across machine
and organizational boundaries, both in a synchreramd an asynchronous manner.
The implementation of a service can be achievedvigpping legacy scientific
application code and resource schedulers, whidwallfor a viable migration path
(Taylor et al. 2007). Computational scientists vii# able to flexibly orchestrate
these services into computational workflows. Thendards available for service
design and their implementation support the rapifinition and execution of
scientific workflows. With the advent of abstracachines, it is now possible to mix
compilation and interpretation as well as integratede written in different
languages seamlessly into an application or ser¥icese platforms provide a solid
basis for experimenting with and implementing dawspecific programming
languages and we expect specialist languages foputational science to emerge
that offer asynchronous and parallel programmingl@®while retaining the ability
to interface with legacy FORTRAN, C, C++ and Jawdex

The original work of the present thesis consistthefdesign and development of a

multi-purpose genetic algorithm implemented witre tPGPU/CUDA parallel

11
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computing technology. The model comes out fromritlaehine learning supervised
paradigm, dealing with both regression and clasatifin scientific problems applied
on massive data sets. The model was derived from dhiginal serial
implementation, named GAME (Genetic Algorithm Modetperiment) deployed
on the DAME Program hybrid distributed infrastructure and maaiailable
through the DAMEWARE data mining web application. In such environméret t
GAME model has been scientifically tested and \aéd on astrophysics massive
data sets problems with successful results (Brestcé 2011b). As known, genetic
algorithms are derived from Darwin’s evolution lawd are intrinsically parallel in
its learning evolution rule and processing dataepas. The parallel computing
paradigm can indeed provide an optimal exploithef internal training features of
the model, permitting a strong optimization in terwf processing performances.
Such requirement is particularly important in ca$eeal problem cases having to
deal with massive data sets, such as, for instatihee,data quality mining of
observed and telemetry data coming out from astnicel ground- and space-based
instrumentation. We intend to perform experimerit&BU-based GAME model on
EUCLID® Mission, a multi-wavelength space telescope, miediby European
Space Agency (ESA), foreseen to be launched in ,2@1®&hich our DAME group

is leading the data quality science team.

! http://dame.dsf.unina.it
2 http://dame.dsf.unina.it/beta_info.html
® http://sci.esa.int/euclid/

12
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2  Data Mining on massive data sets: An Overview

Let’s start from a real and fundamental assumptigmlive in a contemporary world
submerged by a tsunami of data. Many kinds of dethles, images, graphs,
observed, simulated, calculated by statistics ayuimed by different types of
monitoring systems. The recent explosion of Worldd&/Web and other high
performance resources of Information and Commuioicatechnology (ICT) are
rapidly contributing to the proliferation of suchamous information repositories.
In all human disciplines, sciences, finance, s@set medicine, military, the
archiving and electronic retrieval of data are bwrboth a common practice and the
only efficient way to perform enterprises.

Despite of this situation, there is an importanesfion: how are we able to handle,
understand and use them in an efficient and complat/?

It is now widely recognized the chronic imbalanetween growth of available data
and ability to manage them (Hey et al. 2009).

In most cases the acquired data are not directgrpgretable and understandable.
Partially because they are obscured by redundéotmation or sources of noise,

and mostly because they need to be cross corredatkéh principle we never know

13
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which is their hidden degree of correlation, alggduse in many cases we proceed
to explore data without any prior knowledge abobhatwve are looking for.

Moreover, for each social or scientific discipliitne data are registered and archived
in an inhomogeneous way, making inefficient theilalsée tools useful to explore
and correlate data coming from different sources.

Such a scenario imposes urgently the need to fgemid apply uniform standards
able to represent, archive, navigate and explota @d@ a homogeneous way,
obtaining the required interoperability betweendiféerent disciplines.

This basic issue has been reflected within thentedefinition (Hey et al. 2009) of
the fourth paradigm of modern science, after theexperiments and simulations. It
is the E-science, which is the extraction of knalgke through the exploration of
massive data archives, or Knowledge Discovery itaDases (KDD).

The fourth paradigm posés primis the problem of the understanding of data, still
before their representation or registering stratégyscientific terms it implicitly
identifies a methodology, based on the “with opendhinvestigation and without
any knowledge bias, of any kind of data set, im@eaf information useful to reveal
the knowledge.

Of course this methodology imposes to make use ffi€iemt and versatile
computing tools, able to bridge the gap betweenadarulimited capacity (both in
terms of processing time and 3D dimensionality) prafjressive and steady growth
in the quantity and complexity of the data. In otkerds able to replicate at a
technological level the high learning, general@atand adaptation capabilities of

human brain, by growing exponentially its infornoatiprocessing features.

14
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These two prerogatives, investigation without krexge bias and fast human
intelligence, are not casually the milestones at ltlase of two rapidly growing
disciplines: respectively Data Mining (DM) and Mauh Learning (ML).

For those who prefer the formal definitions, DM che easily defined as the
extraction of information, implicit as well a priamknown, from data.

But the definition of ML is not so easy to be foflated. There are in fact
philosophical debates, partially divergent and Hardummarize in a single formal
definition. However, in practice we can simplifg gxpression.

There are in particular two key concepts to be #&ilyncleared: first, what we
technically stand for learning? Second, how learipractically connected to the
machine (computer) processing rules?

Usually, in practical terms, what we can easilyifyes not if a computer is able to
learn, but mostly if it is able to give correct sess to specific questions. But such a
level of ability is too weak to state that a congsubas learned, especially if we
consider that real learning is related to the gaimation ability of a problem. In
other words, to verify that a machine gives coreewers to direct questions, used
to train it, is only the preliminary step of its mplete learning. What is more
interesting is the machine behavior in unpredics#tiations, i.e. those never
submitted to the machine during training.

Paraphrasing one of the key concepts of Darwinfiory of evolution of living
species, ML is mainly interested to provide ingdlice to a computer, i.e.

adaptation and generalization to new or unpredietedving situations.

15
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We defined above DM as the automatic or semi-auticnpeocess of information
discovery within massive data sets. After the presiconsiderations about ML, we
are now able to provide an analogous operativenttiefn also for it: a machine has
learned if it is able to modify own behavior in antonomous way such that it can
obtain the best performance in terms of answektereal stimuli.

This definition shifts the focus on a different espof ML, which is not the pure
knowledge but the adaptation performance in redl @mactical situations. In other
words we are able to verify the training improvetsehrough the direct comparison
between present and past reaction performancesednohore in terms of evolution
measurement rather than abstract knowledge.

But under theoretical aspects such kind of learr{ggplution of behavior) is of
course too much simple and weak. We know that alsmals, considered less
intelligent than humans, can be trained to evohartreaction to external stimuli.
But this does not necessarily mean that they hasreased their knowledge, i.e. that
they have really learned!

Learning is also thinkingcpgito ergo sumto cite the philosopher Descartes), which
implies to have and use own cognitive propertiesetach the goal. Not only to
answer more or less in a right way to external w@iinThe latter is basically a
passive process of action-reaction, not a realtre$an active process of thinking
and controlled behavior.

So far, the final role of ML must be more than eMimn performance. To really

decide if any machine was able to learn, it is irably needed to verify if the

16
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machine may offer a conscious purpose and whetli®able to pursue and achieve
its own abilities, acquired during training.

Besides these theoretical considerations, fortinMeé treats physical problems of
real world, which are those composed or represemigdtangible data and
information, as result of direct or indirect obssigns/simulations. In such cases we
can restrict the scope and interest of the ML amdl tBchniques, by focusing on
their capability to identify and describe orderdductures of information within
massive data sets (essentially structures in tha platterns), mixed with noise,
together with the ability to predict the behavidrreal complex systems. In other
words, not only identification and prediction cajtiéibs, but also description of the

retrieved information, important for classificatiohunknown events.
2.1 A scientific use case: Astrolnformatics

Over the last decade or two, due to the evolutibrinstruments and detectors,
astronomy has become an immensely data rich sciéme® triggering the birth of
Astroinformatics: a new discipline placed at thessroad between traditional
astronomy, applied mathematics, computer sciendel@m technologies. Among
the other things, Astroinformatics aims at provglite astronomical community
with a new generation of accurate and reliable odthand tools needed to reduce,
analyze and understand massive and complex datasétdata flows which go far
beyond the reach of traditionally used methods.

In the broadest sense, KDD/DM regards the discowérynodels” for data. There
are, however, many different methods which can Beduto discover these

underlying models: statistical pattern recognitiorgchine learning, summarization,

17
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etc., and an extensive review of all these modasildvtake us far beyond the
purposes of this paper. In what follows we shadr#fiore summarize only the main
methodological aspects (Bishop 2006 and Duda 200Echine learning (ML),
which is sometimes considered to be a branch dfiéal Intelligence (Al), is a
scientific discipline concerned with the design aleyelopment of algorithms that
allow computers to evolve behaviors based on engbidata. A “learner” can take
advantage of examples (data) to capture charateris interest of their unknown
underlying probability distribution.

These data form the so called Knowledge Base (KB$ufficiently large set of
examples to be used for training of the ML impletadon, and to test its
performance. The difficulty lies in the fact thdtem, if not always, the set of all
possible behaviors given all possible inputs is lerge to be covered by the KB.
Hence the learner must possess some generalizatpabilities in order to be able
to produce useful output when presented new instanc

From a completely general point of view, regardlgbe specific method
implemented, DM is a rather complex process. Intmases the optimal results can
be found only on a trial and error base by compgatime outputs of different
methods or of different implementations of the samethod. This implies that in
order to solve a specific problem a lengthy fineitg phase is often required. Such
complexity is among the reasons for a slow uptakehese methods by the
community of potential users which still fail toaat them. In order to be effective,
a DM application requires a good understandinchefrhathematics underlying the

methods, of the computing infrastructure, and efe¢bmplex workflows which need

18
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to be implemented. So far, most domain expertshe dcientific community are
simply not willing to make the effort needed to erstand the fine details of the
process, and prefer to recur to traditional apgreaavhich are far less powerful, but
which may be more user-friendly. This situatioruissustainable as the ever larger
MDS become available, and there will be no vialileraatives to DM methods for
their exploration.

A good example of the challenges that have to lwremded by the astronomical
community is the Large Synoptic Survey Telescop®@ST") which should become
operational within this decade, and which will pwod a data flow of about 20 — 30
TB per observing night, or many PB/year. LSST ratadwill therefore need to be
calibrated, analyzed and processed in real time gpekd, accuracy and reliability
become a must.

By addressing the case of space-based astronoimstaimentation, an important
aspect involving machine learning is the data ggakksessment: the so-called Data
Quality Mining. A real case is the Euclid Missigmesecraft and detector (Brescia et
al. 2011). As for a typical space observing insenim sources and types of data

outcoming from the Euclid system are:

1. Pre-mission data (catalogues, satellite and missiodeling data, etc.) used before
and during the mission for calibration and modelpwgposes mainly. The data for
this processing level are prepared before the ams&ind refined/updated during the
in-flight commissioning and initial calibration pk&) and are used as appropriate,

before and during the mission.

4 http://Iwww.Isst.org/Isst/scibook
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2. External data (images, catalogues, all relevantibredion and meta-data,
observational data in science-usable format) ddrifrem other missions and/or
external survey projects, reformatted to be hanttedogeneously with Euclid data.
This data is required to allow the EC to providefibal data products at the expected
level of accuracy. The data at this level is detdeby the EC.

3. Level 1: is composed of three separate processield, namely Level 1a, Level 1b

and Level 1c.

a. Level la refers to telemetry checking and handlimgluding real-time

assessment (RTA) on housekeeping;

b. Level 1b comprises quick-look analysis (QLA) on esde telemetry,
production of daily reports, trend analysis on rimstents performance and
production of weekly reports. The data for thisqassing level come from the

satellite via MOC and are used to perform qualdgtool.

c. Level 1c refers to the high-quality removal of mshents signatures which

provides data that will used to process Level 2.dat

4. Level 2: instrumental data processing, including ¢hlibration of the data as well as
the removal of instrumental features in the datee @ata processing at this level is

under the responsibility of the SDCs in chargehefinstruments monitoring.

5. Level 3: data processing pipelines for the proaunctf science-ready data. The Level

3 data are also produced by SDCs.

It goes without saying that the most valuable agE&uclid are the data and, due to

the huge data volume, the quality control becomerueial aspect of all five items
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listed above and over the entire lifetime of theexikment: not only scientific data
available at all various intermediate stages of #uuiring and processing
workflows and pipelines, as it is foreseen duringrnmal operations, but also
telemetry, diagnostic, control, monitoring, calitiwa information coming in the
ground segment from the instrument.

DM on MDS poses two important challenges for thenpotational infrastructure:
asynchronous access and scalability.

Most available web-based DM services run synchrslypu.e., they execute jobs
during a single HTTP transaction. This may be abergid useful and simple, but it
does not scale well when it is applied to long-nasks. With synchronous
operations, all the entities in the chain of comdhéatient, workflow engine, broker,
processing services) must remain up for the duratd the activity: if any
component stops, the context of the activity is.los

Regarding scalability, whenever there is a largantjty of data, there are three
approaches to making learning feasible. The finsé dés trivial, consisting of
applying the training scheme to a decimated dataGieviously, in this case, the
information may be easily lost and there is no gasge that this loss is negligible in
terms of correlation discovery. This approach, havemay turn very useful in the
lengthy optimization procedure that is required ragny ML methods (such as
Neural Networks or Genetic Algorithms).

The second method relies in splitting the problensmaller parts (parallelization)
sending them to different CPUs and finally comhtine results together. However,

implementation of parallelized versions of learnedgorithms is not always easy
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(Rajaraman et al. 2010), and this approach shoeldoiowed only when the

learning rule, such as in the case of Genetic Algms (Meng Joo et al. 2009), or
Support Vector Machines (Chang et al. 2001), isinsically parallel. However,

even after parallelization, the asymptotic time ptexity of the algorithms cannot
be improved.

A third and more challenging way to enable a leggrparadigm to deal with MDS
is to develop new algorithms of lower computatioo@ainplexity, but in many cases
this is simply not feasible (Paliouras 1993).

In some situations, background knowledge can makgossible to reduce the
amount of data that needs to be processed by adoatparticular learning rule,
since in many cases most of the measured attrilbodggsturn out to be irrelevant or
redundant when background knowledge is taken intount. In many exploration
cases, however, such background knowledge simpgs dwt exist, or it may

introduce biases in the discovery process.
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3  State of the art of computing technology

Over the years, the computational complexity of-vearld problems and the
scientific simulation completeness have increasaddhin hand with available
computational power. This chase to the performadma® led to the need for a
smarter management of available hardware resousmoes thus to create new
architectures for High Performance Computing (HPC).

Actually the most important architectures commomded are: Grid Computing,

Cloud Computing and HPC.

Scale

Distributed Systems

Clouds

Application Services
Oriented Oriented
Figure 1 - Cluster-Grid-Cloud computing overview ard comparison
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3.1 GRID Computing

The term “the Grid” was coined in the mid-1990sd&note a (then) proposed
distributed computing infrastructure for advancetkisce and engineering. Much
progress has since been made on the construct&uchbfan infrastructure and on its
extension and application to commercial computingbfems. And while the term
“Grid” has also been on occasion applied to evangttirom advanced networking
and computing clusters to artificial intelligenchere has also emerged a good
understanding of the problems that Grid technokgidress, as well as a first set of
applications for which they are suited (Foster.e1298).

In a short time grid technologies have spread adr dhe world, especially in
universities and research institutes due to ttengtboost of the high energy physics
experiments (such as CERN’s experiments) that uevolarge international
collaborations.

The aim of grid computing is to share large amowfitsnemory and computing
resources, distributed on a large scale, belongimtifferent administrative domains

and characterized by a high degree of dynamism.

Figure 2 — Example of GRID architecture

24



UNIVERSITA oecu STUDI o

NAPOLI FEDERICOI GPY Computing for
Facolta di Ingegneria - Corso di Studi in Ingegneria Informatica Machine Learnlng Algorlth ms

This sharing is, necessarily, highly controlled,thwiresource providers and
consumers defining clearly and carefully just wisashared, who is allowed to
share, and the conditions under which sharing acdr deal the administration of
this complex infrastructure, it introduces new imtpot concepts and services
compared to conventional distributed systéms

The first change brought, which is central to tiégsophy of the Grid, ishe
concept of Virtual Organization (VOrg), which plagskey role, given the multi-
disciplinary nature of large collaborations aimédw this technology. A VOrg is
defined as a set of mutually distrustful particiigawith varying degrees of prior
relationship that want share resources in ordgretdorm some task (Foster et al.
1998). It can also be composed of members of aesilogal institution, which
shares the same structure with other campus (ie cdscampus Grid). Grid
architectures are therefore designed to handlei-M0Oltg environments that work
together with different privileges and access peti@bout shared resources, unlike
the traditional distributed systems.

Another important innovation of Grid systems is ttigh level of virtualization
that mediates access to and virtualizes the haedweaource. One who logs the grid
does not know the available resources and exigtiligies on them, so the access
cannot be done with the classic login process.

The GRID introduces the concept of “GRID certif&gato authenticate users. A
GRID certificate is issued by a Certificate Authgi(CA) which checks the identity

of the user and guarantees that the holder ofcthisficate exists and his certificate

5 http://www.scope.unina.it/C8/grid-computing/detzag px
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is valid. The certificate is used for authenticatinstead of the user's account to
avoid the replication of the user's account tadzRID sites. When authenticating to
a site, the user's certificate is mapped to a lacabunt under which all commands
are executed. All GRID jobs use a proxy of theifieaste with a limited lifetime.
This enhances security because the user has tstafglieh the validity of his
certificate after the lifetime of the proxy has edd

After logged in the user makes the discovering wdilable resources using
community and integrated services according tadlgeirements of its applications.
After an automatic or manual choice of the bestueses, user's jobs are submitted
from the front end to the physical Grid resouroshjch close the virtualization
process, mapping the user on a local account titlatw the applications. In Grid, a
resource is a reusable entity that is employedilffidl fa job or resource request. It
could be a machine, network, or some service tkatsyinthesized using a
combination of machines, networks, and softwar@ Rbsource broker is defined as
an agent that controls the resource. It acts as\ader for a resource could provide
the consumers with a ‘value added’ abstract reso{i¢cauter et al. 2002).
The scheduling is critical points of grid computinglthough this problem was
extensively treated for several kinds of systemanyntraditional approaches are
inadequate to grid due its characteristics. Whilegaditional systems, resources and
jobs are under the direct control of the schedulerGrids, the resources are
heterogeneous, geographically distributed and Igekan different individuals or
organizations, each with their own scheduling pesiccost models of access, loads

work and dynamic availability of resources throdigé time. The lack of centralized
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control, along with the presence of users that ggaejobs different from each
other, make scheduling more complicated than iditteemal computing systems.
Due to the expensive scheduling decisions, dagingtan and out, and potentially

long queue times, many Grids don’t natively supjptsgractive applications.

3.2 CLOUD Computing

The name cloud computing was inspired by the clsymdbol that's often used to

represent the Internet in flowcharts and diagrams.

Cloud computing means that the user applicationlsdata are managed externally
(online), rather than the user's machine (Viegad200he basic idea is to provide a
heterogeneous collection of resources, where featane not known to the user. The
main characteristic of cloud computing is to makailable heterogeneous resources
as if they were implemented by a single standastesy. The actual implementation

of the resources is not defined in detail as tlehigecture is service oriented.

How Cloud Computing Works —biaira
r" Database
(Storage)

Cilent Computer
Computer

- Network
> ag

Figure 3 — Example of CLOUD architecture
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A Cloud service has three distinct features théfedintiate it from traditional
hosting. It is sold on demand, typically by the oteor the hour; it is elastic, i.e. a
user can have as much or as little of a servideeasants at any given time; and the
service is fully managed by the provider. This Vgmr provider hosting” fully
handles the computer hardware and software artiitecEverything that the user
needs is an Internet connection to access thea datl to the applications for
manage them. This approach allows access to fesil#nd services that are often
cost-prohibitive for many organizations to meeexceed.

These services are organized in three classes:

Software-as-a-Service (SaaS): In the SaaS model, the user buys a subscription t
some software product, but some or all of the dathcode resides remotely. It will
be better than buying the hardware and softwakeegs off the burden of updating
the software to the latest version, licensing anafi course more economical. It
doesn’t keep any code on the client machine, dveaugh some code might execute
on the client temporarily. For example, Zoho Do¢a Google alternative to
Microsoft Office) relies on JavaScript, which ruims the Web browser. In this
model, applications could run entirely on the netyavith the user interface living
on a thin client. In this layer, the users can ascn application and information

remotely via the Internet and pay only for thaythee.

8 https://www.zoho.com/docs/
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Platform-as-a-Service (PaaS): From the consumer viewpoint, PaaS software
probably resembles SaaS, but instead of softwarelojgers building the program to
run on their own Web infrastructure, they builddtrun on someone else’s. PaaS
offers an advanced integrated environment for ngldtesting, deploying and
upgrading custom applications. For example, Micfioséfers Windows Azuré
provides developers with on-demand compute, storagévorking and content
delivery capabilities to host, scale and manage® Afmlications on the Internet
through Microsoft data centers. A service that t#gelopment organizations write

programs to run specifically on Google's infrastue.

Infrastructure-as-a-Service (IaaS): Similar to PaaS, laaS lets the development
organization to define its own software environmdiitis basically delivers virtual
machine images to the laaS provider, instead ofnaras, and the machines can
contain whatever the developers want. The proviler automatically grow or
shrink the number of virtual machines running a¢ given time so that programs
can more easily scale to high workloads, saving egowhen resources aren’t
needed. The client typically pays orper-usebasis. Thus, clients can save cost as
the payment is only based on how much resourcerday use. Infrastructure can

be expanded or shrunk dynamically as needed.

Cloud Computing model looks very different than dsoine, with resources in the

Cloud being shared by all users at the same timeqjntrast to dedicated resources

" https://partner.microsoft.com/italy/40084702
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governed by a queuing system). This should alldeniey sensitive applications to
operate natively on Clouds, although ensuring algawugh level of QoS (Quality
of Service) to the end users is not trivial, anavill likely be one of the major

challenges for Cloud Computing as the Clouds gnowdale, and number of users

(Foster et al. 2008).

3.3 High-Performance Computing (HPC)

The term is frequently used in the field of sciatcalculus, generally referring
to all technologies used to create processing systapable of delivering very high
performance of order of teraflop. The term is oftesed as a synonym for
“supercomputer”. In this case, the Clusters aréassical example of HPC, mainly
used for calculations, rather than for 1/0O orientgxkrations like web services or

database.
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Figure 4 — Example of HPC architecture
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HPC was once restricted to institutions that coafford the significantly
expensive and dedicated supercomputers of the Tilmere was a need for HPC in
small scale and at a lower cost which lead to elusbmputing. The emergence of
cluster platforms was driven by a number of academjects, such as Beowlllf

A Beowulf cluster (whose name is inspired by thergpnous hero of the epic
Saxon) is a multi-computer architecture for pataemputing. Usually it consists of
several client nodes controlled by a server nodenected to each other via
Ethernet. Once, they were created by assemblinge homogeneous but less
powerful PCs, creating bigger computing power. Beldbwwvas introduced in
Astrophysics to do parallel processing of imageseoked by the CCD mosaic
(mosaic detectors, where each CCD has a dedic&gdviRddleware systems such
as MPI (Message Passing Interface) or PVM (Parslielal Machine), allow the
creation of clustering programs, portable acros&a variety of clusters.

HPC systems are used to solve advanced computifiostaems, for example:
decoding genomes, animating movies, analyzing 6ighmisks, streamlining crash
test simulations, modeling global climate solutiomsd other highly complex
problems, always characterized by extreme procgsswomplexity. The most
common way of solving complex problems has been use specialized
supercomputing hardware, leading to increase ttsdo purchase new hardware,

which would become obsolete quickly.

8 http://www.beowulf.org/
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3.4 GPGPU

GPGPU is an acronym standing for General PurposepGting on Graphics
Processing Units. It was invented by Mark Harris 2002 (Harris 2003), by
recognizing the trend to employ GPU technologyriotr graphic applications.

With such term we mean all techniques able to dgvellgorithms extending
computer graphics but running on graphic chips.t&J@006 these chips have been
difficult to be used, mainly because programmersevemnditioned to use specific
APIs (Application Programming Interface) to accesgraphic devices, hence based
on methods made available by libraries like Operdgdld Direct3D. These APIs
often were strongly limiting applications desigrdatevelopment.

In general the graphic chips, due to their inténsature of multi-core processors
(many-core) and being based on hundreds of flogdoigt specialized processing
units, make many algorithms able to obtain higloae(or two orders of magnitude)
performances than usual CPUs (Central Processintg)Umhey are also cheaper,
due to the relatively low price of graphic chip quonents.

Particularly useful for super-computing applicatiproften requiring several
execution days on large computing clusters, the BP@aradigm may drastically
decrease execution times, by promoting researehlamge variety of scientific and
social fields (such as, for instance, astrophyshisjogy, chemistry, physics,
finance, video encoding and so on).

Besides the architecture intrinsically complianthaparallel computing, since the
2007 there was an increasing of programming tooffered by commercial

solutions, growing the computing power and avalighi This evolution is still
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extending its exploit, also due to the recent uggraf the 3D technology (in most
cases pushed up by videogames world). In the pastitleo technology was based
on a pipeline of pre-defined and static instructiobut progressively it started to
evolve towards a new approach, in which the GPEddly programmed by using
the shader models. In the field of computer graphécshader is a set of software
instructions that is used primarily to calculatedering effects on graphics
hardware with a high degree of flexibility. Shadare used to program the GPUs
programmable rendering pipeline, which has moatlyesseded the fixed-function
pipeline that allowed only common geometry transfation and pixel-shading
functions; with shaders, customized effects candsel (Ebert et al. 2000).
Nowadays there is available the shader model 4s0, mamed as “model with
unified shaders”, able to use the same instruciiento handle different types of
shaders. This solution can optimize the dynamiesource management for
different types of shaders. More in detail, whikesspGPU generations were simply
devices able to extend classical graphic pipeles, generation GPUs have a more
flexible internal engine, supported by a seriepmfcessing units specialized in a

predetermined function (Owens et al. 2008).

3.5 A discussion about computing architectures
For over two decades, before the advent of muhicarchitectures, the general
purpose CPUs have been characterized, at eachagjenerby an almost linear
increasing of performances together with a deoangasif costs, also known as

Moore’s Law (Moore 1965), shown in Figure 5,
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Figure 5 — The Moore’s CPU Law

So far, we have now available low-cost desktop Bkls to execute tens of Giga
floating-point Operations per Second (GFLOPS) aedes clusters with hundreds
of GFLOPS.

This performance growth engaged a fundamental atigucycle in the Computer

Science:

Users, being rapidly used to performance growtlcfonputers, especially in terms of
execution speed, processing reliability and maksking capability, are continuously

asking for better software systems;

Developers, by observing the constant increaseoftfvare performances, together
with processor technology, always ask for bettedWware performances to optimize

application speed.

There is a downside of this virtuous mechanism. Pphesical constraints of

Thermodynamics started to cause relevant probldmewer consumption and heat
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dissipation inside the modern CPUs, by slowing saaabiution trend and by forcing

computer manufacturers to a drastic revolutiorhim processor architecture design.
In fact, in order to make feasible this linear ttexf performances, by controlling the
thermal effects, the new strategy was to reduce dbek frequencies and to

distribute working loads over several processingsuftores) located on the same
chip. From the architectural point of view, suchwneoadmap has inevitably

changed the design approach adopted up to now enstfitware development

environment.

They in fact moved away from the past sequentialcsire. Such methodology

appeared obsolete on the new multi-core infrasirectessentially because the
sequential program can run on a single core, Igavinexploited the rest of

processor cores.

Furthermore, without an effective growth of perfamaes, the developers would not
be able to introduce new features in the softwaalyrcts, blocking de facto the

evolution of the entire computer science business.

So far, in order to maintain the cyclic hardwaréisare trend, the software

applications had to change their perspective, ngpvawards parallel computing,

able to fully exploit the availability of parall@rchitectures. The first systems, on

which the parallel programming started, were indd®e€ mainframes.
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However they are machines, or infrastructures éGhid/Cloud cases, having some
critical points:

e Large dimensions;

» High costs for equipment and management;

« Difficult to be accessed by external developersusets;

With such problems, many applications are not #blgistify these high costs and
this was hardly limiting in practice the parallebgramming dissemination.

Nowadays the multi-core technology has reached igh bales volumes that a
parallel programming approach can be consideredsasl. This caused a trend

inversion in the software development field.

At the beginning of 2000 every silicon farm posedi@portant question: which
roadmap to follow in the processor developmenesxh the business goals?
Multi-core processors were selected by many congsarsuch as, for instance,
Advanced Micro Devices Inc. (AMD), ARM Ltd., Broagim Corp., Intel Corp. e
VIA Technologies. Examples of last generation meidtie architectures are present
either in the AMD Phenom X4 and Intel Core i7 fagsl

More specifically, these multi-core processors lzased on an integrated circuit in
which two or more processors were connected tosHree socket, in order to
increase their connection speed. Each core implaméme full set of x86
instructions and it enhances the performances, cesduconsumptions and

implements a more efficient multi-tasking. Firstaets were dual-core, comparable
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to dual-processor systems. Ideally indeed, a doi-processor would be about two
times more powerful of a single-core processor.iBytractice this gap is about one
and half times.

The evolution of such architecture proceeds thraaugtow enhancement, in which
the number of cores doubles with every new semdaotor generation. The basic
idea is to grow the core number by maintaining amgfed the execution speed of
pre-existent sequential programs.

The critical points for such architecture come ioutase of serial programs. In this
case, in the absence of the parallel approachpribeesses are scheduled in such a
way that the full load on the CPU is balanced, istrihuting them over the less
busy cores each time. However many software predai not designed to fully
exploit the multi-core features, so far the microgessors are designed to optimize
the execution speed on sequential programs.

The choice of graphic device manufacturers, likd A€chnologies Inc. (acquired
by AMD in the 2006) and NVIDIA Corp., was the maogre technology (usually
many-core is intended for multi-core systems ov@r c®res). The many-core
paradigm is based on the growth of execution sjpaeplarallel applications. Began
with tens of cores smaller than CPU ones, such kihdarchitectures reached
hundreds of core per chip in a few years.

An example of many-core architecture is the grapleidce NVIDIA GeForce GTX
560, with 336 cores, also named Streaming Proc€S§)r These cores are grouped

into units, called Streaming Multiprocessor (SM)8acores each (hence in our case
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336/8 = 42 SM). Each SP is an in-order executelhispaocessor and it shares both
control logic and instruction cache with others.
The many-core processors, in particular GPU, hadethe race for floating point

computation performance since 2004, as shown iar€i§ (Kirk et al 2010).
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Figure 6 — CPU vs. GPU throughput evolution

Since 2009 the throughput peak ratio between GP&hyreore) and CPU (multi-
core) was about 10:1. It must be issued that sables are referred mainly to the
theoretical speed supported by such chips, i.eraHLOPS against 100 GFLOPS.
Such a large difference has pushed many develdpeshift more computing-
expensive parts of their programs on the GPUs.lailge difference between GPU
and CPU is basically located into the differentiglesphilosophy, as shown in

Figure 7.

% http://developer.nvidia.com/nvidia-gpu-computingedmentation
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Figure 7 — CPUs and GPUs different design philosods.

In order to maximize the efficiency of sequentiatle, the CPU must be designed
by following some constraints:

sophisticated control logics, in order to make kingrocess instructions able to be
executed in parallel (pipelining and multi-threag)inor without to follow the
execution order imposed by the programmer (outrdéoexecution), by appearing as
sequentially executed;

cache memories of large dimensions, in order togedhe latency time during data

access or complex instruction execution;

high difference of memory bandwidth between CPU graphic chips (about ten
times higher), due to the requirements (coming faperative systems, applications
and /O devices), to be satisfied by general-puegmecessors. This makes difficult a
growth of memory bandwidth. On the contrary, by ihgvmore simple memory
models and fewer constraints to follow, GPU dedigitave been able to enhance the
memory bandwidth in a more easy way. For instatieechip NVIDIA GTX 590 has
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a memory bandwidth of about 328 GB/sec, while dall@ore i7-2600 reaches only
20 GB/sec.

Videogames have mainly led and caused such tedhenmdution trend all over
these years. The demand of higher performancesvatdst, together with the need
to obtain a higher number of floating point caltigias in less time, caused the
optimization of throughput in the GPUs for the mithreading execution. Such
hardware is able to exploit the entire GPU at adicpssing time, by also reducing
the control logic needed for each execution pracéssorder to maximize the
number of threads accessing to same data in memithgut having to access to
the DRAM, several smaller cache memories are ubething to respect the
bandwidth requirements. This results in a largezaathan chip addressable by

floating point calculations.

The GPUs are particularly efficient to solve probge with a strongly parallel
structure of data. Being able to execute samedictibns over each data-element,
there are less strong requirements about contyal.lo

The latency time of memory access can be maskédebgxecution time, instead of
using larger cache memories.

However the GPUs provide high performances on fipecases only: scientific
calculations, parallel computing and massive dats siavigation. So far, the
applications which want to exploit all their feaarwill have to use GPUs for more

complex computations, by devoting CPUs for the oé$the sequential code.
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It is important to point out that the performanees not the unique decisional factor
whenever processors are to be selected for spepfiications. Other important

factors could also be:

Standards to follow: such as IEEE (Institute ofdhieal and Electronics Engineers)

754, for floating point calculatidh In general to follow specific standards has the
advantage to obtain reproducible results with déffé processors. GPUs, starting to
support single-precision floating point calculatidrave reached a level comparable
with  CPU with double-precision. We expect indeed dgtend the scientific

application range running on GPUs;

A wide presence on the marketplace of the partiquiacessor category, in order to

justify the software development costs throughrgdaiser base. By using processors
with a low distribution it may cause a low use loé technology. This was the case in
the past for parallel computing. But as said befthris situation has been changed by

the introduction of GPGPU technology.

In conclusion, we are living a particular dynamiegd, in which the proliferation of
different computing paradigms reflect the recertognition of e-science as the
fourth leg of Science, after theory, experimentatiand simulation. All these

computing architectures have pro and cons, sumatiizthe following table.

19|EEE Standard for Floating-Point Arithmetic
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumi@10935

41



UNIVERSITA oecu STUDI o1
NAPOLI FEDERICOI

Facolta di Ingegneria - Corso di Studi in Ingegneria Informatica

GPU Computing for
Machine Learning Algorithms

In the following Table 1 (Sadashiv et al. 2011), semmarize a comparison

between Cluster, Grid and Cloud Computing paradigBBGPU can be only

partially involved in that comparison, because #uatly dedicated to parallel

computing.

FEATURE CLUSTERSs GRIDs CLOUDs
Szgvr'g:nl]‘:r\]’tel limited yes Yes
Allocation centralized decentralized Both
Resource Handling centralized distributed Both
Loose coupling no both Yes
Protocols/API MP\II,"E[)S;'aIIeI MPI, M(F;IF\?:MG’ GIS, TCP/IP, iJO:;, REST,
Reliability no half Full
Security yes half No
User friendliness no half Yes
Virtualization half half Yes
Interoperability Yes yes Half
Standardized yes yes No
Business Model no no Yes
Task Size Single large Single large Small & medium
SOA no yes Yes
Multi tenancy no yes Yes
System Performance improves improves Improves
Self service no yes Yes
Computation service computing Max. computing On demand
Heterogeneity no yes Yes
Scalable no half Yes
Inexpensive no no Yes
Ty 0 w0
Application HPC, HTC HPC, HTC, Batch SME interactive apps
Switching cost low low High
Value added service no half Yes

Table 1 — Cluster, Grid and HPC comparison
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3.6 Parallel programming environment

3.6.1 Conventional programming environment: MPI and OpenMP
Parallel programming environments provide the bé&sids, language features and
programming interfaces (APIs) needed to build aaltelr program. This
programming environment uses an abstraction callggogramming model. The
sequential computers use the well-known model aof Neumann (von Neumann
1945). Because all sequential computers use thiendevelopers who program in
this software abstraction can map onto most, if albt sequential computers.
Otherwise, there are many possible models for lghi@mputing.
Due to the wide range of parallel architectures, tbsearch of programmers has
been historically focused on hundreds of paralegjppmming environments.
Fortunately, by the late 1990s, the parallel progreng community converged
predominantly on two environments for parallel peegming: Message Passing
Interface (MPI) for the scalable cluster calculasio(i.e. distributed memory
systems) and OpenMP for multi-processor systents stiared memory (Mattson et
al. 2004).
MPI is a model in which the computing nodes of @stér do not share memaéty
Both data sharing and interactions occur througbxticit message exchange. MPI
has been much more employed in the scientific hpgiformance computing
domain. There are in fact, known MPI applicatiobteao work on cluster systems

with more than 100.000 nodes. However the hugerteftor the porting of an

1 http://mww.mpi-forum.org/docs/-2.2/-report.pdf
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application on this infrastructure could be extrgnexpensive, especially in case of
absence of shared memory between computing nodes.

On the contrary, OpenMP is quite simple to be mogned. Main advantages come
out from the fact that there are APIs handled Isyeés from the specific compiler
used (for example, the C code fragment reportedvijeleasier programming,
incremental parallelism (i.e. it is possible to Wwan a code portion at a time
without drastic changes to the serial code) anflaghapplications with parallel and
serial code (because the OpenMP blocks are coesider comments by sequential
compilers). However there is the risk to introdumegs due to synchronization
errors?. Anyway, with such APIs it is not possible to rearalability higher than
two hundred computing nodes, because there aret $tardware requirements

concerning the overhead of thread handling andecacherency.

int main(int argc, char *argv[]) {
const int N = 100000;
inti, a[N];

#pragnma onp parallel for
for (i=0;i<N;i++)
alij=2*i;

return O;

}

Listing 1 - Example of OpenMP Pragma

12 http://developers.sun.com/solaris/articles/cppe izl
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3.7 GPGPU environment: CUDA

CUDA (Compute Unified Device Architecture) is a geml purpose parallel

computing architecture introduced by NVIDIA in Nember 2006 that leverages the
parallel compute engine in NVIDIA GPUs to solve maiomplex computational

problems in a more efficient way than on a CPUndtudes the CUDA Instruction

Set Architecture (ISA) and the parallel computeieadgn the GPU.

CUDA comes with a software environment that alladesvelopers to use C as a
high-level programming language. Other languagesRIr are supported, such as
CUDA FORTRAN, OpenCL, and DirectCompute.

To the hardware perspective, NVIDIA devoted sili@amea to facilitate the ease of
parallel programming, so this did not represent hange in software alone;

additional hardware was added to the chip. CUDAgmms no longer go through
the graphics interface at all. Instead, a new ggfmirpose parallel programming

interface on the silicon chip serves the requesSBUDA programs.

3.7.1 CUDA architecture
Unlike previous generations that partitioned cormutesources into vertex and
pixel shaders, the CUDA Architecture included afiedi shader pipeline, allowing
each and every arithmetic logic unit (ALU) on thieipcto be marshaled by a
program intending to perform general-purpose coatmrns. Because NVIDIA
intended this new family of graphics processorsbéoused for general-purpose

computing, these ALUs were built to comply with EEEequirements for single-
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precision floating-point arithmetic and were desidnto use an instruction set
tailored for general computation rather than speadify for graphics.

Furthermore, the execution units on the GPU welewald arbitrary read/write
access to memory as well as access to a softwaraged cache known as shared
memory. All of these features of the CUDA Architeet were added in order to
create a GPU that would excel at computation initesdto performing well at

traditional graphics tasks.

Host
Input Assembler

Thread Execution Manager

Parallel Data Parallel Data Parallel Data | | Parallel Data Parallel Data | | Parallel Data| | Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

[ froxor] [J{ [ [revure [ J§{roxure[ J{ T roxure] |l Tfroxure[ f{TTroxure] [ J I rescre] [ [[roxure]

Figure 8 - CUDA GPU Architecture

A typical CUDA-capable GPU is organized into anagrrof highly threaded

streaming multiprocessors (SMs).

In Figure 8, two SMs form a building block; howevéne number of SMs in a
building block can vary from one generation of CUG#RUs to another generation.

Also, each SM has a number of streaming procegS#ts) that share control logic
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and instruction cache. Each GPU currently come# wiji to 4 GB of graphics
double data rate (GDDR) DRAM, referred to as glam@mory. They function as
very-high-bandwidth, off-chip memory, though witbnsewhat more latency than
typical system memory. For massively parallel aggtions, the higher bandwidth
makes up for the longer latency. Each SP has apiyadd (MAD) unit and an
additional multiply unit. In addition, special-futen units perform floating-point
functions such as square root (SQRT), as wellastendental functions. Because

each SP is massively threaded, it can run thousafrtiseads per application.
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3.7.2 Memory Hierarchy
In CUDA, the host and devices have separate mespages. CUDA threads may
access data from multiple memory spaces during #ecution as illustrated by
Figure. Each thread has private local memory. Baad block has shared memory
visible to all threads of the block and with thensdlifetime as the block. All threads
have access to the same global memory. At therodtfothe figure, we see global
memory and constant memory that allows read-ontesg by the device code.
These are the memories that the host code carferateta to and from the device,

as illustrated by the bidirectional arrows betwtdese memories and the host.

Grid
Block (0, 0)
Thread (0, 0) Registers

Block
(1,0)

-»

V'

4 4 4 4

Figure 9 - Overview of the CUDA memory model
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3.7.3 Thread Hierarchy

Host Device

Kernel Block | Block

Figure 10 - CUDA thread organization

When a kernel is invoked, it is executed as gricparfallel threads. Each CUDA
thread grid typically is comprised of thousandsntdlions of lightweight GPU
threads per kernel invocation. For simplicity, aaimumber of threads are shown
in Figure 10.

Threads in a grid are organized into a two-levekdrichy, where at the top level,
each grid consists of one or more thread blockkblakks in a grid have the same

number of threads. Each block has a unique two-+tkioeal coordinate given by
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the CUDA specific keywords blockldx.x and blockigxAll thread blocks must

have the same number of threads organized in thee smanner. Blocks are
organized into a one-dimensional, two-dimensiopalthree-dimensional array of
threads. On current GPUs a thread block may conaito 1024 threads. Threads
with the same threadldx values from different beekould end up accessing the
same input and output data elements. When thedook invokes a kernel, it sets

the grid and thread block dimensions via executimmfiguration parameters.

3.7.4 CUDA C Parallel Programming Model
The introduction of multicore CPUs and manycore GRuroduced the challenge is
to develop application software that transparesdsles its parallelism to leverage
the increasing number of processor cores.
The CUDA parallel programming model is designedot@rcome this challenge
while maintaining a low learning curve for prograems familiar with standard
programming languages such as C.
At its core are three key abstractions: a hieraafithread groups, shared memories,
and barrier synchronization.
These abstractions provide fine-grained data pdisath and thread parallelism,
nested within coarse-grained data parallelism as# parallelism. They guide the
programmer to partition the problem into coarse-prdblems that can be solved
independently in parallel by blocks of threads, aath sub-problem into finer

pieces that can be solved cooperatively in parbiledll threads within the block.
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This decomposition preserves language expressibity allowing threads to
cooperate when solving each sub-problem, and asahe time enables automatic
scalability. Indeed, each block of threads candteduled on any of the available
processor cores, in any order, concurrently or eetjially, so that a compiled
CUDA program can execute on any number of processtes as illustrated by

Figure 9, and only the runtime system needs to kil@wphysical processor count.

Multithreaded CUDA Program

—

'GPU with 2 Cores GPU with 4 Cores

Core 0 Core 1 Core 0 ‘Cnrel Core 2 |l:nr¢3|
ot | mecko mhcki meck2 mods
o3 | ooaa [moas [ecks [sioc7

Figure 11 — CUDA with different multi-core architectures

This scalable programming model is designed fonsparent and portable
scalability. It allows the CUDA architecture to spa wide market range, from the

high-performance Tesla GPUs to the inexpensive strgiam GeForce GPUs, by
51



UNIVERSITA oecu STUDI o

NAPOLI FEDERICOI GPY Computing for
Facolta di Ingegneria - Corso di Studi in Ingegneria Informatica Machine Learnlng Algorlth ms

scaling the number of processors and memory parsiti A CUDA program is
written once and runs on a GPU with any numberoégssor cores.

3.7.5 CUDA Program Structure
A CUDA program consists of one or more phases @hatexecuted on either the
host (CPU) or a device such as a GPU. The phasgesihibit litle or no data
parallelism are implemented in host code. The gh#isat exhibit rich amount of
data parallelism are implemented in the device code
A CUDA program is a unified source code encompasBoth host and device code.
While the host code is straight ANSI C code, theiakecode is written using ANSI
C extended with keywords for labeling data-parafileictions, calleckernels and
their associated data structures. The kernels alfpigenerate a large number of
threads to exploit data parallelism. Due to effitibardware support the CUDA
threads are of much fast and lighter weight thaa @PU threads that typically
require thousands of clock cycles to generate ahddlle.
The execution of a typical CUDA program starts withst (CPU) execution. When
a kernel function is invoked, the execution is nibve a device (GPU), where a
large number of threads are generated to take tatyanof abundant data
parallelism. All the threads that are generatedaliygrnel during an invocation are
collectively called a grid. When all threads ofexriel complete their execution, the
corresponding grid terminates, and the executigtitcoes on the host until another

kernel is invoked.
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Figure 12 - CUDA program structure

3.7.6 Other GPGPU environment: OpenCL

Recently, some collaboration between major indestrincluding Apple, Intel,
AMD (formerly ATI) and NVIDIA developed a programng model for
development on heterogeneous architectures acriess GPU and other types of
processors, called OpenCL (Open Computing Langud@pgnCL will form the
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foundation layer of a parallel computing ecosystghplatform-independent tools,
middleware and applications.

OpenCL has been proposed as an open standard.aSitmilCUDA, OpenCL
programming model defines a language, based oC#®%eprogramming language
with extensions and restrictions, and runtime ARisallow programmers the
management of data parallelism and massively phgibcessors.

OpenCL, being a standardized programming modebwall all applications,
requiring to be developed in this language, toxeeeted without any modification
to the code, on all devices that support languagmsions and APIs.

OpenCL is a technology less known than CUDA. Itelef programming rules is
still less advanced than in CUDA and it is more ptar to be used, due to the
absence of a unified SDK (Software Development Kat)be shared among all
manufacturers.

Furthermore, on the platforms supporting both tetbgies, the speed reached by
OpenCL applications is still less than CUDA, an artpnt factor influencing
developers, always demanding higher processingispee

For completeness, we mention the development emvients created by ATI: CTM
(Close To Metal) and Stream. These two programmmigglels have been early
abandoned in favor of OpenCL, whose basic poséivé negative features can be

summarized as follows:

13 http://mvww.khronos.org/registry/cl/sdk/1.0/docs mhéntml/
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Pros

e Acceleration in parallel processing;
» It allows to manage computational resources
o View multi-core CPUs, GPUs, etc. as computatiométsti
o0 Allocate different levels of memory;
e Cross-vendor software portability
0 Separation of low-level and high-level software;
« Much wider range of hardware and platform support;
o Supports AMD, NVIDIA and Intel GPUs equally. It camlso be used on
newer versions of Android phones, iPhones and atbeices;
« It can fallback on CPU if the GPU support doesexast;
o Inreality, to create thousands of threads on tA&) Gt is generally not a good
idea;
« Supports synchronization over multiple devices;
« Easy to get started with integrating OpenCL kerirets the code.
« An open standard and not vendor locked and a kdemguage based on C99

specification.

Con
» public drivers to support OpenCL 1.1. Currentlyyodéveloper ones exist;
+ Lacks mature libraries;

« Debugging and profiling tools are not as advance@EDAs.

Moreover, the following table reports a direct cargon between OpenCL and CUDA
(Rosendahl 2010).
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FEATURE

What it is

Proprietary or
open technology
When introduced

Free SDK
OS support

Heterogeneous
device support

Multiple kernel
programming
languages
Multiple
programming
interfaces
Data parallel
kernels support
Task parallel
kernels support
Device level

language
Deep host and
device program

integration

Base language
version defined
Access to work -

item indices

Address space

qualification
needed for kernel
pointer arguments
First -class built -in

vector types
Voting functions
Atomic functions

Asynchronous

memory copying
and
pre-fetch functions
Support for C++
language features

CUDA

HW architecture, ISA, API,
programming language, SDK and

OpenCL

Open API and language

tools specification
Proprietary Open and royalty-free
Q4 2006 Q4 2008
Yes Depends on vendor

Windows, Linux, Mac OS X;

Depends on vendor

No, just NVIDIA GPUs

Development models compared

Yes

Yes (CPUs and GPUs)

No, possible vendor-specific
language

Yes, including OpenCL

No, possible vendor extensions

Yes, the default model

Yes

No, at least not efficiently

Yes

Yes, PTX

Implementation specific or no
intermediate language used

Yes, with syntax calls

Kernel programming differences
“Based on C”, limited C++ features
are supported

No, only separate compilation

C99

Through built-in variables

Through built-in functions

No, defaults to global memory

Yes

Vector types

Vector types, literals, built-in
operators and functions

Yes (CC 1.2 or greater)

No

Yes (CC 1.1 or greater)

Only as extension

No

Yes

Yes, useful subset of features

supported

Experimental interface

Table 2 — CUDA vs. OpenCL comparison
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4  Technology in machine learning

The sheer size of the foreseen data streams remuessible to discriminate
objects using traditional software tools, and resgiithe development of specific
computing infrastructures as well as the implemtiriaof specific and robust
(largely based on the ML paradigm) methods for @atalysis and understanding.
ML methods, in order to provide efficient and rblmanswers, need also to exploit
all the meta-information made available to any rdtifie/social community through
the data repositories federated under specific dateers or virtual organizations
(Genova et al. 2002).

The problem of inventing and deploying these newlstounder powerful
computational infrastructure has therefore beconveddwide challenge. On the
algorithmic side, we wish to emphasize that commarded decision algorithms
depend on a fixed number of predefined input festdor decision making. This is
not the best option in Time Domain Analysis whesene of the inputs may not be
present within the time slot available to makedkeision.

There is therefore a demand for a completely newscdf tools that can dynamically
select the input features and can consistently igikiable predictions. Most decision
algorithms compute the inverse Bayesian probaltititdeal with missing attributes

(mostly called features) in the input data.
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Although such algorithms can handle missing featue some extent, there is
always a possibility for asymptotic decline in a@ay. It may be argued that the
possible state of the missing feature can be adelguzonstrained and compensated
for by the available remaining inputs.

However this is not true, because a feature thatlkm well constrained by the
remaining inputs is usually redundant and it is me@juired as an input at the first
place. If this is not the case, its absence candgpropriately compensated and that
will result in a loss of information.

The idea therefore is to facilitate dynamic leagniim which, for instance, the system
learns from all available information (and not ofixad set of samples) and identify
strategies that can optimally handle situationswimich most of the inputs are
missing.

As already underlined, one of next main breakthhauig many human fields is that
we have reached the physical limit of observatioBs. far, like all scientific
disciplines focusing their discoveries on collectleda exploration, there is a strong
need to employ e-science methodology and toolsdardo gain new insights on the
knowledge. But this mainly depend on the capabibtyecognize patterns or trends
in the parameter space (i.e. physical laws), pbsbip overcoming the human limit
of 3D brain vision, and to use known patterns aseBaf Knowledge (BoK) to infer
knowledge on self-adaptive models in order to ntalken able to generalize feature
correlations and to gain new discoveries (for eXaroptliers identification) through
the unbiased exploration of new collected data.s€heequirements are perfectly

matching the paradigm of ML techniques based on Ahtiicial Intelligence
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postulate (Bishop 2006). Hence, in principle atstdps of an exploration workflow
ML rules can be applied. Let us better know thishoédology.

There is a basic dichotomy in ML, by distinguishtveeen supervised and
unsupervised methodology, as described in theviatg.

The Greek philosopher Aristotle was one of thet fics attempt to codify "right
thinking," that syllogism is, irrefutable reasonipgpcesses. His syllogismpsovided
patterns for argument structures that always yeelErect conclusions when given
correct premises. For example, "Socrates is a mhnmen are mortal; therefore,
Socrates is mortal." These laws of thought werdclaypposed to govern the
operation of the mind; their study initiated theldi called logic Logicians in the
19th century developed a precise notation for statgs about all kinds of things in
the world and about the relations among them. @shthis with ordinary arithmetic
notation, which provides mainly for equality andeguality statements about
numbers.

By 1965, programs existed that could, in princigdlegcess anyolvable problem
described in logical notation (Moore 1965). Thecatled logicisttradition within
artificial intelligence hopes to build on such prags to create intelligent systems
and the ML theory represents their demonstratiagipline. Reinforcement in this
direction came out by integrating ML paradigm wstlatistical principles following

the Darwin’s Nature evolution laws, (Duda et al02)
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4.1 The learning paradigms

In supervised ML we have a set of data points seolations for which we know
the desired output, expressed in terms of categloclasses, numerical or logical
variables or as generic observed description of eegl problem. The desired
output is in fact providing some level of supemisin that it is used by the learning
model to adjust parameters or make decisions ailwti to predict correct output
for new data. Finally, when the algorithm is aldecbrrectly predict observations
we define it a classifier. Some classifiers ar® alapable of providing results in a
more probabilistic sense, i.e. a probability of atadpoint belonging to class. We
usually refer to such model behavior as regression.

A typical workflow for supervised learning is shownthe diagram below (Figure

13).

Evaluation
& Test Sets

ion‘

Apply
Model

KNOWLEDGE

Figure 13 — A workflow based on supervised learningaradigm
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Pre-processing of datarirst we need to build input patterns that angrapriate
for feeding into our supervised learning algorithithis includes scaling and

preparation of data;

Create data sets for training and evaluatidrhis is done by randomly splitting

the universe of data patterns. The training sehasle of the data used by the
classifier to learn their internal feature corriglas, whereas the evaluation set is
used to validate the already trained model in otdeget an error rate (or other
validation measures) that can help to identifygbegformance and accuracy of the

classifier. Typically you will use more trainingtdathan validation data;

Training of the modeMWe execute the model on the training data set. dutput
result consists of a model that (in the successfak) has learned how to predict

the outcome when new unknown data are submitted;

Validation After we have created the model, it is of coweguired a test of its

performance accuracy, completeness and contaming@tiats dual, the purity). It

is particularly crucial to do this on data that thedel has not seen yet. This is
main reason why on previous steps we separatedhtheset into training patterns
and a subset of the data not used for trainingindémd to verify and measure the
generalization capabilities of the model. It is werasy to learn every single
combination of input vectors and their mappingsh® output as observed on the
training data, and we can achieve a very low err@oing that, but how does the
very same rules or mappings perform on new datantg have different input to

output mappings? If the classification error of ladidation set is higher than the
training error, then we have to go back and adjustlel parameters. The reason
could be that the model has essentially memorizecnswers seen in the training
data, failing its generalization capabilities. Tigsa typical behavior in case of

overfitting, and there are various techniques f@rooming it;
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Use. If validation was successful the model hasectly learned the underlying

real problem. So far we can proceed to use the htodtassify/predict new data.

The kinds of problems that are suited for unsupecialgorithms may seem similar,
but are very different to supervised learners.eladtof trying to predict a set of
known classes, we are trying to identify the pademherent in the data that
separate like observations in one way or anothesther words, the main difference
is that we are not providing a target variable like=did in supervised learning.

This marks a fundamental difference in how bothesypf algorithms operate. On
one hand, we have supervised algorithms which dryminimize the error in
classifying observations, while unsupervised lgagnalgorithms don't have such
gain, because there are no outcomes or targesldbesupervised algorithms try to
create clusters of data that are inherently simitasome cases we don't necessarily
know what makes them similar, but the algorithmg a&apable of finding
relationships between data points and group therpossible significant ways.
Differently from supervised algorithms, which aimmainimizing the classification
error, unsupervised algorithms try to create groupsubsets of the data, in which
points belonging to a cluster are as similar tcheatber as possible, by making the
difference between the clusters as high as pos@italgkin 1998).

Another main difference is that in an unsupervigeiblem, the concept dfaining
setdoes not apply in the same way as with supentestiers. Typically we have a
data set that is used to find the relationshighéndata that buckets them in different
clusters. A common workflow approach for unsupedigearning analysis is shown
in the diagram below (Figure 14).
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Figure 14 — A workflow based on unsupervised learng paradigm

For unsupervised learning, the process is:

1) Pre-processing of dataAs with supervised learners, this step incluadscsion of
features to feed into the algorithm, by also scptlrem to build a suitable training

data set;

2) Execution of model trainingWe run the unsupervised algorithm on the scaled

data set to get groups of like observations;

3) Validation. After clustering the data, we need to verify wilegtht cleanly
separated the data in significant ways. This inetudalculating a set of statistics
on the resulting outcomes, as well as analysiscbaselomain knowledge, where

you may measure how certain features behave whgegaged by the clusters.

Once we are satisfied of the resulting creationclofters (or in general over-

densities), there is no need to run the model méthv data (although you can).
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4.2 What we are looking for in the data
In the DM scenario, the ML model choice should alsvéde accompanied by the
functionality domain. To be more precise, some Madels can be used in a same
functionality domain, because it represents thectfonal context in which it is
performed the exploration of data.
Traditional statistical methods break down partBcduse of the increase in the
number of observations, but mostly because of tieeease in the number of
variables associated with each observation. Themwlion of the data is the number
of variables that are measured on each observation.
High-dimensional data sets present many matherhatigdlenges as well as some
opportunities, and are bound to give rise to negotétical developments. One of
the problems with high-dimensional data sets ig, thamany cases, not all the
measured variables are “important” for understagdie underlying phenomena of
interest. While certain computationally expensivevel methods can construct
predictive models with high accuracy from high-diveenal data, it is still of
interest in many applications to reduce the dim@msif the original data prior to
any data modeling (Samet 2006).
In mathematical terms, the problem we investigate loe stated as follows: given
the p-dimensional random variable= (x!,---,x?)", and a lower dimensional
representation of its = (st,---,s%)T with k < p, that captures the content in the
original data, according to some criterion. The ponents of s are sometimes called

the hidden components. Different fields use diifiéneames for the p multivariate
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vectors: the term “variable” is mostly used in istits, while “feature” and
“attribute” are alternatives commonly used in tHd Bnd ML literature.

Generally speaking, dimensional reduction is thecess of reducing the number of
random variables under consideration, and can beidedi into feature
selection and feature extraction.

Feature selection approaches try to find a sulfgbewriginal variables (also called
features or attributes) (Guyon et al. 2003). Twatsepies aréilter (e.g. information
gain) andwrapper(e.g. search guided by the accuracy) approaches.

Feature extraction transforms the data in the Higiensional space to a space of
fewer dimensions. The data transformation may beeali, as in Principal
Component Analysis (PCA), but many non-linear téghes also exist (Guyon et al.
2006).

Being based on the covariance matrix of the vaembPCA is a second-order
method. In various fields, it is also known as Biagular Value Decomposition
(SVD), the Karhunen-Loéve transform, the Hotellingnsform, and the Empirical
Orthogonal Function (EOF) method. In essence, Pé&ksto reduce the dimension
of the data by finding a few orthogonal linear camations (Principal Components)
of the original variables with the largest variantoeother words, PCA performs a
linear mapping of the data to a lower dimensionmlce in such a way that the
variance of the data in the low-dimensional reprtte®n is maximized.

Another technique belonging, like PCA, to thtent variablemethods family, is the
model known as Principal Probabilistic Surfaces YRHRn which first principal

component accounts for as much of the variabifityhie data as possible, and each
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succeeding component accounts for as much of thainéng variability as possible
(Chang et al. 2001).
The PPS are able to find a better data aggreg#iamthe PCA method. A PPS is
trained to recognize the best projection functifsam the N-dimensional parameter
space to a spherical surface in a 3D space.
This surface is covered by a grid of latent vaeablpoints), representing the
Gaussian peak in the N-parameter space. It petmitgsualize all data with a
human compliant 3D diagram, independently fromrthimber of initial parameters.
It is hence possible to individuate the presenceulf-structures in the data. An
interesting aspect is the estimation of each irgaia parameter incidence on the
latent variables that can help to understand tleioaship between the parameter
and the found clusters. The incidence of paramétecalculated by evaluating the
probability density of input vector components @spect of each latent variable.
During the training phase a reference variety éatad.
In the test phase, a datum, never seen by the retigoattributed to thelosest
spherical variety. Obviously the concept dbsestimplies a calculation of a
distance between a point and a node in the spagferdBthat the data must be
projected on the space. This basically becauséerispl variety consists of squared
or triangular areas, each of them defined by 3 ovadiety nodes. After this
projection of the datum the approximated distasaealculated.
In the PPS system three main approximation criexist:

¢ Nearest Neighbor: it founds the minimum squareadist from all variety nodes;

e Grid projections: it founds the shortest projectitistance on the variety grid;
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¢« Nearest Triangulation: it founds the projection selst to the possible

triangulations.

The most frequently used is the first one, bec#tysermits to evaluate the distances
between data and all nodes on the spherical varigtg downside is that it is
generally more time-consuming, but more precisa tithers (LeBlanc et al. 1994).
The technique described above makes clear theofdiS as an efficient method
for MDS pre-clustering or dimensional reduction.

More generally, the advantage to preliminarily gppldimensional reduction model
to data is that, in some cases, data analysisasiggression or classification can be
done in the reduced space more accurately thdreiariginal one.

Classification is a procedure in which individums are placed into groups based
on quantitative information on one or more featunbgrent to the items (referred to
as features) and based on a training set of preljidabeled items (Kotsiantis
2007).

A classifier is a system that performs a mappinognfia feature space X to a set of
labels Y. Basically a classifier assigns a prerdficlass label to a sample.
Formally, the problem can be stated as follows: egivtraining data
{(x1,y1), -+, e )} (Wherex; are vectors) a classifiér: X > Y maps an object
x € X to its classification labste Y.

Different classification problems could arise:

a) crispy classification: given an input pattern x digg) the classifier returns its

computed label y (scalar).
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b) probabilistic classification: given an input patter (vector) the classifier returns a
vector y which contains the probability pf to be the "right" label for x. In other
words in this case we seek, for each input vectbe probability of its

membership to the clags (for eacly;).

Both cases may be applied to both "two-class" andlti-class" classification. So
the classification task involves, at least, thieps

« training, by means of a training set (input: patseand target vectors, or labels;

output: an evaluation system of some sort);

e testing, by means of a test set (input: patterastarget vectors, requiring a valid
evaluation system from point 1; output: some gdiaisabout the test, confusion

matrix, overall error, bit fail error, as well dstevaluated labels);

< evaluation, by means of an unlabeled data set fiimgaiterns, requiring a valid

evaluation systems; output: the labels evaluateddoh input pattern);

Because of the supervised nature of the classdicaask, the system performance
can be measured by means of a test set duringstieg procedure, in which unseen
data are given to the system to be labeled.

The overall error somehow integrates informatioawtthe classification goodness.
However, when a data set is unbalanced (when th#hauof samples in different
classes varies greatly) the error rate of a cli@ssg not representative of the true
performance of the classifier. A confusion matriancbe calculated to easily
visualize the classification performance (Provdséle 1998): each column of the

matrix represents the instances in a predictedsclakile each row represents the
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instances in an actual class. One benefit of austori matrix is the simple way to
see if the system is mixing two classes.

Optionally (some classification methods does nqtire it by its nature or simply as
a user choice), one could need a validation praeedu

Validation is the process of checking if the cléssimeets some criterion of
generality when dealing with unseen data. It camid®d to avoid over-fitting or to
stop the training on the base of an "objectivetecion.

With “objective” we intend a criterion which is nbased on the same data we have
used for the training procedure. If the system dussmeet this criterion it can be
changed and then validated again, until the cateris matched or a certain
condition is reached (for example, the maximum neimbf epochs). There are
different validation procedures. One can use anreerdata set for validation
purposes (thus called validation set); this datacee be prepared by the user
directly or in an automatic fashion.

In some cases (e.g. when the training set is ldhibee could want to apply a “cross
validation” procedure, which means partitioningaangle of data into subsets such
that the analysis is initially performed on a seaglubset, while the other subset(s)
are retained for subsequent use in confirming aalidating the initial analysis
(Mosteller et al. 1968). Different types of crosgidation may be implemented, e.g.
k-fold, leave-one-out, etc.

Summarizing we can safely state that a common ifitadfon training task
involves:

< the training set to compute the model;
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the validation set to choose the best parametetki®imodel (in case there are

"additional" parameters that cannot be computeddas training);

the test data as the final “judge”, to get an eatéof the quality on new data that
are used neither to train the model, nor to deteenits underlying parameters or

structure or complexity of this model;

The validation set may be provided by the userraet¢d from the software or
generated dynamically in a cross validation procedin the next paragraphs we
underline some practical aspects connected with viddaation techniques for
classification models.

Regression methods bring out relations betweembias, especially whose relation
is imperfect (i.e. it has not one y for each given The term regression is
historically coming from biology in genetic transsion through generations, where
for example it is known that tall fathers have salhs, but not as tall on the average
as the fathers. The trend to transmit on averagetgefeatures, but not exactly in
the same quantity, was what the scientist Galtdimel as regression, more exactly
regression toward the medGalton 1877).

But what is regression? Strictly speaking it is yvalifficult to find a precise
definition. It seems the existence of two meanfiogsegression (Hastie et al. 2005),
that can be addressed as data table statistic@lation (usually column averages)
and as fitting of a function.

About the first meaning, let start with a very génexample: let's suppose to have
two variables x and y, where for each small inteofax there is a distribution of

corresponding y. We can always compute a summarthefy values for that
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interval. The summary might be for example the meadian or even the
geometric mean. Let fix the points;, ¥,), wherex; is the center of the ith interval
andy, the average y for that interval. Then the fixethfgowill fall close to a curve
that could summarize them, possibly close to dgttdine. Such a smooth curve
approximates the regression curve called the remre®f y on x. By generalizing
the example, the typical application is when therusas a table (let say a series of
input patterns coming from any experience or olsem) with some
correspondences between intervals of x (table rams) some distributions of y
(table columns), representing a generic correlatiotwell known (i.e. imperfect as
introduced above) between them. Once we have stahle we want for example
to clarify or accent the relation between the dpewalues of one variable and the
corresponding values of the other. If we want aarage, we might compute the
mean or median for each column. Then to get a ssgme, we might plot these
averages against the midpoints of the class interva

Given the example in mind let’s try to extrapoltdte formal definition of regression
(in its first meaning).

In a mathematical sense, when for each value besetis a distribution of y, with

density f(y|x) and the mean (or median) value fidnthat x given by:

50O = [ yf(ylx)dy 1)

then the function defined by the set of orderedrspék,y(x)) is called the
regression of y on x. Depending on the statistmaérator used, the resulting

regression line or curve on the same data canmtrasstightly different slope.
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Sometimes we do not have continuous populationk Witbown functional forms.
But the data may be very extensive (such as imst@physical case). In these cases
it is possible to break one of the variables imt@ intervals and compute averages
for each of them. Then, without severe assumptaib@ut the shape of the curve,
essentially get a regression curve. What the regmescurve does is essentially to
give a, let say, “big summary” for the averagestfar distributions corresponding to
the set of x’s. One can go further and compute raé\ifferent regression curves
corresponding to the various percentage pointhefdistributions and thus get a
more complete picture of the input data set. Ofrgewften it is an incomplete
picture for a set of distributions! But in thisdirmeaning of regression, when the
data are more sparse, we may find that samplingti@r makes impractical to get a
reliable regression curve in the simple averagiray wescribed (Menard 2001).
From this assumption, it descends the second mgaffiregression.

Usually it is possible to introduce a smoothingqgaedure, applying it either to the
column summaries or to the original values of @& dourse after an ordering of y
values in terms of increasing x). In other words agsume a shape for the curve
describing the data, for example linear, quadrédigarithmic or whatever. Then we
fit the curve by some statistical method, ofterstesguares. In practice, we do not
pretend that the resulting curve has the perfeapestof the regression curve that
would arise if we had unlimited data, but simply aigtain an approximation. In
other words we intend the regression of data imsesf forced fitting of a functional
form. The real data present intrinsic conditiorst thake this second meaning as the

official regression use case, instead of the first, curve connecting averages of
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column distributions. We ordinarily choose for tteve a form with relatively few
parameters and then we have to choose the methdid ito In many manuals
sometimes it might be founded a definition probaty formally perfect, but very
clear: by regressing one y variable against onariakile means to find @arrierfor

X. This introduces possible more complicated séesan which more than one
carrier of data can be founded. In these casessitte advantage that the geometry
can be kept to three dimensions (with two carriags}o n-dimensional spaces (n >
3, with more than two carriers regressing inputfialearly, both choosing the set
of carriers from which a final subset is to be dmaand choosing that subset can be
most disconcerting processes.

In substance we can declare a simple, importanblusgression, consisting in:

To get a summary of data, i.e. to locate a reptasee functional operator of the
data set, in a statistical sense (first meaningyiaran approximated trend curve
estimation (second meaning).

And a more common use of regression:

* For evaluation of unknown features hidden intodb&a set;

« For prediction, as when we use information fromesavweather or astronomical
seeing stations to predict the probability of ramthe turbulence growing in the

atmosphere;

¢ For exclusion. Usually we may know that x affectapd one could be curious to
know whether z is associated with y too, througiossible casual mechanism. In
this case one approach would take the effectsonft of y and see if what remains
is associated with z. In practice this can be dmnan iterative fitting procedure

by evaluating at each step the residual of previibtirsg.
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This is not exhaustive of the regression argumauitsimple considerations to help
the understanding of the regression term and thesilpiity to extract basic
specifications for the use case characterizatighardesign phase.

Clustering is a division of data into groups of k@mobjects. Representing the data
by fewer clusters necessarily loses certain fintilde (data compression), but
achieves simplification (Jain et al. 1999).

From a ML perspective clusters correspond to hidgatterns, the search for
clusters is unsupervised learning, and the regubiystem could represent a data
concept in the KDD (Knowledge Discovery in Datalsgse

From a practical perspective clustering plays astanding role in DM applications
such as scientific data exploration, informatiotriesal and text mining, spatial
database applications, Web analysis, Customer iRethips Management (CRM),
marketing, medical diagnostics, computational lgjand many others.

For example, in CRM, marketing applications gengralome with predictive
clustering analytics to improve segmentation andyeting, and features for
measuring the effectiveness of online, offline, awhrch marketing campaigns
(Collica 2007). By evaluating “buy signals,” manket can see which prospects are
most likely to transact and also identify those wdre bogged down in a sales
process and need assistance.

Data mining on MDS adds to clustering the compiicet of very large data sets
with very many attributes of different types (higimensionality). This imposes

unigue computational requirements on relevant eturgg algorithms.
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What are the properties of clustering algorithmsaneeconcerned with in DM?
These properties include:

* Type of attributes that the algorithm can handle;

* Scalability to large data sets;

e Ability to work with high dimensional data (multi-parameter space, multi-

wavelength, multepoch etc...);

« Ability to find clustes of irregular shape;

¢ Handling outliers;

¢ Time complexity (when there is no confusion, we use the term complexity);

¢ Data order dependency;

¢ Labeling or assignment (hard or strict vs. soft of fuzzy);

* Reliance on a priori knowledge and user defip@dmeters;

¢ Interpretability of results;

We have to try to keep these issues in mind, tezlls. The above list is in no way
exhaustive. For example, we must deal also witHeémpntation properties, such as
ability to work in pre-defined memory buffer, abjlito restart and to provide an

intermediate solution and so on.

4.3 Learning Strategies
Before going into the working mechanisms of ML syss$, it is interesting and
useful to focus the attention on the shape andessjns of data to be given as

input to ML information processing models.
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In ML experiments the performance strongly depefndsy data used for training.
Hence it is crucial the choice of data selectiod their representation mode.
Generally, except for some particular cases, the@fseput data is provided under
the form of tables or matrices; in which any roventfy an example (a complete
pattern in the data parameter space), whose colamnsll parameters (features)
and their values the parameter attributes.

It may be frequent that the table can have emptiesn(sparse matrix) or missing
(lack of observed values for some features in spatirns). It may also happen that
information of a single table is not homogeneous, attributes may be of different
types, such as numerical mixed with categoricaient

This level of diversity in the internal informati@ould be also related with different
format type of data sets, such as tables register&&CIl code (ANSI et al. 1977),
CSV (Comma Separated Values) (Repici 2002) or HIESt header followed by
binary code of an image) (Wells et al. 1981).

In order to reach an efficient and homogeneousesgpttation of data sets, to be
submitted to ML systems, it is mandatory to prefierily take care of the data
format, in order to make them intelligible by theopessing framework. In other
words to transform pattern features to assume frmamirepresentation before to
submit them to the training process.

In this mechanism the real situations could be \adifferent. Let think to time
sequences (coming from any sensor monitoring aitipy where data are

collected in a single long sequence, not simplysiile, or to raw data (such as
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original images taken by astronomical observatiothglt could be affected by noise
or aberration factors.
These events always require a pre-processing plaselean and opportunely
prepare the data sets to be used for any ML andeRpkriment. Of course such
preliminary step must take into account also thetional scope of the experiment
itself.
More in practice, having in mind the functionalda®my described in the previous
section, there are essentially four kinds of leagrelated with ML for DM:

1) Learning by association;

2) Learning by classification;

3) Learning by prediction;

4) Learning by grouping (clustering);

The primer, learning by association consists of ittentification of any structure
hidden between data. It does not mean to identiéy helonging of patterns to
specific classes, but to predict values of anyuieaattribute, by simply recalling it,
i.e. by associating it to a particular state or glenof the real problem.

It is evident that in the case of association we dealing with very generic
problems, i.e. those requiring a precision lessa thathe classification case. In fact,
the complexity grows with the range of possible tipld values for feature
attributes, potentially causing a mismatch in thgoaiation results.

In practical terms, fixed percentage thresholds given in order to reduce the

mismatch occurrence for different association rutesed on the experience on that
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problem and related data. The representation af fdetassociative learning is thus
based on the labeling of features with non-numeresues or by alpha-numeric
coding.

Classification learning is often named simply “styised” learning, because the
process to learn the right assignment of a labaldatum, representing its category
or “class”, is usually done by examples. Learniggekamples stands for a training
scheme operating under supervision of any oradd&e to provide the correct,
already known, outcome for each of the training amAnd this outcome is
properly a class or category of the examples. dfzrasentation depends on the
available Base of Knowledge (BoK) and on its irgiinnature, but in most cases is
based on a series of numerical attributes, rekat¢lte extracted BoK, organized and
submitted in a homogeneous way.

The success of classification learning is usualgl@ated by trying out the acquired
feature description on an independent set of detaing known output but never
submitted to the model before.

Slightly different from classification scheme ietprediction learning. In this case
the outcome consists of a numerical value instéadctass.

The numeric prediction is obviously related to amfitative result, because is the
predicted value much more interesting than thecttra of the concept behind the
numerical outcome.

Whenever there is no any class attribution, clirggelearning is used to group data
that show natural similar features. Of course thmllenge of a clustering

experiment is to find these clusters and assigatidata to them. The data could be
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given under the form of categorical/numerical takded the success of a clustering
process could be evaluated in terms of human expezi on the problem or a
posteriori by means of a second step of the exmerinin which a classification
learning process is applied in order to learn delligent mechanism on how new
data samples should be clustered.

In the wide variety of possible applications for MM is of course one of the most
important, but also the most challenging. Usersoenter as much problems as
massive is the data set to be investigated. To fiiddlen relationships between
multiple features in thousands of patterns is hagpecially by considering the
limited capacity of human brain to have a cleariovisin a multiple than 3D
parameter space.

Artificial neural networks are one of the best epéas of ML methods, inspired by
the human brain architecture and learning rulesliBg with supervised learning,
these models need training patterns formed by fedtwrget couples. Indeed for
each given input pattern (list of features), thesteould be also given the
corresponding list of targets (one or more). Weay called such a complete data
set as Base of Knowledge (BoK). With this data 8@, network could be able to
learn the right association between input featams location of its output in the
parameter space. The network will be able, after titaining process, to correctly
classify any pattern, even if not presented to rieévork in the training phase
(generalization).

One of the simplest models of supervised neuralors is thePerceptron

(Rosenblatt 1957), composed by a single outputameand N input neurons. The
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capabilities of this model are very limited, butista good starting point for more
advanced and complex variants of such network. ngieork learns by modifying
the weights to enforce right decisions and disogeithose wrong. At each iteration
a new pattern of the training set is presentedtfa@aetwork calculates its output.
Main limit of such model is that it is able to cectly classify the input only if
classes are linearly separable (see Figure 15ajettsr the division between
classes is much more complex. A typical exampla @oblem (see Figure 15b),
where it is not possible to find a single splitelifior the two classes and the

Perceptron fails.
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Figure 15 — correct (a) and wrong (b) separation oflasses made by a
Perceptron

To overcome this problem it is needed to employ enoomplex classification
structures, organized on more than one computdtiayer (Cybenko 1989).

In order to be able to operate non-linear clas#ifim, i.e. to separate complex
regions, the solution is to extend the perceptronthe so-calledMulti-Layer
Perceptron(MLP), a network composed by one or more hidderrsyf neuron,

fully connected, between input and output layeigufe 16).
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SIS

Figure 16 — Regions recognized by a MLP with 0, 2, hidden layers

The classical topology of MLP is shown in FigurdisTkind of networks is able to

recognize and classify any type of topological segihaving as downside a more
complex learning process. Moreover, the Heavisidetion cannot be applied as
activation function, because it is not differenteabAn alternative is to use the
sigmoid function. In this case the activation valugf output neurons become
differentiable functions of input values and hideeuron weights.

The practice and expertise in the ML methods, .}t MLP, are important factors,
formed through a long exercise within scientifipesiments. In particular the speed
and effectiveness of the results strongly depenthese factors. Unfortunately there
are no magic ways to a priori indicate the besfigamation of internal parameters,

involving network topology and learning algorithbut a series of heuristics.

y(x; w)

Figure 17 — Classical topology of a MLP with hiddemeurons in white circles
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Furthermore, if we define an error function as tlean Square Error (MSE)
between expected and network output, we founditlet differentiable function of
output and weights.

The learning process based on such rule is thealtedcBackPropagatioBP),
because the computed error is back propagateceindtwork from output to input
layer (Rumelhart et al. 1986).

As shown, the BP learning rule tries to adapt wisigh order to minimize the error
function E(w). For networks without hidden layethe error function will be
squared and will assume a multi-dimensional parebshape, with only one
absolute minimum. But for a generic MLP, the erumction will be much more
complex, with more than one minimum (local mininrajhich the error gradient is
zero Figure).

In these last cases it is important to distingdistween absolute and local minima.
When, during the learning process, the error fouadscal minimum, with the
above adaption rule, the error function will notwe@nymore, resulting in a wrong
(not absolute) minimization state.

There are basically two versions of the Descentdi@ra Algorithm (hereinafter
DGA): onlineandbatch

In theonline version, referred to the above algorithm, the Weigare updated after

each input pattern presentation.
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Figure 18 — typical behavior of error function during learning process

Awlt

(t+1)
AV! Aw(tﬂ)

—Qi\

W i
Figure 19 — The variation of weights on different gor functions

In the batch version, the weights are updated after each pratsmm of the whole
training set.

Between the two approaches, the first is preferébtbere is a high degree of
redundancy in the training set information, otheewihe second is the best.
Moreover, in all cases the descent gradient idagitto converge. Fortunately there
exist several methods to overcome these limitgdrticular, in the batch case it
results relatively easy to make DGA as a multidlded process, in which the
training data sets are split into equally largechas for each of the threads (Heaton

2009).
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Both versions require that the learning rate isiarppdefined in a static way. This is
another important point, because a high valuearhieg rate causes a more instable
convergence of the learning process (the errortimmgumps along the error surface
without convergence assurance). For a learningtoatesmall, the convergence will
result extremely slowly.

The good compromise is to gradually reduce, at éeaming step, the value of the
learning rate (for example by simply following tlaev n = 1/t or by applying more
complex rules), obtaining a faster convergencéefagorithm (Jacobs 1988).

By using the standard DGA, the direction of eactating step is calculated through
the error descent gradient, while the length iemeined by the learning rate. A
more sophisticated approach could be to move tawrel negative direction of the
gradient [ine search directioh not by a fixed length, but up to reach the minimu
of the function along that direction. This is pddsiby calculating the descent
gradient and analyzing it with the variation of tharning rate.

The problem ofine searchis in practice a single dimension minimization gdewb.
There exist many other methods to solve this probleéor example the parabolic
search of a minimum calculates the parabolic cunossing pre-defined learning
rate points. The minimum d of the parabolic curveigood approximation of the
minimum of E{) and it can be reached by considering the pamlsalive crossing
the fixed points with the lowest error values.

There are also th&ust region based strategies to find a minimum of an error
function, which main concept is to iteratively gliag or contracting the region of

the function by adjusting a quadratic model funttighich better approximates the
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error function. In this sense this technique issiered dual to line search, because
it tries to find the best size of the region bylinearily fixing the moving step (the
opposite of the line search strategy that alwayssés the step direction before to
select the step size), (Celis et al. 1985).

Up to now we have supposed that the optimal sedireltion for the method based
on theline searchis given at each step by the negative gradientt'Tat always
true!

If the minimization is done along the negative geatl next search direction (the
new gradient) will be orthogonal to the previoug oBy selecting further directions
equal to the negative gradient, there should beiméd some oscillations on the
error function that slow down the convergence pgecdhe solution could be to
select further more directions such that the grad@mmponent, parallel to the
previous search direction (that is zero), remanmchanged at each step.

In the ML based on supervised paradigm, there igadays a considerable interest
in techniques based on margin regularization (Ba@900). The concept derives
from the assumption that the distance (typicallglElean distance) of an example
from the separating hyperplane is the margin df éxample and the final goal is to
find the best margin of separation (classificatifor)the submitted dat&ignificant
examples include the Support Vector Machine (SVKQortes et al. 1995), a
powerful classification tool that has gained itgpplarity and interest due to its

theoretical merits and successes in real applitatiBurges 1998).
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SVM were originally defined in order to classify dwclasses of objects linearly
separable. For each class SVM identify the hypagpthat maximize the margin of
separation (Figure 20).

In Figure 20 black dots are the first class, whiés the second class, the three lines
are three possible margins, it is obvious that $18dt suitable for this problem, H1
separates the two class but it's very near to stoite of the two class, H2 maximize

the distance from the dots and is the best separato
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Figure 20 — Parameter space separated by hyperplas¢hrough SVM model

Another technique related with the supervised Mlths one including methods
called logic based algorithms. Main examples @eeision treesor its derivation,
rule-based estimators.

We have already introduced decision trees in tegipus sections. By dealing with
supervised learning, they try to classify pattdipsorting them on the base of their
feature values.

However they have some defects. First, the cortstruof optimal binary decision
trees is a well-known NP-complete problem (Hyafilak 1976), hence it requires

complex heuristics to overcome this limit. Secdiod their nature decision trees are
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univariate, i.e. they split the parameter spaceaosingle feature at each node,
revealing inefficient in case of diagonal partifiog requirements. The solution is
hence to use alternative multivariate trees, uguealitained by the combination

between linear discriminant method and decisioest{Brodley et al. 1995).

As known, it is always possible to derive a rulesdzh estimator by a decision tree,
simply associating one tree path to a separated rul

One positive aspect of a decision tree is of coitsseomprehensibility and ease of
use. It is intuitive enough to understand that aisien tree corresponds to a
hierarchy of tests done by simply making the ditaifg through the tree branches
and taking output at its leaves (Kotsiantis 2007).

In the unsupervised case, the learning mechanismstmething apparently magic.
The data analysis model appears a closed systamptefor the input data. It never
interacts with external environment neither recgigry kind of target outputs, but it
learns!

Behind this apparently mysterious behavior, we chserve that the unsupervised
learning consists in the internal re-organizatibhe input, based on the retrieved
correlations hidden into the data by some quastdieunknown noise contributions.

In a certain way, unsupervised learning can berpn¢éed as a self-adaptive
mechanism to find patterns in the data beyond wdzat be considered pure
unstructured noise (Gharamani 2004). Two importéadsic functional examples of
such learning type are clustering and dimensicggiction.

Almost all unsupervised methods may be considertedtlg connected with

statistical and probabilistic issues. In this setheefinal goal is to estimate a model
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representing a probabilistic distribution of ingléta, conditioned by the previous
sequence of data submitted to the system. Obvidhel\simplest case is when the
ordering of the data sequence is irrelevant, becdls variables are considered
independent.

Under these conditions we can make use of theictdsBayesian rule (Berger

1985) in which, given a certain model A, consideesdan unknown probability

distribution over a data set S = {x1,...,xN}, the ditioned probability that the

model fits the data is:

P(A)P(S|A)
Pal$) = ZES @

And the corresponding model distribution, repreisgnthe estimation of the model
output on new data can be expressed as:

P(x|S) = P(x|A)P(A|S) ®3)

An unsupervised model based on such consideratansbe applied in many
functional DM cases, such as classification, pitétic outlier detection and

certainly data parameter space dimensional reductio

Up to now we are making an important assumptioat th the input data are
independent and distributed in an identical waythéligh this is a very limiting

condition, unreasonable in many real world casédsere/ current and incoming
observed data are correlated with previous onesarit be applied to time series

analysis.
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Many other clustering techniques are developednamily in ML, that either are
used traditionally outside the DM community, or mlat fit in previously outlined
categories. They are basically specialized for KEhowledge Discovery in
Databases) and KDT (Knowledge Discovery in Text)ere are relationships with
unsupervised learning and evolutionary methodssited annealing and genetic
algorithms). There is however the emerging field cohstraint-based clustering
(Tung et al. 2001), that is influenced by requirataef real world DM applications.
Another frequently used technique in clusteringeferred to the field of Artificial
Neural Networks (ANN), in particular the model S@&fganized Map (SOM),
(Kohonen 2007). SOM is very popular in many fie{dach as vector quantization,
image segmentation and clustering) and in thisecdnts analytical description can
be omitted, except for two important features:S@QM is based on the incremental
approach, by processing one-ie all input patterns; (ii) it allows to map centroids
into 2D plane that provides for a quite simple wi&ation. In addition to SOM,
other ANN developments, such as Adaptive Reson@heery (ART), (Carpenter et

al. 1991), or PPS have also relations with clusteri

4.4 The new generation of data mining infrastructures
As discussed in the previous chapter, the broagldpment and dissemination of
Web 2.0 technologies have dramatically changedptrepective of how to make
DM and analysis experiments, either from the useess and engineering design
points of view. The huge dimensions of data, theemély discovered relevance of

multi-disciplinary and cross correlation in mod&M and the advanced complexity
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of ML methodologies have rapidly modified the raguients for applications and
services to be made available to virtual commumité users, in industry, social
networks, finance as well in all scientific and @eaic environments.

Such new requirements are indeed related with henelwomputing infrastructures
together with software tools, applications and isex

Computing time efficiency, high storage systemsstritiuted multi-core
processing farms and parallel programming: modeymputing architectures,
such as cloud, grid, HPC (High Performance ComptirGPU (Graphics
Processing Unit) cannot be hosted by single usdicesf and require to
concentrate computing facilities in data centersieasible to worldwide user

communities.

The access to computing facilities must be as maschossible user-friendly, by
embedding to the end user, potentially not teclhiyicakilled, all internal

mechanisms and setup procedures;

The remote access to data centers and analysisesenaust be asynchronous, in
order to avoid the need for the user to maintaiencihe connection sockets for a
potentially huge amount of time. It is in fact wédhown that massive data

processing experiments, based on ML, are tomguming;

Data mining with ML methods are in principle sturetd as workflows (for

example pipelines of data reduction and analysiasimophysics), made by an
ordered sequence of conceptual steps (data priegaratining, validation, test),

one depending on each other. Any of the analysiswining services must offer a
complete set of tools to perform all these openaicsteps. In particular they
should be able to offer scripting tools, to makestom setup and execution of
different scripts, composed by various ML experitsesutomatically sequenced

and ordered;
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Machine learning methods require a strong expeeieatd both scientific and
technological knowledge on their internal setup aeaning mechanisms. In
principle the end user should have an expert otéthniques available during all
phases of the experiments. So far, in the absehbeiman experts, the remote
applications and services must guarantee the plitysto guide users through

simple and intuitive interfaces to all conceptual steps of the experiments;

Multi-disciplinary data centers must be interopégalhe. all archives require an
high level of data format and access standardizaticorder to perform join and
cross correlation activities in a fast and effitiamy, without constraining a pre-

treatment of data to obtain their uniformity and homogeneity;

Massive data sets are often composed by GB or Téatd. It is unthinkable to
make repetitive data moving operation on the ndtviora fast and efficient way.
The use of metadata could represent a good comgpedion any user who intends
to manipulate data and to submit them to ML sesvicea remote way. So far, the

avalable application frameworks must make available such mechanisms;

The human machine as well as graphical user irtesfaf remote data analysis
systems should guarantee the interoperability betwineir ML engines, by

making use of standards for algorithm descript®etup and engineering. This
could permit an efficient sharing mechanism betwdifierent data warehouses,

avoiding replications of tools and confusion in the end users;

In many scientific communities, users are accustbtonaise their own algorithms
and tools, sometimes specifically created to sdilmited problems. Such tools
were not originally designed by following progranmgi standards or to be
executed and portable on cross platforms. Modern ddtvice infrastructures

should make available automatic plug-in featurete &b give to users the
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possibility to integrate and execute their ownpssrior algorithms on the remote

computing platforms.

The above list of requirements is not exhaustivg, iB sufficient to clear the
important aspects related with what the moderruairtommunities should expect
to take full advantages of available Informatiord @ommunication Technologies
(ICT) in the era of e-science.

Data mining with ML intrinsically contains so hidgwvels of complexity and a wide
degree of multi-disciplinary generalization to bgaod candidate as benchmark for
the new ICT solutions, being able to fully expldi& revolutionary features and
products.

Currently there are a lot of applications and s&wj related to DM with ML,
available in the world. Some of them were originalbnceived for general purpose,
others specialized to treat problems for a spedifigcipline or science/social
community.

For example, DAMEWARE (Data Mining & Exploration \WeApplication
REsource) is a rich internet application, one @& thain products made available
through the DAME international Program Collaboratitt provides a web browser
based front-end, able to configure DM experimemsnuassive data sets and to
execute them on a distributed computing infrastnec{cloud/grid hybrid platform),
hidden to the users. DAMEWARE offers the possipilib access different DM
functionalities (supervised classification, regi@ssand clustering) implemented
with different ML methods (among them, tradition®ILPs, Support Vector
Machines, Genetic Algorithms). Originally speciatizand scientifically validated
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on DM in Astrophysics, it can be used in a widegerof real problems and
disciplines, by offering a completely transparemthiéecture, a user friendly
interface, standards to ensure the long-term iptrability of data and the
possibility to seamlessly access a distributed adimg infrastructure. It also makes
available an automatic tool to create user custtenamrkflows and models,

plugged in the application engine. In order to @ffeely deal with MDS, DAME

offers asynchronous access to the infrastructwts,t¢thus allowing the running of
activity jobs and processes outside the scope gf particular web application

operation and without depending on the user coioredtatus. The user, via a
simple web browser, can access the applicatioruress and can keep track of his
jobs by recovering related information (partial/qete results) without having the
need to maintain open the communication sockethEtmore its GUI has widgets
that make it interoperable with KNIME processingji@e. The service is currently
available as a beta release and under completidrtesst for some crucial aspects
(experiment execution scheduling system, integnatb new ML models, plug-in

procedure). The main limit is the inability to setand execute custom scripting
procedures, constraining to manually setup andwgeunultiple ML experiments in

a sequential way. The DAME Program website hogierotveb-based services and
resources for the astronomical virtual communitgether with many documents

useful especially for novices of ML techniques & methodology.
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4.5 Selected strategy

Another important category of supervised ML modeisl technigues, in some way
related with the Darwin’s evolution law, is knowis avolutionary 6r genetic)
algorithms sometimes also defined as basedenetic programmingMichalewicz
et al. 1996).
These names however present some differences. Whatn surely assert is that
Evolutionary or Genetic models are a category gbadhms that emulate the living
organism evolution law. In the Nature all specietofv that law in order to adapt
their life style to the outdoor environment andstovive. In the ML paradigm this
kind of self-adaptive methods try to solve optintiza problems.
The relationship is strong between them, becawssuhviving can be considered an
optimization problem as well.
The slight conceptual difference between evolutiprgad genetic algorithms is that
the formers are problem-dependent, while the ktiee very generic. This is also a
concept derived from the biologic models, in whathliving species are commonly
driven by genetic laws, but present specific irdénmechanisms to achieve their
proper evolution through population generations.
At the base of all evolutionary models there ammes@eneral concepts, present in
both biological and ML models:

¢ Individuals as set of genetic features (chromosacnegposed by genes);

¢ Population of individuals evolving in parallel;

¢ Reproduction of individuals based on re-combinatiperators and on random

mutation;
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e Selection of better individuals (solutions of thptimization problem) through

fithess operators;

These common features are easily assembled inmadbcomputational algorithms
and are demonstrated very effective by their sucaeshe biological case. There
could be also proved that such genetic programmirigs are able to solve
optimization (either minimization or maximizationproblems, statistically

converging to the best solution (Mitchell 1998).

In order to be more precise, the question is: whatintend for optimization

problem solvable by genetic/evolutionary models?

Well, such problem must include some generic issues

« Its solution depends on many parameters, to bevedoin strict combination

between them;

e It must be always an optimization problem (mininiiza or its dual,
maximization). This is easy to understand by thigkiat the final goal of

evolution in Nature, i.e. optimization of speciemptation;

« The optimization evaluation function (fithess fuoatin evolutionary jargon) is a
complex one, i.e. frequently it has not a closedhematical expression. For
instance, sometimes it is given under the form efnaulation of a real physical

system;

¢ The problem has in principle unknown structure emihplexity;

« The problem presents aspects or possible repréisastahat could require a

parallel processing. Genetic algorithms are intcedyy parallel, at different
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levels, from lowest, in which the population mentean be created and/or
grown independently, to highest, where severalpeddent populations can be
grown in parallel or genetic operators can be a&pplio various population

members in an independent way.

In all cases, genetic programming and evolutiorégprithms try always to mimic
the evolution in Nature. With such issue in minds ieasy to deduce that the genetic
population corresponds to a set of possible op#tita solutions to the given real
problem.

The experience on such systems reveals that gemetievolutionary algorithms are
very generic, but if a specific algorithm could beated, it is very likely to be

effective in the problem solving.

4.5.1 Data Quality Enhancement with data mining

In the traditional DQ methodology, briefly touch&d the previous chapter, the
statistical approach is usually employed for maaguthe quality of data, in many
common cases with good results (for example firenoenterprise, medical
warehouses). But dealing with much more complexega®specially in data
warehouses designated as repositories of highgiwacscientific experiment results
(like in the Euclid case), the traditional approagipears to be quite insufficient.

The major limit of statistical methods, when apglairectly on data quality control,
is the fact that traditionally DQ modifies the ddatemselves (Farzi et al. 2010)

while for scientific data this needs to be avoidedta Mining, on the contrary, is a

methodology for measuring the quality of data, ereisig their intrinsic nature. DM

algorithms extract some knowledge that can be tsedeasure the quality of data,
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with particular reference to the quality of inprdrtsactions and then, eventually flag
the data of poor quality.
A typical procedure to measure DQ of data transastishould be based on three
steps:

1. Extract all association rules, which depend on frifansactions;

2. Select compatible association rules;

3. Add confidence factor of compatible rules as cidter data quality of transaction.

There are two important challenging issues. First, extraction of all association
rules needs a lot of time and next, in most calBegetis no exact mathematical
formula for measuring data quality.

So far, a more effective DM approach to DQ shoutdakiernative to find exact

deterministic or statistical formulas. Thereforer fis, the answer is in employing

methodologies derived from Machine Learning (MLyguhgms, such as (&ctive

on-line learning which addresses the issue of optimizing the coatlin and trade-
off of losses incurred during data acquisition;gg3ociative reinforcement learning
(Kaelbling 1994), connected with the predictive Igyaf the final hypothesis.
Moreover, one of the guidelines of our proposedreggh is to conjugate these
machine learning paradigms with features cominmflological adaptive systems.
The key principles are to process information swysteusing a connectionist
approach to computation, in order to emulate theegpful correlation ability at the
base of the cognitive learning engine of humannb(&ould 2002), together with

the optimization process at the base of biologigalution (Darwin’s law).
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Our experience in such methodology has producedD#weIE* (Data Mining &
Exploration) Program, which includes several prgeanostly connected with
Astrophysics, although spread into various of itserstific branches and sub-
domains. Data Mining is usually conceived as an liegion
(deterministic/stochastic algorithm) to extract nawn information from noisy data,
(Dunham 2002). This is basically true but in sonay\t is too much reductive with
respect to the wide range covered by mining condeptains. More precisely, in
DAME, data mining is intended as techniques of esgilon on data, based on the
combination between parameter space filtering, tnachlearning and soft
computing techniques associated to a functional allomin the data mining
scenario, the machine learning model choice shalwdys be accompanied by the
functionality domain. To be more precise, some rrectearning models can be
used in a same functionality domain, because iesgmts the functional context in
which it is performed the exploration of data.

It needs to be stressed that, for what raw imagesreed by the experiment are
concerned, data quality would be based on the glaba local properties of the
images themselves, as well as on some a —priosti@nts. For instance, on
parameters, such as the average background cthmtilling factor of objects (i.e.
number of pixels above a given flux threshold) darection of many internal and

external parameters (such as lim mag, galactitutigi etc.). This implies the need

14 http://dame.dsf.unina.it/
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for an intelligent, reliable and fast on the flygeeentation of the image such as, for
instance, that provided by the NExt-II softw#re

From the technological point of view, the employmenh state of the art web 2.0

technologies, allows the end user (i.e. the datéecg) to be in the best condition to
interact with the DQ process by making use of go&mveb browser.

The approach outlined above has three immediaterdages:

DQ controls can be approached by remote, throughogeneous and interoperable

interfaces, federated whereas possible under \i@ates.

Different DQ models and algorithms available by o¢enweb applications can be

tested by the end user (SDC) in a standard andivetuvay. In other words, the SDC

does not need to be particularly skilled with DM thuelologies to create and
configure workflows on data;
DM applications could be executed by remote cloid/ffameworks, embedding all

the complex management issues of the distributetpating infrastructure.

However, another indirect positive issue for oyprapch arises by considering that,
in a massive data centric project like EDW, ong¢hef unavoidable constraints is to
minimize data flow traffic and down/up-load opesats from remote sites. DQ tools
should therefore be installed and maintained aSthe.

It is worth to stress that this approach fits petifewithin the recently emerging area
of interest named DQM (Data Quality Mining). DQ sseformation attributes as a
tool for assessing quality of data products. Thal gd DQM is to employ data

mining methods in order to detect, quantify, expland correct DQ deficiencies in

15 http://dame.dsf.unina.it/next.html
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very large databases. For this reason there isiproeal advantage between the two
application fields (DQ is crucial for many appliceits of KDD, which on the other

side can improve DQ results).

4.5.2 Data Quality Mining and scalability issues
DQ and DQM are computing intensive and their comafiomal cost grows quickly
with the size and complexity of the data to be yaed. In what follows we shortly
describe how Graphic Processing Units (GPUs) caffer an effective and
inexpensive way to deal with such problem everhaframework of a mission as
complex as Euclid is.
In Euclid SGS warehouse the scientific quality cohis particularly referred with
data and metadata related to both images and apstiist of the KDD techniques
based on machine learning that could directly bpleyed on such kind of data can
be considered naturally parallel in terms of tlagialysis computation.
As an example let us consider a Multi Objective &enAlgorithm (MOGA), based
on the linkage between feature selections and ediwcrules, that is one of the key
concepts in the DQ methodology. The main motivation using GA in the
discovery of high-level prediction rules is thagytperform a global search and cope
better with attribute interaction, often used in OWMoblems (Das et al. 2009).
Therefore a parallel GA further promotes the penfance of computing,
particularly required on massive data warehousétguantrol.
A traditional parallel computing environment is yaefifficult and expensive to set

up. This can be circumvented by recurring to grephiardware, inexpensive, more
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powerful, and perfectly comparable with other mooenplex HPC mainframes in
terms of computing power (many frameworks basedGi#*lJ architecture are
already included in the top 500 HPC worldwide sapeputer rankint).

The DAME Program has already started the investigabn the design and
implementation of a hierarchical parallel genetigoathm, implemented on new
technology based on multi-core Graphics Processing (GPU) provided by
NVIDIA Company, by using the Compute Unified Devigechitecture (CUDA)
parallel programming SDK. CUDA is a platform for ssavely parallel high-
performance computing on the company’'s powerful &PZhang et al. 2009). At
its cores are three key abstractions: (a) a hieyaaf thread groups, (b) shared
memories, and (c) barrier synchronization that ammply exposed to the
programmer as a minimal set of language extensibhese abstractions provide
fine-grained data parallelism and thread paratielisested within coarse grained

data parallelism and task parallelism.

Device

Multiprocessor i
Multiprocessar
To Host =
# | Multiprocessor !

Registers
Shared Memary

Figure 21 — GPU CUDA memory handling architecture

18 http://www.top500.0rg/
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The amount of performance benefit an applicatidhre@lize by running on CUDA
depends entirely on the extent to which it can bealtelized. As mentioned
previously, code that cannot be sufficiently paidakd should run on the host,
unless doing so would result in excessive trandfetaeen host and device.
Amdahl’'s law specifies the maximum speed-up thatloa expected by parallelizing
portions of a serial program (Amdahl 1967). Essdigtiit states that the maximum

speed-up9) of a program is:

1
S = T @

whereP is the fraction of the total serial execution titaken by the portion of code
that can be parallelized amilis the number of processors over which the parallel
portion of the code runs.

The largerN is (that is, the greater the number of processdthg)smaller thé>/N

fraction. It can be simpler to vieM as a very large number, which essentially

transforms the equation intG:]/(l— P). For example, if34 of a program is
parallelized, the maximum speed-up over serial ¢ode= ]/(1—%)= 4,

Moreover, effective bandwidth is calculated by tignispecific program activities
and by knowing his equation how data is accessatédprogram. To do so, we can

use the formula:

effectivepgnawiath = ((Br * BW)/109>/time (5)
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where the effective bandwidth is in units of GB&da Byte per secondB:is the
number of bytes read per kernBlyis the number of bytes written per kernel, and
time is given in seconds.

For example, to compute the effective bandwidtla @048 x 2048 matrix copy, the

formula (5) could be used obtaining:

2
ef fectivepanawiacn = ((2048 xx 2)/109)/time (6)

The number of elements is multiplied by the sizeeath element (4 bytes for a
float), multiplied by 2 (because of the read write), divided by 18to obtain GB
of memory transferred. This number is divided bg thme in seconds to obtain
GBps.

In our vision such mix between software DM and ML techniquesetiogr with
hardware high performance at low cost distributethputation architecture, could
engage and maintain an adequate level of religkalitd performance in the DQ
control during both the design and development estagf the Euclid Data

Warehouse.
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Genetic Algorithms within CUDA parallel architect ure

Genetic Algorithms (GA) are methods inspired tourat evolution as described by
Darwin. They are powerful instruments to solve peals where parameter space is
not well defined to find best solution. They alwagssure the convergence towards

the best solution, avoiding typical limits of ottegorithms, such as local minima.

Search techniques

Calculus-based techniques Guided random search techniques Enumerative techniques
Direct methods Indirect methods Evolutionary algorithms Simulated annealing Dynamic programming
Fibonacci Newton Evolutionary strategies | Genetic algorithms
| 1
Parallel Sequential

Centralized  Distributed  Steady-state  Generational

Figure 22 — Genetic Algorithms in the hierarchicalearch method taxonomy

GAME (Genetic Algorithm Mining Experiment) is a purgenetic algorithm
specially designed to solve supervised optimizatigeroblems related with
regression or classification functionalities, sbéato efficiently manage Massive
Data Sets (MDS) and based on the usual genetiaitamol methods (crossover,
genetic mutation, roulette/tournament, elitism).
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GAME as a genetic algorithm needs the creation lobrmosomes’ population
(genome), this means that we need an internalseptation (encoding genes of the
chromosomes, normalization) and a fitness functiole to evaluate the goodness of
a chromosome than other. This depends obviousiy tiee problem examined and
hence from nature and the intrinsic characteristidhe dataset evaluated.

In order to give a level of abstraction able to maknple adapt the algorithm to the
specific problem, a family of polynomial developrtgenwas chosen. This
methodology makes the algorithm itself easily exjadnte, but this abstraction
requires a set of parameters that allows to fitatlgerithm to the specific problem.
From an analytic point of view, a pattern, composéd\ features contains an
amount of information correlated between the fesgwrorresponding to the target
value. Usually in a real scientific problem thatretation is “masked” from the
noise (both intrinsic to the phenomenon, and dutheécacquisition system); but the
unknown correlation function can ever be approxedatwith a polynomial
sequence; degree and non-linearity of the chosenctin determine the
approximation level, e.g. in the hybrid model GA+RiLthe polynomial sequence is
represented from the weights of the net and frogmatttivation function of neurons;
hence the mathematical validity of the method iargnteed and preserved.

The generic function of a polynomial sequence isebaon these simple
considerations:

Given a generic dataset with N features and attérgat a generic input pattern of

the datasepat = (fi, -, fy,t) and g(x) a generic real function, the representation
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of a generic feature 6f a generic pattern, with a polynomial sequenfcdegreed
is:

G(f) =ao+ay g(fy) ++aq g°(f) (7

Hence, the k-th patterpdt) with N features may be represented by:

Out(paty) = YN, G(f) = ag + Z?’ﬂz;ﬂl a; g () (8)

Then targety, concerning to pattenpat, can be used to evaluate the approximation
error of the input pattern to the expected value:

Ey = (tx — Out(paty))* ()]

If we generalize the expression (8) to an entitasig, with NP patterns number (k
=1, ..., NP), at the end of the “forward” phase ¢batof the GA, we have NP
expressions (8) which represent the polynomial @apration of the dataset.

In order to evaluate the fithess of the patternexésnsion of (9) Mean Square Error

(MSE) or Root Mean Square Error (RMSE) may be used:

NP (, _ 2
MSE = Yr=1(tx—Out(paty)) (10)
NP
NP 4 _ 2
RMSE = \/W (11)

Then we define a GA with this characteristic:
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The expression (8) is the fitness function;

The array 4o, ..., a1) defines M genes of the generic chromosome (ihittaey are

generated random and normalized between -1 and +1);

All the chromosomes have the same size (constrai & classic GA);

The expression (9) gives the standard error touetal the fitness level of the

chromosomes;

The population (genome) is composed by a humbehafmosomes imposed from

the choice of the functiog(x) of the polynomial sequence.

About the last item we can say that this numbeddatermined by the following
expression:

NUMcyromosomes = (@ N) +1 (12)

whereN is the number of features of the patterns Riigla multiplicative factor that
depends from thg(x) function, in the simplest case is just 1, but agee to 3 or 4
in more complex cases.

A derivation of the Holland's theory (Holland 19/S)ates that the best solutions
may be found using a population of 20, up to 50pctosomes. By using much
more chromosomes it doesn't help the convergencinefGA, also dramatically

increasing the computational time.
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The parameteB also influence the dimension of each chromosomanfrer of
genes):

NUMggnes = (d-B) +1 (13)
whered is the degree of the polynomial.

For example if we use the trigonometric polynomssquence, given by the
following expression,

p(x) = ag + Xh-1amcos(m x) + X% by, sin(m x) (14)

and to have 2000 patterns, each one with 11 fegttite expression for the single
(k-th) pattern, using (8) with degree 3, will be:
Out(paty) = %2, G(f) = apg + X% 213':1 a; cos(j fi) + 2 Z?:1 bj sin(j f;) (15)

fork=1,...,2000.

In the (15) we have two groups of coefficients (@i cosine)B will be 2, so the
number of chromosomes for each generation will be:

NUMcyromosomes = (2-11) +1 =23

Each chromosome will be composed by a number cdggiven from (13):

NUMGENES = (2'3)+1 =7

Hence the generic genome (population at a generdution stage), will be
composed by 23 chromosomes, each one with 7 gafes], a2, a3, bl, b2, h3
with each single gene (coefficient of the polyndinia the range[—1,+1] and

initially random generated.
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By evaluating the goodness of a solution throughEM8 RMSE metrics, sometimes
it may happen that a better solution in terms ofBMiS a worse solution for the
model, for example if we have a simple crispy dfasgion problem with two
patterns (class types 0 and 1).

As an example, if the solutions are, respectiveld9 for the class 0 and 0.51 for the
class 1, the efficiency is 100% (i.e. each patiercorrectly classified), with a MSE
= 0.24. But a solution of 0 for the class 0 andd0fdr the class 1 (efficiency of
50%), gives back a MSE = 0.13 and consequentlyrtbdel will prefer the second
solution, although with a lower efficiency.

In order to circumvent this problem, we decidenbpiement in GAME the so-called
convergence tube

Despite its name, its formulation is quite simpler a given radiusk the error
within Ris placed equal to 0 so that the equation (9) ineso

if abs (t, — Out(paty))? > R — Ej = (t, — Out(paty))?

if abs (t; — Out(paty))? <R->E,=0 (16)

With the previous example, usirig= 0.5, in the first case we have a MSE = 0,
while in the second case MSE = 0.13, recognizimgfitst solution better than the
second one and indeed revealing much better aotdremd according the efficiency

of the algorithm.
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5.1 GPU Design Model

To better address the GPU-based design startimg fih@ serial implementation of
the application, we choose to use an ad hoc sadtdevelopment methodology, for
instance APOD (Assess, Parallelize, Optimize, aagi®y)(NVIDIA Corp. 2011).

APOD design cycle aims at quickly identify the pams of code that could take
more easily the advantages and benefits of GPUeaatien, and begin to exploit
the speedups resulting in production as fast asilples APOD is a cyclical process:
initial speedups can be achieved, tested, and geglquickly, at which point the

cycle can start over to identify further optimizetiopportunities.

ASSESS

/ \

DEPLOY PARALLELIZE

AN /

OPTIMIZE

Figure 23 - APOD
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5.1.1 Assess

The first step is to evaluate the multi-core amilan code to identify the parts
responsible for most of the execution time. To tifgithe critical points and start to
draw up a list of candidates for parallelizatidme tlevelopers can use profiler tools.
These bottlenecks are evaluated, de facto startingvestigate on parallelizable
GPU acceleration. An upper limit of performance ioy@ment can be estimated
considering requirements and constraints, and bplysmgg Amdahl's and
Gustafson’s laws (Gustafson 1988).

Gustafson’s Law states that the problem size saaitssthe number of processors.
Practically, for Gustafson the maximum speedup & mfogram is:

S=N+(1-P)(1-N)

where P is the fraction of the total serial exemutime taken by the portion of code
that can be parallelized and N is the number otgssors over which the parallel

portion of the code runs.

5.1.2 Parallelize
Once identified the hotspots and having establistieel theoretical speedup
achievable, we need to parallelize the code. Bysixg the parallelism to improve
performance and simply maintain the code of sedgiesyplications, we are able to
ensure also the maximum parallel throughput on GRIDA-capable. This could

be as simple as adding a few preprocessor dirsctisach as OpenMP as
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OpenACC, or it can be done by calling an existifgUzoptimized library such as
CUBLAS, cuFFT, or Thrust.

Specifically, Thrust (Bell N. et al. 2010) is a alel C++ template library like C++
STL (Standard Template Library) (Stepanov et al95)9 it provides a rich
collection of data parallel primitives such ssan sort, andreduce which can be
composed together to implement complex algorithrite @oncise, readable source
code. Thrust is implemented entirely within CUDA Q34 and maintains
interoperability with the rest of the CUDA ecosysteThe native interoperability
with CUDA C is a powerful feature. Interoperabilignsures that Thrust always
complements CUDA C and that a Thrust plus CUDA @ilcimation is never worse
than either Thrust or CUDA C alone.

The Thrust library provides two vector containermst vectorstored in host
memory anddevice_vectotives in device memory and like the vector cordaiim
the C++ STL, botlare generic containers that can be resized dyndyica

In Listing 2 acts on the vector containers ugjegerate sort, andcopy algorithms.
In this example, the iteratots vec.begin() andh_vec.end() can be thought
of as a pair of int pointers. Together the pairirdef a range of integers of size

h_vec.end() - h_vec.begin()
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#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

int main(void)
/I generate 16M random numbers on the host
thrust::host_vector<int> h_vec(1 << 24);
thrust::generate(h_vec.begin(), h_vec.end(), ran d);

/I transfer data to the device
thrust::device_vector<int> d_vec = h_vec;

/l sort data on the device
thrust::sort(d_vec.begin(), d_vec.end());

/I transfer data back to host
thrust::copy(d_vec.begin(), d_vec.end(), h_vec.b egin());

return O;

}

Listing 2 - Simple sort example using Thrust

Note that even though the computation implied by thall to thesort algorithm
suggests one or more CUDA kernel launches, theranomer has not specified a
launch configuration. Thrust's interface abstrathgse details. The choice of
performance-sensitive variables such as grid andkbsize, the details of memory
management, and even the choice of sorting algoridre left to the library

implementations.

5.1.3 Optimize
After the parallelization step is complete, we caove to optimize the outcome to
improve performance. As well APOD, optimizationais iterative process (identify
an opportunity for optimization, apply and testiopzation, verify the speedup
achieved, and repeat), which means that it is ao¢gsary to spend large amounts of

time trying all possible optimization strategieastead, strategies can be applied
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incrementally and using profiling tools can comehiendy once again for guiding
this process. Performance optimization is based on:

» Maximizing parallel execution;

» Optimizing memory usage to achieve maximum memandiidth;

e Optimizing instruction usage to achieve maximuntringion throughput.

Maximizing parallel execution starts with structgithe algorithm in order to
expose as much "data parallelism" as possible. @rcparallelism of the algorithm
has been exposed, should be mapped to the hardwaféiciently as possible. This
is usually done by carefully choosing the runnimanfiguration of each kernel
launch and maximizing competition between hostthedlevice.

Optimizing memory usage starts by minimizing thestito-device data transfers
because they have much lower bandwidth than theécel¢e-device transfers.
Sometimes, the best memory optimization could b#ki to avoid any transfer of
data by recalculating them whenever needed.

As for optimizing instruction usage, the use oftarietic instructions that have low
throughput should be avoided. This suggests tragimegision for speed when it
does not affect the end result, such as using esipgtcision instead of double
precision. Finally, particular attention must bedpi® control flow instructions due

to the SIMT (Single Instruction Multiple Thread)taee of the device.

5.1.4 Deploy
After completed an acceleration cycle, we can complae result with the original
implementation. Before tackling other critical pi@in the current partially
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parallelized implementation is deployed. This allows to profit from the
improvements as fast as possible (the speed ircmeay be partial, but it is still
valid).

With each generation of NVIDIA processors, new deas are added to the GPU
that CUDA can leverage. Consequently, it's impdrtao understand the
characteristics of the architecture. The computeaggability describes the features of
the hardware and reflects the set of instructiangpsrted by the device as well as
other specifications, such as the maximum numbethafads per block and the
number of registers per multiprocessor. Higher aating capability versions are
backward compatible.

When in doubt about the computing capability of tlaedware that will be present at
runtime, it is best to assume a computing capghifit1.0 or 1.3, depending on the

required double-precision arithmetic.

5.2 Multi-core Design Description

In a GA each element (called chromosome) has it&Dhl the form of a vector of

genes, representing a potential solution to thbelpr.
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Population

GASControl

emlog_name: string
emor_function_type: string
emor_update: int

emorFuncType: int

functionality: int

inputData: vector< vector<double> >
inputdataFileName: string
max_epochs: int

GASParams

cossover_rate: double
elitism: int
ermror_threshold: double
emor_type: int
emorLog_filename: string
expConf_filename: string

max_error: double

orossover_rate: double — int N inputDataset_filename: string
DNAlenath: int e, . .. \ inputRunConf_filename: string
ol engl in nl.Jm_mrge§ '_m S inputTestConf_filename: string
elitism: int P: Population A3 inputTrainConf_filename: string
7 o poly_degree: int \_internal_params_filename: string
fitness_type: int poly_function_type: string \Q max_training_epochs: int

poly_type: int mode_functionality: int
rand_choice: string mode_run: int

selection_type: string mutation_rate: double
targetData: vector< vector<double> > num_features: int

useCase: int num_targets: int

num_tour: int

Output_filename: string
poly_degree: int

poly_type: int
population_generate_mode: int
Populationinput_filename: string
PopulationOutput_filename: string
selection_type: int
show_error_frequency: int

mutation_rate: double
num_tournaments: int
population_generate_mode: int
population_size: int

popv: vector<Chromosome*>
selection_type: int

Chromosome

DNA: vector<double>
fitness: double
outputData: vector<double>

Figure 24 — GAME serial (multi-core) version classliagram

In particular, by referring to the class diagram Bigure 24, the crucial
implementing aspects are:

the classChromosomehandles its own stack arragctor<double> DNA  with all
genes and the stack arragctor<double> outputData ; which includes for
each chromosome the vector of outputs for all ingaitterns. It must be taken into
account that at the moment the program can exexxygeriments related to one-
output (one-class or crispy) classification and-ongut regression;

the classPopulation handles the stack arragctor<Chromosome*> popv ; that
is a matrix with rows corresponding to the numbeclwromosomes and columns
corresponding to the vector DNA of each chromosome;

the classGASControl, at an higher level, handles the objeapulation *P  , and

the stack matrices related to input and target epat respectively,
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vector<vector<double> > inputData ; and vector<vector<double> >
targetData ;

for the classPopulation, the most important methods are the constructor,
GASControl::GasControl , Which initializes the population and the method
GASControl::next , which implements the population evolution durirajning;
Through several cycles, the population of chromassynoriginally created from a
random generation (typically following the normastdbution), is replaced at each
step by a new one obtained by applying genetic atpes, trying to evolve it
towards best population (solution). The DNA is dsua solution to a problem,
codified (normalized) in order to permit an easipplication of genetic operators.
Typical representations used are the binary codéhewalues in [-1, 1] for each
element (gene) of a chromosome. But sometimestraalization cannot be applied,
depending on the problem topic area.
How a GA can evolve? Well, at the first stage, aitial random population is
created.
There are available three types of random generatiteria:

« RANDOM: it generates pseudo-random values in [1]; +

¢ GRANDOM: it generates random values following tleemal distribution in [-1, +1];

« DRANDOM: it generates pseudo-random values in I0, 1

Then its chromosomes are evaluated in terms of thedlification to solve a
specific problem, whose initial solutions are thgornosomes of the first random

population. The evaluation is made by a specifigtbss function. This operator
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assigns a score to each chromosome. The best sisoted best solution for the

current population. The choice of the best fitnassction is one of the crucial

design steps of a GA.

After the calculation of fitness operator for ahromosome of a generation, next
step is the evolution (reproduction) of the pogalat The reproduction is done by
using typical genetic operators, such as crossoaerdom mutation, whose common
scope is to introduce genetic variety inside thigioal population, during the

generation evolution. In practice, the reproductisndone by selecting stronger
chromosomes and by killing others. But how to detteem?

Obviously, the selection cannot be done randonthgrmvise the population will not

evolve towards better solutions. The selectionoisedapplying a well fixed fithess

function.
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Create initial population of
chromosomes randomly

v

Create children using crossover
and mutation/inversion

v

Find the best chromosome in
the new population

Update the
best solution

Is this a new best?

Created enough
generations?

Return the best solution

End

Figure 25 — Schematic block diagram for the execudn flow of a GA

As mentioned above, the choice of the evaluatiothatk to look for the best

candidates to be reproduced over the generatiorhmimosomes, the so-called
fitness function, is a crucial step in the GA dasig

There is a large variety of possible fitness fuordi One of the simplest is to codify
chromosomes in an convenient way, such as BCD yiwde, and then to compare
a target value through its difference with the safrhalf-groups of chromosomes.

In the present project, the idea is to use GA ttvessupervised one-class
classification and regression problems, typicadjated to an high-complexity

parameter space where the background analyticitumig not known, except for a
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limited number of couples of input-target valuegresenting solutions to a physical
category of phenomena.

In such cases, we want to train a GA to recogrieecbrrect output to be assigned
to other input samples extracted by real world €agetypical case is to classify
astronomical objects based on some solution saniplese of Knowledge or BoK)
and to learn to recognize new values extracted bgthdér observations.
To accomplish such behavior we designed a funq@opolynomial expansion) to
combine input patterns. The coefficients of theslyrpomials are the chromosome
genes. The goal is to find the best chromosomehab the related polynomial
expansion is able to approximate the right solgioto input pattern
classification/regression.

So far, the fitness function for such representationsists of the error, obtained as
absolute difference between the polynomial outmd the target value for each
pattern. Due to the fact that we are interestdihtbthe minimum value of the error,
the fitness is calculated as the opposite of ther ér.e. 1-error) and the problem is
reduced to find the chromosome achieving the maxinvalue of fithess. At each
evolution step (batch update of population) theeethe following options, that can
be chosen by user at configuration step:

error function typeMSE (Mean Square Error,MSE (Threshold MSE)
or RMSE (Root MSE);

selection type: the selection function to be usedttract some chromosomes as
candidates to participate to the tournament, ireotd be used to make evolution in
the population. It is possible to choose betweemNRING and ROULETTE type. In

theRANKING case the winner chromosome is the one with thbdsigfitness. In
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theROULETTE the winner chromosome is selected with the higlpesbability,
calculated as the ratio between its fithess andstim of all chromosome fitness
values inside the current population. It is calRmllette, because in the selection all
chromosomes participate like in a classical roeletheel random selection. In all the
two cases above, the number of candidates chrones@randomly extracted from
the current population (the number of candidatesori® of the user selected
parameters). After the tournament, the winner closome is used together with a

new one, randomly created from scratch, to apphetie operators (crossover and/or
mutation).

Another mechanism for evolving the population ie Htitism. It consists of a user
selection of the number of copies of winner chroomos at current population, to be
maintained as it is in the next generation, in otdepreserve the best fithess obtained
up to the current evolution step. This value shdwddtaken low in order to don't
waste members with worst fitness, that in any ceae,play an important role during
the entire evolution process. In fact we recalt tha members with worst fitness play
a not irrelevant role in the population evolutitkecause their "genetic material" can
and must be subject of useful mesh inside the @dipul during evolution, by

applying genetic operators, such as crossover.

There are two genetic operators. They are usedeshrthe genes between selected
chromosomes (by one of the above tournament satectiteria).

Crossoverhappens when two chromosomes "break” themselvéseatame point
(inside the string coding the gene vector) and Hearge" their segments. For
example, let's suppose to maintain the same fithesgion of the example in the
previous section:

(1) 00100101 (2 + 5 =7) with fitness 15-7 =8

(2) 00010111 (1 + 7 = 8) with fitness 15 -8 = 7
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Let's apply the crossover at index 3:
(1) 00100 10> 00100 111> 00100111 (2 + 7 = 9) with fitness 15-9=6

(2) 00010 11 00010 101> 00010101 (1 + 5 = 6) with fitness 15-6 =9

In the example, the chromosome son (1) has beémiapt in terms of their fitness
and it is a better solution than its fathers. Thessover implementation is
at Population::crossover

As all genetic operators, the crossover is not wdwapplied in the genetic
recombination, but  with an associated probability parémeter
Population::crossover_rate ). While the breaking point inside the
chromosome where to apply crossover is selectedbraly (int crosspoint =
rand()length ;).

Themutation operator makes a single change in a gene of amdsome, replacing
it with a new valueRopulation::Mutation ). As for crossover case, mutation is
not always applied, but with a certain probability.

As mentioned above, the GA is implemented by aahibry of classes. The atomic
element in this case is the cl&&sromosome representing a single member of a
population. It identifies a single vector of gengeefficient of the polynomial
expansion). A family of chromosomes is grouped ke tclasopulation,
representing a set of solutions (polynomial codgfits) racing in the selection of the
best solution for the current problem identifiedibyyut patterns (user dataset).

The object of clas€hromosomeis identified by the vector of values in [-1, +1].

122



UNIVERSITA oecu STUDI o

NAPOLI FEDERICOI GPY Computing for
Facolta di Ingegneria - Corso di Studi in Ingegneria Informatica Machine Learnlng Algorlth ms

The constructorGhromosome::Chromosome ) creates a chromosome from scratch,
assigning random values.

Inside this class there are various methods to geganes. Main attributes are the
vector DNA (the genes), fitness and the vector wilDpta (all output values for each
input pattern related to the specific chromosome).

The clasPopulation combines a set of chromosomes, plus a series dioade
useful to perform crossover, reproduction etc...

The constructor is very simple. It takes as inp@t humber of chromosomes of the
population and set the population and chromosomessiby following formulas
described above.

The methodPopulation::crossover implements the genetic operator, already
described above.

The methodPopulation::Mutation implements the genetic operator, already
described above.

The methodPopulation::getChromosomeFromRankTournament implements
the already mentioned RANKING selection criterioproviding the winner
chromosome (candidate with best fitness, i.e. loitest training error).

The method Population::getChromosomeFromRouletteTournament
implements the already mentioned ROULETTE selectioterion, providing the

winner chromosome (candidate with best fithess gindiby).
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point

Fittest individual
has largest share of Weakest individual

HiesroloN whaot F -~= has smallest share of
the roulette wheel
Figure 26 — Roulette selection technique

The method®opulation::best andPopulation::worst are used to extract,
respectively, winner and the worst candidate inffidecurrent population, useful for
the ordering of the chromosome vector.

Finally the overloading of the operator [ ] is @&sial mechanism useful to directly
access to the members of population as being elsnoéra generic array, i.e. the
same as for the specific meth@dpulation::getMember

The reproduction, starting from the above array done by the
methodPopulation::next , that applies genetic operators to obtain a new
population. In this method it is important to mentitheelitism mechanism. The
elitism paradigm tries to maintain alive one or enoopies of the best chromosome
in the next population. This is done to preventsfide genetic modification of
winner chromosome, causing its death during théuéeo process, through several

genetic recombinations of DNAs. The parameter (deéned) related to this elitism
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mechanism defines the number of copies of the witthbe transmitted unchanged
in the next population.

We recall also that the algorithm performsbach error evaluation (i.e. by
considering the error for each chromosome as Gkxilon the entire pattern set).
The project GAME is organized in functional portioreach one devoted to a
specific use case to be executed.

The foreseemsecasesare related to a typical machine learning modeketien
modes:

TRAIN: the first mandatory case, consisting intbmitting training datasets in order
to build and store the best GA population, wherst b in terms of its problem

solving capability;

TEST: case to be used in order to verify and vadidae learning performance of the
trained GA,

RUN: the normal execution mode after training aatidation;

FULL: a workflow case, including in cascade TRAINJGTEST cases;

The choice of the current use case is done by aseetup time from external
configuration files.

Also thefunctionality can be chosen by user. At the moment it is poss$ilein
classification or regression types.

Depending on different use cases and experimehés,user should be able to

perform a setup of many parameters and input/ouifag, without need to re-
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521

5.2.2

compile the code. In order to implement this regimient, a set of input/output files

has been designed.

Input Files
As input to the program (depending on specific case) the user must provide
following setup files:

input dataset(input and/or desired output data)

specificexperiment (training/test/run) configuration file

specificusecase(train/test/full) configuration file

Input Dataset
The input dataset represents the input patterriset@rocessed for both training
and/or test phases. These data must be submittad ASClIl-file, with columns
separated by spaces and without header. Each mpattest be filled in as a row
vector. All patterns must be of the same size.
Depending on the specific use case, the input elasawuld be made of:
The training and test dataset must consist of aCIA8le with first columns
referred to input features, followed by (usuallyptcolumns representing the targets

(desired output) associated to each feature pattern
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24.4753 -0.1139 1.822 51.29 0 1
22.6316 0.8065 5.002 80.45 1 0
22.4708 -0.3912 -7.425 5.66 0 1
23.9033 8.397 14.79 88.5 1 0

The above list is an example of an input dataskd War training/test use cases,
made of 4 patterns, with four feature columnsgfod by two target columns.

In the other cases, run use case, only the featltanns must be present in the

input file.

EXAMPLE:

24.4753 -0.1139 1.822 51.29
22.6316 0.8065 5.002 80.45
22.4708 -0.3912 -7.425 5.66
23.9033 8.397 14.79 88.5

This is the run use case version of the same teainéxample, where the targets

columns were removed.

5.2.3 Specific use case (training/test/run) configuration file
This group of files is related to the specific typeexperiment the user wants to

execute. There are three types of files: trainiegt, and run setup.
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In case of draining experiment, the user must provide an ASCII-codkeq With a

specific format 38 rows x 1 column, whose meanithe following:

row 1 : <string> header label
row 2 : <string> name of input dataset file
row 3 : <string> header label
row 4 : <string> initial population generation mottemust be one of the following
strings:
RANDOM -> pseudo-random generation in [-1, +1];
DRANDOM - pseudo-random generation in [0, +1];
GRANDOM - gaussian random generation in [-1, +1];
NORANDOM -> not random, but loaded from an external file (ubif case
of training resume experiment);
row 5 : <string> header label
row 6 : <string> "none" or name of trained popuatfile (depending on row 4)
row 7 : <string> header label
row 8 : <real> number of input features
row 9 : <string> header label
row 10: <integer> number of target columns
row 11: <string> header label
row 12: <real> order (max degree) of polynomialangion
row 13: <string> header label
row 14: <string> type of polynomial expansion ambination for genes
It can assume the following values:
CL_POLY_TRIGO~> trigonometric polynomial expansion (sum of sin aodin);
row 15: <string> header label
row 16: <string> type of error calculation functidhcan be:
MSE -> Mean Square Error
TMSE - Thresholded Mean Square Error
RMSE-> Root Mean Square Error
row 17: <string> header label
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row 18: <real> value of error rounded threshola ffMSE only)

row 19: <string> header label

row 20: <string> type of selection function for &xing population. It can be:
ROULETTE - uniform probability on entire population fithess€ttion
RANKING - absolute fitness rank of chromosomes

row 21: <string> header label

row 22: <real> error threshold (one of the stoppiriteria)

row 23: <string> header label

row 24: <integer> max number of iterations (on¢hef stopping criteria)
row 25: <string> header label

row 26: <integer> frequency (number of iteratioofgrror reporting on stdout
row 27: <string> header label

row 28: <real> crossover (genetic operator) ocoweeate (range [0, 1])
row 29: <string> header label

row 30: <real> mutation (genetic operator) occuceerate (range [0, 1])
row 31: <string> header label

row 32: <integer> number of chromosomes candidatsglection tournament
row 33: <string> header label

row 34: <integer> elitism factor (copies of winneto next generation)

row 35: <string> header label

row 36: <string> name of file where to store traipmpulation

row 37: <string> header label

row 38: <string> name of output error log file

row 39: <string> header label

row 40: <string> name of GA output file

In case otest/run experiment, the user must provide an ASCII-codé fvith a

specific format 8 rows x 1 column, whose meanintpésfollowing:

row 1 : <string> header label
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« row 2 : <string> name of input test/run dataset fil

+ row 3: <string> header label

« row 4 : <string> name of trained population file

+ row 5 : <string> header label

« row 6 : <string> name of internal parameters fileed during training)
« row 7 : <string> header label

+ row 8 : <string> name of test output file

5.2.4 Use case (train/test/run/full) configuration file
This group of files is related to the specific ease the user wants to launch. This is
the main configuration file passed to the objectaRe through the constructor
(classGASParams.
There are four types of files: train, test, run &utlsetup.
In case offRAIN, TEST orRUN use cases, the ASCII-coded configuration file

must contain the following information:

« row 1: <string> header label

« row 2 : <string> functionality for the current exjpeent. It can be:
CLASSIFICATION - classification (one-class) type
REGRESSION -> regression type

« row 3: <string> header label

« row 4 : <string> name of use case. It can be:
TRAIN -> training use case type
TEST - test use case type
RUN - run use case

« row 5 : <string> header label

« row 6 : <string> name of input parameter setup file

In theFULL use case, the file has two more rows:
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5.25

row 1 : <string> header label

row 2 : <string> functionality for the current expeent. It can be:
CLASSIFICATION - classification (one-class) type
REGRESSION -> regression type

row 3 : <string> header label

row 4 : <string> name of use case. It must be:

FULL - training+test use case type

row 5 : <string> header label

row 6 : <string> name of TRAIN input parameter gefile

row 7 : <string> header label

row 8 : <string> name of TEST input parameter sétap

Output Files
The output from the program strongly depends ocifipaise case).
Remember that faFULL use case, the outputs will be the sum of files iobth
from training and test cases.
Common to all use cases (TRAIN, TEST, RUN) the aufjpes are:
GAME_<use case>_output.t2% the training data output file;
GAME_<use case>.log normal log status of the executed job;

verbose_debug.log a verbose log status report (the name is fixed);

Specific toTRAIN andTEST will be present also the following files;

<functionality>_ GAME_<use case>_confmat.txtthe confusion matrix for
statistical results on the output;
GAME_<use case>_error.t» the list of errors at several cycles;

internal_targets.txt -> intermediate file (for internal use only);
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Specific only toTRAIN will be present two more files;

¢ the trained population file;

« classification_trained_GAME_internal_params.txt the list of used parameters as

chosen by user. This file must be used for testages;
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5.3 Parallel Requirement Analysis

In all execution modes (use case), GAME exploite payTrigo  function,
consisting in a polynomial expansion in terms ofmswf sines and cosines.
Specifically in the Training use case, correspogdin the GA building and
consolidation phase, theolyTrigo() is used at each iteration as the
transformation function applied to each chromosdmebtain the output on the
problem input dataset, and indirectly also to eatuthe fithess of each
chromosome. It is indeed one of the critical asp@dtthe serial algorithm to be
investigated during the parallelization design pssc

Moreover, after having calculated the fitness fiorctfor all genetic population
chromosomes, this information must be back-progabéd evaluate and evolving
the genetic population (by using the selected geogerators). This back and forth
procedure must be replicated as many times aghieisraining iteration number or
the learning error threshold, both decided and seddoy the user at setup time of
any experiment.

The direct consequence of the above issues ighbdtaining use case takes much
more execution time than the others and therefer¢hé one we are going to
optimize. The key computational steps in this daltbon loop are

1. generate initial population of chromosomes random.

2. calculate the fitness functions to find and ordee thest chromosomes in the
population

3. evaluate the stop criteria (error or number oitien)

4. stop or use the genetic evolution methods to evitlegopulation and goto 2

133



UNIVERSITA oecu STUDI o

NAPOLI FEDERICOI GPU Computing for
Facolta di Ingegneria - Corso di Studi in Ingegneria Informatica Machine Learni ng Algorlth ms
Start |
[
Create initial population of Generate all population of
chromosomes randomly chromosomes randomly
T at one time

Create children using crossover
and mutationfinversion

¢ [

[
Find the best chromosome in — Evaluate the fitness function J

the new population for all chromosomes in

the new population
No
|-‘
Created enough
generations?

Yes
¥
Return the best solution /

Update the
best solution

Figure 27- GA flow parallel specializations

Main design aspect approaching the software awthite analysis for the GPU is
the partition of work: i.e. which work should berdoon the CPU vs. the GPU.

As we can see in Figure 27, we have identifiedras tonsuming critical parts, and
hence potential tasks to be executed on the GP&,gt#neration of random
population and the calculation of the fitness fior of chromosomes. For instance
we focused the attention on these tasks as bedtadidates to exploit the data
parallelism on the GPU.
In fact, the key principle is that we need to perfo the same
instruction simultaneously on as much data as plessin random generation of

population, the number of elements involved is nexdremely large but it may
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occur with an high frequency. This is because dlsing the population evolution
loop a variable number of chromosomes are randaaherated to replace older
individuals. To overcome this problem we may getgera large number of
chromosomes randomlyna tantum by drawing elements from these whenever
required. On the contrary, the evaluation of fimé&sctions involves all the input
data, which is assumed to be massive datasets,ad@ady has an intrinsic data-

parallelism.

5.4 GPU-based Development Description

5.4.1 Assess
Since CUDA programming involves code running conentty on a host with one
or more CPUs and one or more CUDA-enabled GPU dswighere the devices
have a dramatically different design from the hosts important to keep in mind
that these differences affect application perforoeato use CUDA effectively. To
better exploit the resources, we have to use hodtdevice together where the
sequential work is done on the host and parallekwo the device. Which parts to
run on the device? The device is designed for éxplassive data parallelism. This
typically involves arithmetic operations on largatasets where the same operation
can be performed on all dataset items.
To generate an application profile, we used MicfoSsual Profiler which is the

profiler that came with Microsoft Visual Studio 201

135



UNIVERSITA oecu STUDI o

NAPOLI FEDERICO| GPU Computing for

Facolta di Ingegneria - Corso di Studi in Ingegneria Informatica Machine Learnlng Algorlth ms

VisualStudioProfile0 1.vsp
@ o CurentView: |Cal Tree L) P T e
i) NoiseReduction is enabled for this view. Confiqure...

Function Name | Elapsed Exdusive Time % |

B ¥ elGAexe 0.00

B ¥ _mainCRTStartup 0.00

B ¥ _tmainCRTStartup 0.00

B ¥ _main 0.13

[ ¥ trainUseCase(dass Params) 6.92

B ¥ Control::train(dass std::basic_string<char,struct std::char_traits<char>,dass std::allocator <char> >) 2.95

CRY) [Conwol::ponTngoﬁnt,dass std::vector <double, dass std::allocator <double> > const &) |

Function Name | Elapsed Inclusive Time %

B 3 elGAexe 100.00

E ¥ _mainCRTStartup 99.81

B ¥ _tmainCRTStartup 99.81

B ¥ _man 99.81

[F ¥ trainUseCase(dass Params) 99.29

B ¥ Control::train(dass std::basic_string<char,struct std::char_traits<char>,dass std::allocator <char> >) 91,98

CRY) |Conlrol::polyTngoGnt,dass std::vector <double, dass std::allocator <double> > const &) |

Figure 28 - Visual Profiler discover a Hotspot

In Figure 28, we can see that the functieslyTrigo() (excluding its child
functions) takes about three-quarters of the texaicution time of the application
while the total including child functions amounts #&bout 7/8 of total time
execution. This will be our first candidate for gléelization.

It is worth noting that if other functions had taka significant portion of total
execution time, even if parallelizing these funeiavould increase our speedup, we
would opted for parallelizing these functions irlater step because APOD is a
cyclical process.

The benefits that can be achieved depend on thentexd which code can be
parallelized. The code that cannot be well pataliel should be run on the host,
unless that by doing so would lead to excessivétoedevice transfers.

Having analyzed the application profile, we appiyher Amdahl’s or Gustafson’s

Law to estimate an upper limit of the speedup aecthike.
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5.4.2 Parallelize

Once we have located a hotspot in our applicatiqursfile assessment and
determined that custom code is the best approaehcam use Thrust library to

expose the parallelism in that portion of our cedea call to an external function.
We can then launch this external function onto &fU and retrieve the results
without requiring major rewrites to the rest of @plication.

The function polyTrigo() was previously identified as candidate for
parallelization and using Microsoft Visual Profileve can check which of its

statements is CPU time consuming.

Function Code View

control.cpp
// constant term of the polynomial function
vector<double> v;
2.2 % (*pop) [member_id]->getDNA(v);
double ret =v[0];
1.0 % for (int i = @; i < num_features; i++) {
0.3 % for (int j = 1; j <= poly_degree; j++) {
80.8 % ret += v[j] * cos(j * input[i]) + v[]j + poly degree] * sin(j * input[i]):;
}
¥
0.1 % return ret;
0.1% |}

Figure 29 -pol yTri go instructions profile

Analyzing the instruction:

ret+=v[j]*cos(j*input[i])+Vv[j+poly_degree]*sin(j*in put[i])

where v[j] is a vector containing DNA of a chromosome amglit]i] is a

vector containing a row of input dataset.
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Noting that while the vector] is continually evolvinginput]]  (the elements of
the input dataset) are being used in calculatiorebf at each iteration but they are
never altered, we rewrite the function by calculgtin advance the sums of sines
and cosines, storing the results in two vectors thed use them in the function
polyTrigo() at each iteration.

This brings huge benefits because we calculatertametric functions, which are
those time consuming, only once instead of at ewvtamation and exploit the
parallelism on large amount of data because itrassuthat we have large input
datasets.

In Listing 3 we can see how the elements of vedoescalculated using Thrust

struct sinFunctor {

__host____ device__

double operator()(thrust::tuple<double, double> t) {
return sin(thrust::get < 0 > (t) * thrust::get < 1>();

;

struct cosFunctor {

__host___ device__

double operator()(thrust::tuple<double,double > t) {
return cos(thrust::get < 0 > (t) * thrust::get < 1> (t);

;

thrust::transform

(thrust::make_zip_iterator
(thrust::make_tuple(data.begin(),index.begin())),
thrust::make_zip_iterator
(thrust::make_tuple(data.end(),index.end())),
tmpS.begin(),

sinFunctor());

double s = reduce(tmpS.begin(),tmpS.end());
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thrust::transform
(thrust::make_zip_iterator

(thrust::make_tuple(data.begin(),index.begin())),

thrust::make_zip_iterator
(thrust::make_tuple(data.end(),index.end())),
tmpC.begin,

cosFunctor());

double ¢ = reduce(tmpC.begin(),tmpC.end());

Listing 3 — First parallelization

5.4.3 Optimize

Thrust’'s native CUDA C interoperability is a powdrffeature. Interoperability
ensures that Thrust always complements CUDA C hatla Thrust plus CUDA C
combination is never worse than either Thrust oDBWUC alone. Indeed, while it
may be possible to write whole parallel applicasi@mtirely with Thrust functions,
it is often valuable to implement domain-specifiadtionality directly in CUDA C.
The level of abstraction targeted by native CUDAafibrds programmers fine-
grained control over the precise mapping of comjmnal resources to a particular
problem. Programming at this level provides devetsghe flexibility to implement
specialized algorithms. Interoperability also faates an iterative optimization
strategy: (1) quickly prototype a parallel applicatentirely in Thrust, (2) identify
the application’s hot spots, and (3) write morecgdized algorithms in CUDA C
and optimize as necessary.

So, to further improve the speedup it is possiblelévelop some algorithms in
CUDA C by exploiting the interoperability, but weave skipped this step, by
preferring a Thrust code optimization rather thaewariting in CUDA. In brief, at

the cost of lower speedup we gain rapid developraedta better code readability.
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There are three high-level optimization technigined programmers may employ to

yield significant performance speedups when usimgist.

1. Fusion: In computations with low arithmetic intensitygethatio of calculations per
memory access, are constrained by the availableameandwidth and do not fully
exploits the GPU. One technique for increasingctiraputational intensity of an

algorithm is to fuse multiple pipeline stages tbgetinto a single one.

for (inti=0;i<N;i++) for (inti=0;i<N;i++)
UIi] = FCXT, YL Z[D); - U o
> U[I] = F(X[I, YT, Z[1]);
for (inti = 0; i< N; i++) VIil = G(X[i], Y[il.Z[i);
Vil = G(X[i], Y[i1.Z[i]); }

Listing 4 - Fusing Loops example

The simplest form of kernel fusionsgsalar function composition

for (inti=0;i<N;i++)
Y[l = FCX[iD); (y=f(x)) for (inti=0;i<N;i++)
R : > sum += F(X[i); (z=g(f(x)))
for (inti=0;i<N;i++)
sum += YIif; (z=g(y))

Listing 5 - Scalar Function Composition

In Thrust a better approach is to fuse the funstimto a single operatiog(f(x))
and halve the number of memory transactions. Urflessd g are computationally
expensive operations, the fused implementation nwill approximately twice as fast
as the first approach

Fusing a transformation with other algorithms isv@rthwhile optimization. Thrust
provides transform iterator which allows transfotioas to be fused with any
algorithm. Indeedtransform_reduce is simply a convenience wrapper for the

appropriate combination ensform_iterator and reduce
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2. Structure of Arrays (SoA): An alternative way to improve memory efficiensyto
ensure that all memory accesses benefit from odalgssince coalesced memory
access patterns are considerably faster than ralesoed transactions.

The most common violation of the memory coalescmigs arises when using an
Array of Structures (AoS) data layout. An altermatio the AoS layout is the SoA
approach, where the components of each structtaredsin separate arrays. The
advantage of the SoA method is that regular actests components of a given
vector is coalesceable. The problem with SoA ig thare is nothing to logically
encapsulate the members of each element into ke €ntjty.

The zip_iterator takes a number of iterators and zip them togethtera virtual
range of tuples. Note thaip_iterator is used for both input and output ranges,
transparently packing the underlying scalar rangestuples and then unpacking the

tuples into the scalar ranges.

3. Implicit Sequences the use of implicit ranges, i.e., ranges whodaeesare defined
programmatically and not stored anywhere in memoihrust provides
counting_iterator , Which acts like an explicit range of values bagsl not carry
any overhead. Specifically, when counting iterdatodereferenced it generates the

appropriate value “on the fly” and yields that \ato the caller.
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typedef thrust::tuple<double, double> Tuple2;
/I return the couple (cos(j*x), sin(j*x))
struct sincosFunctor {

int deg;

__host____device__
tupleFunctor(int _deg) : deg(_deg) {
}

template <typename Tuple >
__host____device__
Tuple2 operator()(Tuple t) {
int j= (thrust::get < 1 > (t) % deg) + 1;
/I Fusing Loops
double ¢ = cos(thrust::get < 0 > (t) * j);
double s = sin(thrust::get < 0 > (t) * j);
return Tuple2(c, s);

Tuple2 result;
/I fusion of transform with reduce algorithm
/I (scalar function composition)
result = thrust::transform_reduce
/I SoA
(thrust::make_zip_iterator
(thrust::make_tuple
/I implicit sequence instead of stored v
(data.begin(),thrust::counting_iterator<int>(1
thrust::make_zip_iterator
(thrust::make_tuple
(data.end(), thrust::counting_iterator<int>(my
thrust::make_zip_iterator
(thrust::make_tuple
(tmpC.begin(), tmpS.begin())),
sincosFunctor(poly_degree));

ector

N

Cah)),

Listing 6 - Appling Transformations Optimizations

In Listing 6 has shown the optimized version of ¢bele in Listing 3
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5.4.4 Deploy

Results obtained using double-precision arithmeiit frequently differ from the
same operation performed via single-precision mr@tic due to the greater
precision of the former and due to rounding issiEszices of compute capability
1.3 and higher provide native support for doubleefmion floating-point values.
This means that whenever doubles are used, usasitthe --arch=sm_13 option on
the nvcc command line;

So, paying in terms of backward compatibility wild GPUs, we target to devices
with computing capability of 1.3 and higher, givéime importance of double

precision in scientific computing.
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6  Test results and performances

At this stage the CPU version of GAME, an optimizegersion of the serial
algorithm (hereinafter Opt), where the parallelisnexplained, and the final version
for GPU (hereinafter ELGA) have been compared ladlgidoy measuring their
performance in terms of execution speed. Initidhyg tests have been organized by
distinguishing between classification and regreséimctional modes. By analyzing
early trials, however, it resulted that the perfanme growth was virtually achieved

in both cases.

6.1 Metrics Definition

All data in the graphs refer to the average of Bxecutions of the same experiment.
It has served to mediate the various workloads attiCPUs and for the GPU to

reduce the effect of an unexpected bias, a sottaoiient from 4 to 6 seconds
before the start of the first experiment run.

To measure the increase of performance, the speedthe ratio between the

execution time of the serial version and the pefralhe, has been calculated.

6.2 Comparison between Multi-core and GPU architectures

The performance of each use case was evaluatesverakhardware platforms.

The input datasets were selected to be:
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* representative for problems both in regressiondaskification;
e simulation data that researchers often work with;

» to exercise the limits of our algorithms, partiaiylan the case of the GPU.

We compared our production GPU code with a CPU émgintation of the same
algorithm. However, the CPU implementation’s sergthucture limited its
computation to a single core.

The benchmarks were run on a 2.0 GHz Intel Cor2630QM quad core CPU
running 64-bit Windows 7 Home Premium SP1. The @BUe was compiled using
the Microsoft® C/C++ Optimizing Compiler version .06 and GPU benchmarks
were performed using the NVIDIA CUDA programmingliit version 4.1 running

on several generations of NVIDIA GPUs GeForce GT840

6.3 Classification test

First of all we detail the results for a classifioa problem. Here we intend
classification as defined in the case (a) describegction 4.2.

The input dataset chosen for classification is ed@CSearch, a real dataset that
refers to the following (Brescia et al. 2011b).

The scientific problem which is used here as d&zstor data mining applications is
the study of GC populations in external galaxieisisTopic is of interest to many
astrophysical fields: from cosmology, to the eviolutof stellar systems, to the
formation and evolution of binary systems.

The study of Globular Clusters populations in exa¢mgalaxies requires the use of

wide-field, multi-band photometry. In fact GCs ialgxies more than a few Mpc
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away, appear as unresolved sources in ground-testeshomical images and are
thus hardly distinguishable from background galsxideading to severe
contamination problems. For such reason they aditivnally selected based on
source color and magnitude.

However, in order to minimize contamination andrieasure GC properties, such as
sizes and structural parameters (core radius, otrati®n, binary formation rates)
high-resolution data are required as well, whiaharly available through the use of
space facilities (i.e. Hubble Space Telescope, HST)

The dataset used in this experiment consists ire \ield HST observations of the
giant elliptical NGC1399 in the Fornax cluster. Figialaxy represents an ideal test
case since, due to its distance (20 Mpc), it isides to cover a large fraction of its
GC system with a limited number of observationgttiermore at this distance GC
are only marginally resolved even by HST, allowtngverify our experiment in a
worst-case scenario. This dataset was used to hed@C-LMXB connection and
the structural properties of the GC population.

The optical data were taken with the HST Advancean€ra for Surveys (ACS,
program GO-10129), in the F606W filter, with intagion time of 2108 seconds for
each field. The observations were arranged in aA8%S mosaic, and combined into
a single image using the MultiDrizzle routine. Tfieal scale of the images is
0.03\arcsec/pix, providing Nyquist sampling of tN€S PSF. The field of view of
the ACS mosaic covers ~100 square arcmin, extending to a projected
galactocentric distance of 55 kpc. The source agtalas generated with SExtractor,

requiring a minimum area of 20 pixels. The NGC13&§ion covered by our HST
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mosaic, has no complete color coverage. In thigexgnt we will make use of two
ancillary multi-wavelength datasets: archival HSZ gbservations, which cover the
very central region of the galaxy (10% of the sajpland ground based
photometry. The latter is only available for 14% adr sources, and due to
background light contamination, is very incompletese to the galaxy center. In

total 2740 sources of our catalog have multi-bamat@metry, Figure 30.

Sel POSSIUKST U_Ped 03,36 29,520 -35:22,00.70 -

10T 17T ‘—[

Figure 30 — The field of view (FOV) covered by th&8x3 HST/ACS mosaic in the
F606W band. The central field, with a different orentation, shows the region
covered by previous archival ACS observations in gnd z bands.

Srrizienean

The dataset file used consists of 2100 rows (inpatterns) and 11 columns
(features), 9 as input and last two as class wigétss labels, respectively, 0 for not
GC and 1 for GC objects).

As execution parameters were chosen combinations of

* max number of iterations: 1000, 2000, 4000, 10Q@0000 and 40000;
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order (max degree) of polynomial expansion: 1, and 8;

The other parameters remain unchanged for albtebthey are setted as follow:

Random mode for initial population: GRANDOM, gertesa random values
following the normal distribution in [-1, +1].

type of error function (fitness): Threshold Mearu&e Error (TMSE).

error threshold: 0.001 for Regression and 0.4%fassification.

selection type criterion: both RANKING and ROULET,;Tgpes of selection function
for evolving population.

Error threshold: 0.001, used as a stopping criteria

Crossover rate: 0.9, occurrence rate of crosseeetg: operator.

Mutation rate: 0.2, occurrence rate of mutationaggieroperator

Number of tournament chromosomes: 4, number of mhsomes candidates to
selection tournament.

Elitism rate: 2, number of copies of winner chroome into next generation.
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6.3.1 Results

In this section we presented several graphs ankstalvhich demonstrate the
expected speed performance variation between thieratit computing

architectures.
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The trends are immediately obvious from previouapbgs. The execution time

increases always in a linear way with the numbétepétions fixed the polynomial
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degree. This is what we expected since the algontipeats the same operations at

each iteration.
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Speedup (x)

M serial vs GPU
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o

@ opt vs GPU

I

polynomial degree

Figure 35 - Speedup comparison

In Figure 35, the speedup increases with a prapuati factor of about 3 with
increase of the maximum polynomial degree. Thidésause the GPU model
requires a large number of genes, and so a greéeteee, to be elaborate at the same

time for effective speedup. This is typical for GRilgorithms, especially those

relying on data parallelism.

Speedup
degree vs. Serial  step  vs. Opt step
1 8x 6X
2 23x 2.9 16x 2.7
4 66X 2.9 45x 2.8
8 200x 3.0 125x 2.8

Table 3 - Speed compared against CPU
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The table lists results for the average speed tange of iteration from 1000 to
40000 intended to show scaling performance forrg gemputationally demanding
test case. Results come from comparison of parabesion against the initial
version of the program (serial) and the optimizedas algorithm (Opt.).

The algorithm exploiting the data parallelism isnasre powerful, as much data are
simultaneously processed. As previously mentioraa, increase of maximum
degree in the polynomial expansion leads to areas® in the number of genes and
consequently to a larger population matrix. Thisyreaplain the upward trend in
speedup shown in Table 3.

The GPU algorithm outperforms the CPU performange lfactor ranging from 8x
to 200x in the first case and a range from 6x tbxlid the second one, enabling
intensive use of the algorithm that were previoussipossible to be achieved with a

CPU.

6.4 Regression test

This section is dedicated to describe the resoltsafregression problem. Here we
intend regression as defined in section 4.2.

The input dataset chosen for regression was camsttdo be compliant with the
sample selected for classification. Compliant meansaintain the same number of
patterns (dataset rows) and features (dataset oglrim order to make both cases
comparable in terms of speed performance evaluation

In order to achieve this goal, we slightly modifibeé dataset used for classification,
by adapting it to have same number of patterns Ehdolumns, by assigning,

respectively, first 10 columns as input featured #re last one as the regression
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target. The final scope of the problem was indeettiain the GA to learn the hidden
correlation between the 10 features and the tamget Remember that all columns
of original dataset were intrinsically correlateglthe extraction of parameters from
the reduced astronomical catalogue.

Of course, also the default GA parameters were taiaied unchanged in respect of

the classification test.

6.4.1 Results
As theoretically expected, by the choice of complidatasets for classification and
regression cases, the speed performances and ésomsashow perfectly identical
results and trends as already shown in the cleaddn test report.
So far, we omit here to report the graphs and salblecause exactly the same of the
previous ones, already shown in section 6.3.1.
Moreover, the perfectly analogous results for dfesgion and regression functional
cases demonstrate the consistency of the impletiemtéor the three different

computing architectures.
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~

Conclusions and future developments

7.1 Conclusions

The original work of this thesis has touched onows topics. First of all, it was

investigated the state of the art computing teabgiek, in order to choose the one
best suited to our problem and later a multi-puepgsnetic algorithm implemented
with GPGPU / CUDA parallel computing technology hlbsen designed and
developed. The model comes from the machine paradifjsupervised learning,

addressing both the problems of classification esgtession applied on massive
data sets. The model was derived from a serialamphtation named GAME,

deployed on the DAME Program hybrid distributedrastructure and already
scientifically tested and validated on astrophysiassive data sets problems with
successful results (Brescia et al. 2011b).

Since genetic algorithms are inherently paralleg¢ parallel computing paradigm
has provided an exploit of the internal trainingttees of the model, permitting a
strong optimization in terms of processing perfanoes.

We described our effort to adapt our genetic atgorifor general purpose on GPU.
We showed how this algorithm can be redesignedfficiemtly use Thrust, the

vendor-provided library routines. We discussed dffficiency and computational
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costs of various components involved that are prtese the algorithm. Several

benchmark results were shown and the final tesulsiions were performed for

Regression and Classification use.

The use of CUDA translates into a 75x average spee@learly, we have been
successful at eliminating the largest bottlenecktie CPU code. Although a
speedup of up to 200X over a modern CPU is impresst ignores the larger

picture of use a Genetic Algorithm as a whole. hy eeal-world the dataset can be
very large (those we have previously called MassiBata Sets) and

this requires greater attention to GPU memory mamamt, in terms of scheduling
and data transfers host-to-device and vice versa.

Moreover, the identical results for classificatiand regression functional cases,
based also taking into account the constraints dntain the structure of datasets
perfectly compliant in both cases, demonstrate ttensistency of the

implementation for the three different computingtatectures.

7.2 Future Work

We presented our experimental implementation o&lfrGenetic Algorithm on
GPUs. In our future development we are investiggtiossible optimizations.

The next step will be:

Moving the formation of the population matrix ansl €volution in place on the GPU,
this approach has the potential to significantijuee the number of operations in the

core computation, but at the cost of higher menusgge.

Exploring more improvement by mixing Thrust and CAJD code, that should allow

a modest speedup justifying development effortslatver level.
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 Use of new features available on NVIDIA's Fermi kdtecture, such as faster

atomics and more robust thread synchronizationmaulti GPUs capability.

After these optimizations, we plan to use this mdtm the ESA mission EUCLID
for data quality.

A second direction for further work is the implertegion of following Machine
Learning algorithms, inspired by the models prosidsyy DAME: Support Vector
Machine (SVM), Multilayer Perceptron (MLP) and Padliistic Principal Surfaces

(PPS).
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