

Facoltà di Ingegneria

Corso di Studi in Ingegneria Informatica

tesi di laurea

GPU Computing for Machine Learning

Algorithms

Anno Accademico 2010/2011

relatori
Ch.mo prof. G. Ventre
Ch.mo prof. A. Pescapè

correlatore
dott. M. Brescia

candidato
Mauro Garofalo
matr. 041/002780

GPU Computing for
Machine Learning Algorithms

2

Alla mia famiglia…

GPU Computing for
Machine Learning Algorithms

3

Index

1 INTRODUCTION .. 8

2 DATA MINING ON MASSIVE DATA SETS: AN OVERVIEW ..13

2.1 A SCIENTIFIC USE CASE: ASTROINFORMATICS ... 17

3 STATE OF THE ART OF COMPUTING TECHNOLOGY ..23

3.1 GRID COMPUTING ... 24

3.2 CLOUD COMPUTING ... 27

3.3 HIGH-PERFORMANCE COMPUTING (HPC) .. 30

3.4 GPGPU ... 32

3.5 A DISCUSSION ABOUT COMPUTING ARCHITECTURES... 33

3.6 PARALLEL PROGRAMMING ENVIRONMENT ... 43

3.6.1 Conventional programming environment: MPI and OpenMP ... 43

3.7 GPGPU ENVIRONMENT: CUDA ... 45

3.7.1 CUDA architecture ... 45

3.7.2 Memory Hierarchy ... 48

3.7.3 Thread Hierarchy ... 49

3.7.4 CUDA C Parallel Programming Model ... 50

3.7.5 CUDA Program Structure ... 52

3.7.6 Other GPGPU environment: OpenCL .. 53

4 TECHNOLOGY IN MACHINE LEARNING ...57

4.1 THE LEARNING PARADIGMS .. 60

4.2 WHAT WE ARE LOOKING FOR IN THE DATA ... 64

4.3 LEARNING STRATEGIES .. 75

4.4 THE NEW GENERATION OF DATA MINING INFRASTRUCTURES ... 89

GPU Computing for
Machine Learning Algorithms

4

4.5 SELECTED STRATEGY.. 94

4.5.1 Data Quality Enhancement with data mining ... 96

4.5.2 Data Quality Mining and scalability issues .. 100

5 GENETIC ALGORITHMS WITHIN CUDA PARALLEL ARCHITECTURE .. 104

5.1 GPU DESIGN MODEL ... 110

5.1.1 Assess ... 111

5.1.2 Parallelize .. 111

5.1.3 Optimize ... 113

5.1.4 Deploy .. 114

5.2 MULTI-CORE DESIGN DESCRIPTION.. 115

5.2.1 Input Files... 126

5.2.2 Input Dataset ... 126

5.2.3 Specific use case (training/test/run) configuration file ... 127

5.2.4 Use case (train/test/run/full) configuration file .. 130

5.2.5 Output Files .. 131

5.3 PARALLEL REQUIREMENT ANALYSIS ... 133

5.4 GPU-BASED DEVELOPMENT DESCRIPTION .. 135

5.4.1 Assess ... 135

5.4.2 Parallelize .. 137

5.4.3 Optimize ... 139

5.4.4 Deploy .. 143

6 TEST RESULTS AND PERFORMANCES ... 144

6.1 METRICS DEFINITION .. 144

6.2 COMPARISON BETWEEN MULTI-CORE AND GPU ARCHITECTURES .. 144

6.3 CLASSIFICATION TEST .. 145

6.3.1 Results.. 149

GPU Computing for
Machine Learning Algorithms

5

6.4 REGRESSION TEST ... 152

6.4.1 Results.. 153

7 CONCLUSIONS AND FUTURE DEVELOPMENTS ... 154

7.1 CONCLUSIONS ... 154

7.2 FUTURE WORK .. 155

8 ACKNOWLEDGMENTS .. 157

9 REFERENCES... 158

GPU Computing for
Machine Learning Algorithms

6

Index of Figures

Figure 1 - Cluster-Grid-Cloud computing overview and comparison 23

Figure 2 – Example of GRID architecture ... 24

Figure 3 – Example of CLOUD architecture ... 27

Figure 4 – Example of HPC architecture ... 30

Figure 5 – The Moore’s CPU Law ... 34

Figure 6 – CPU vs. GPU throughput evolution ... 38

Figure 7 – CPUs and GPUs different design philosophies. 39

Figure 8 - CUDA GPU Architecture .. 46

Figure 9 - Overview of the CUDA memory model.. 48

Figure 10 - CUDA thread organization .. 49

Figure 11 – CUDA with different multi-core architectures 51

Figure 12 - CUDA program structure .. 53

Figure 13 – A workflow based on supervised learning paradigm 60

Figure 14 – A workflow based on unsupervised learning paradigm 63

Figure 15 – correct (a) and wrong (b) separation of classes made by a Perceptron ... 80

Figure 16 – Regions recognized by a MLP with 0, 1, 2 hidden layers 81

Figure 17 – Classical topology of a MLP with hidden neurons in white circles 81

Figure 18 – typical behavior of error function during learning process 83

Figure 19 – The variation of weights on different error functions 83

Figure 20 – Parameter space separated by hyperplanes through SVM model 86

Figure 21 – GPU CUDA memory handling architecture ... 101

Figure 22 – Genetic Algorithms in the hierarchical search method taxonomy 104

GPU Computing for
Machine Learning Algorithms

7

Figure 23 - APOD .. 110

Figure 24 – GAME serial (multi-core) version class diagram 116

Figure 25 – Schematic block diagram for the execution flow of a GA 119

Figure 26 – Roulette selection technique ... 124

Figure 27- GA flow parallel specializations... 134

Figure 28 - Visual Profiler discover a Hotspot... 136

Figure 29 - polyTrigo instructions profile .. 137

Figure 30 – The field of view (FOV) covered by the 3x3 HST/ACS mosaic in the

F606W band. The central field, with a different orientation, shows the region

covered by previous archival ACS observations in g and z bands. 147

Figure 31 – Execution time comparison with degree=1... 149

Figure 32 – Execution Time comparison with degree=2 ... 149

Figure 33 - Execution Time comparison with degree=4 .. 150

Figure 34 - Execution Time comparison with degree=8 .. 150

Figure 35 - Speedup comparison .. 151

GPU Computing for
Machine Learning Algorithms

8

1 Introduction

Computing has rapidly established itself as essential and important to many

branches of science, to the point where computational science is a commonly used

term. Indeed, the application and importance of computing is set to grow

dramatically across almost all the sciences. Computing has started to change how

science is done, enabling new scientific advances through enabling new kinds of

experiments. These experiments are also generating new kinds of data of

increasingly exponential complexity and volume. Achieving the goal of being able

to use, exploit and share these data most effectively is a huge challenge.

It is necessary to merge the capabilities of a file system to store and transmit bulk

data from experiments, with logical organization of files into indexed data

collections, allowing efficient query and analytical operations. It is also necessary to

incorporate extensive metadata describing each experiment and the produced data.

GPU Computing for
Machine Learning Algorithms

9

Rather than flat files traditionally used in scientific data processing, the full power of

relational databases is needed to allow effective interactions with the data, and an

interface which can be exploited by the extensive scientific toolkits available, for

purposes such as visualization and plotting.

Different disciplines require support for much more diverse types of tasks than we

find in the large, very coherent and stable virtual organizations. Astronomy, for

example, has far more emphasis on the collation of federated data sets held at

disparate sites (Brescia et al. 2010). There is less massive computation, and large-

scale modeling is generally done on departmental High Performance Computing

(HPC) facilities, where some communities are formed of very small teams and

relatively undeveloped computational infrastructure. In other cases, such as the life

sciences, the problems are far more related to heterogeneous, dispersed data rather

than computation. The harder problem for the future is heterogeneity, of platforms,

data and applications, rather than simply the scale of the deployed resources. The

goal should be to allow scientists to explore the data easily, with sufficient

processing power for any desired algorithm to process it. Current platforms require

the scientists to overcome computing barriers between them and the data (Fabbiano

et al. 2010).

Our convincement is that most aspects of computing will see exponential growth in

bandwidth, but sub-linear or no improvements at all in latency. Moore’s Law will

continue to deliver exponential increases in memory size but the speed with which

data can be transferred between memory and CPUs will remain more or less

constant and marginal improvements can only be made through advances in caching

GPU Computing for
Machine Learning Algorithms

10

technology. Certainly Moore’s law will allow the creation of parallel computing

capabilities on single chips by packing multiple CPU cores onto it, but the clock

speed that determines the speed of computation is constrained to remain limited by a

thermal wall (Sutter 2005). We will continue to see exponential growth in disk

capacity, but the factors which determine latency of data transfer will grow sub-

linearly at best, or more likely remain constant. Thus computing machines will not

get much faster. But they will have the parallel computing power and storage

capacity that we used to only get from specialist hardware. As a result, smaller

numbers of supercomputers will be built but at even higher cost. From an

application development point of view, this will require a fundamental paradigm

shift from the currently sequential or parallel programming approach in scientific

applications to a mix of parallel and distributed programming that builds programs

that exploit low latency in multi core CPUs. But they are explicitly designed to cope

with high latency whenever the task at hand requires more computational resources

than can be provided by a single machine. Computing machines can be networked

into clouds or grids of clusters and perform tasks that were traditionally restricted to

supercomputers at a fraction of the cost. A consequence of building grids over wide-

area networks and across organizational boundaries is that the currently prevailing

synchronous approach to distributed programming will have to be replaced with a

fundamentally more reliable asynchronous programming approach. A first step in

that direction is Service-Oriented Architectures (SOA) that has emerged and support

reuse of both functionality and data in cross-organizational distributed computing

GPU Computing for
Machine Learning Algorithms

11

settings. The paradigm of SOA and the web-service infrastructures facilitate this

roadmap (Shadbolt et al. 2006).

Traditionally, scientists have been good at sharing and reusing each other’s

application and infrastructure code. In order to take advantage of distributed

computing resources in a grid, scientists will increasingly also have to reuse code,

interface definitions, data schemas and the distributed computing middleware

required to interact in a cluster or grid. The fundamental primitive that SOA

infrastructures provide is the ability to locate and invoke a service across machine

and organizational boundaries, both in a synchronous and an asynchronous manner.

The implementation of a service can be achieved by wrapping legacy scientific

application code and resource schedulers, which allows for a viable migration path

(Taylor et al. 2007). Computational scientists will be able to flexibly orchestrate

these services into computational workflows. The standards available for service

design and their implementation support the rapid definition and execution of

scientific workflows. With the advent of abstract machines, it is now possible to mix

compilation and interpretation as well as integrate code written in different

languages seamlessly into an application or service. These platforms provide a solid

basis for experimenting with and implementing domain-specific programming

languages and we expect specialist languages for computational science to emerge

that offer asynchronous and parallel programming models while retaining the ability

to interface with legacy FORTRAN, C, C++ and Java code.

The original work of the present thesis consists of the design and development of a

multi-purpose genetic algorithm implemented with the GPGPU/CUDA parallel

GPU Computing for
Machine Learning Algorithms

12

computing technology. The model comes out from the machine learning supervised

paradigm, dealing with both regression and classification scientific problems applied

on massive data sets. The model was derived from the original serial

implementation, named GAME (Genetic Algorithm Model Experiment) deployed

on the DAME1 Program hybrid distributed infrastructure and made available

through the DAMEWARE2 data mining web application. In such environment the

GAME model has been scientifically tested and validated on astrophysics massive

data sets problems with successful results (Brescia et al. 2011b). As known, genetic

algorithms are derived from Darwin’s evolution law and are intrinsically parallel in

its learning evolution rule and processing data patterns. The parallel computing

paradigm can indeed provide an optimal exploit of the internal training features of

the model, permitting a strong optimization in terms of processing performances.

Such requirement is particularly important in case of real problem cases having to

deal with massive data sets, such as, for instance, the data quality mining of

observed and telemetry data coming out from astronomical ground- and space-based

instrumentation. We intend to perform experiments of GPU-based GAME model on

EUCLID3 Mission, a multi-wavelength space telescope, provided by European

Space Agency (ESA), foreseen to be launched in 2019, in which our DAME group

is leading the data quality science team.

1 http://dame.dsf.unina.it
2 http://dame.dsf.unina.it/beta_info.html
3 http://sci.esa.int/euclid/

GPU Computing for
Machine Learning Algorithms

13

2 Data Mining on massive data sets: An Overview

Let’s start from a real and fundamental assumption: we live in a contemporary world

submerged by a tsunami of data. Many kinds of data, tables, images, graphs,

observed, simulated, calculated by statistics or acquired by different types of

monitoring systems. The recent explosion of World Wide Web and other high

performance resources of Information and Communication Technology (ICT) are

rapidly contributing to the proliferation of such enormous information repositories.

In all human disciplines, sciences, finance, societies, medicine, military, the

archiving and electronic retrieval of data are by now both a common practice and the

only efficient way to perform enterprises.

Despite of this situation, there is an important question: how are we able to handle,

understand and use them in an efficient and complete way?

It is now widely recognized the chronic imbalance between growth of available data

and ability to manage them (Hey et al. 2009).

In most cases the acquired data are not directly interpretable and understandable.

Partially because they are obscured by redundant information or sources of noise,

and mostly because they need to be cross correlated and in principle we never know

GPU Computing for
Machine Learning Algorithms

14

which is their hidden degree of correlation, also because in many cases we proceed

to explore data without any prior knowledge about what we are looking for.

Moreover, for each social or scientific discipline the data are registered and archived

in an inhomogeneous way, making inefficient the available tools useful to explore

and correlate data coming from different sources.

Such a scenario imposes urgently the need to identify and apply uniform standards

able to represent, archive, navigate and explore data in a homogeneous way,

obtaining the required interoperability between the different disciplines.

This basic issue has been reflected within the recent definition (Hey et al. 2009) of

the fourth paradigm of modern science, after theory, experiments and simulations. It

is the E-science, which is the extraction of knowledge through the exploration of

massive data archives, or Knowledge Discovery in Databases (KDD).

The fourth paradigm poses in primis the problem of the understanding of data, still

before their representation or registering strategy. In scientific terms it implicitly

identifies a methodology, based on the “with open mind” investigation and without

any knowledge bias, of any kind of data set, in search of information useful to reveal

the knowledge.

Of course this methodology imposes to make use of efficient and versatile

computing tools, able to bridge the gap between human limited capacity (both in

terms of processing time and 3D dimensionality) and progressive and steady growth

in the quantity and complexity of the data. In other words able to replicate at a

technological level the high learning, generalization and adaptation capabilities of

human brain, by growing exponentially its information processing features.

GPU Computing for
Machine Learning Algorithms

15

These two prerogatives, investigation without knowledge bias and fast human

intelligence, are not casually the milestones at the base of two rapidly growing

disciplines: respectively Data Mining (DM) and Machine Learning (ML).

For those who prefer the formal definitions, DM can be easily defined as the

extraction of information, implicit as well a priori unknown, from data.

But the definition of ML is not so easy to be formulated. There are in fact

philosophical debates, partially divergent and hard to summarize in a single formal

definition. However, in practice we can simplify its expression.

There are in particular two key concepts to be formally cleared: first, what we

technically stand for learning? Second, how learning is practically connected to the

machine (computer) processing rules?

Usually, in practical terms, what we can easily verify is not if a computer is able to

learn, but mostly if it is able to give correct answers to specific questions. But such a

level of ability is too weak to state that a computer has learned, especially if we

consider that real learning is related to the generalization ability of a problem. In

other words, to verify that a machine gives correct answers to direct questions, used

to train it, is only the preliminary step of its complete learning. What is more

interesting is the machine behavior in unpredicted situations, i.e. those never

submitted to the machine during training.

Paraphrasing one of the key concepts of Darwinian theory of evolution of living

species, ML is mainly interested to provide intelligence to a computer, i.e.

adaptation and generalization to new or unpredicted evolving situations.

GPU Computing for
Machine Learning Algorithms

16

We defined above DM as the automatic or semi-automatic process of information

discovery within massive data sets. After the previous considerations about ML, we

are now able to provide an analogous operative definition also for it: a machine has

learned if it is able to modify own behavior in an autonomous way such that it can

obtain the best performance in terms of answer to external stimuli.

This definition shifts the focus on a different aspect of ML, which is not the pure

knowledge but the adaptation performance in real and practical situations. In other

words we are able to verify the training improvements through the direct comparison

between present and past reaction performances. Indeed more in terms of evolution

measurement rather than abstract knowledge.

But under theoretical aspects such kind of learning (evolution of behavior) is of

course too much simple and weak. We know that also animals, considered less

intelligent than humans, can be trained to evolve their reaction to external stimuli.

But this does not necessarily mean that they have increased their knowledge, i.e. that

they have really learned!

Learning is also thinking (cogito ergo sum, to cite the philosopher Descartes), which

implies to have and use own cognitive properties to reach the goal. Not only to

answer more or less in a right way to external stimuli. The latter is basically a

passive process of action-reaction, not a real result of an active process of thinking

and controlled behavior.

So far, the final role of ML must be more than evolution performance. To really

decide if any machine was able to learn, it is inevitably needed to verify if the

GPU Computing for
Machine Learning Algorithms

17

machine may offer a conscious purpose and whether it is able to pursue and achieve

its own abilities, acquired during training.

Besides these theoretical considerations, fortunately ML treats physical problems of

real world, which are those composed or represented by tangible data and

information, as result of direct or indirect observations/simulations. In such cases we

can restrict the scope and interest of the ML and DM techniques, by focusing on

their capability to identify and describe ordered structures of information within

massive data sets (essentially structures in the data patterns), mixed with noise,

together with the ability to predict the behavior of real complex systems. In other

words, not only identification and prediction capabilities, but also description of the

retrieved information, important for classification of unknown events.

2.1 A scientific use case: AstroInformatics

Over the last decade or two, due to the evolution of instruments and detectors,

astronomy has become an immensely data rich science, thus triggering the birth of

Astroinformatics: a new discipline placed at the crossroad between traditional

astronomy, applied mathematics, computer science and ICT technologies. Among

the other things, Astroinformatics aims at providing the astronomical community

with a new generation of accurate and reliable methods and tools needed to reduce,

analyze and understand massive and complex data sets and data flows which go far

beyond the reach of traditionally used methods.

In the broadest sense, KDD/DM regards the discovery of “models” for data. There

are, however, many different methods which can be used to discover these

underlying models: statistical pattern recognition, machine learning, summarization,

GPU Computing for
Machine Learning Algorithms

18

etc., and an extensive review of all these models would take us far beyond the

purposes of this paper. In what follows we shall therefore summarize only the main

methodological aspects (Bishop 2006 and Duda 2001). Machine learning (ML),

which is sometimes considered to be a branch of Artificial Intelligence (AI), is a

scientific discipline concerned with the design and development of algorithms that

allow computers to evolve behaviors based on empirical data. A “learner” can take

advantage of examples (data) to capture characteristics of interest of their unknown

underlying probability distribution.

These data form the so called Knowledge Base (KB): a sufficiently large set of

examples to be used for training of the ML implementation, and to test its

performance. The difficulty lies in the fact that often, if not always, the set of all

possible behaviors given all possible inputs is too large to be covered by the KB.

Hence the learner must possess some generalization capabilities in order to be able

to produce useful output when presented new instances.

From a completely general point of view, regardless the specific method

implemented, DM is a rather complex process. In most cases the optimal results can

be found only on a trial and error base by comparing the outputs of different

methods or of different implementations of the same method. This implies that in

order to solve a specific problem a lengthy fine-tuning phase is often required. Such

complexity is among the reasons for a slow uptake of these methods by the

community of potential users which still fail to adopt them. In order to be effective,

a DM application requires a good understanding of the mathematics underlying the

methods, of the computing infrastructure, and of the complex workflows which need

GPU Computing for
Machine Learning Algorithms

19

to be implemented. So far, most domain experts in the scientific community are

simply not willing to make the effort needed to understand the fine details of the

process, and prefer to recur to traditional approaches which are far less powerful, but

which may be more user-friendly. This situation is unsustainable as the ever larger

MDS become available, and there will be no viable alternatives to DM methods for

their exploration.

A good example of the challenges that have to be addressed by the astronomical

community is the Large Synoptic Survey Telescope (LSST4) which should become

operational within this decade, and which will produce a data flow of about 20 – 30

TB per observing night, or many PB/year. LSST raw data will therefore need to be

calibrated, analyzed and processed in real time and, speed, accuracy and reliability

become a must.

By addressing the case of space-based astronomical instrumentation, an important

aspect involving machine learning is the data quality assessment: the so-called Data

Quality Mining. A real case is the Euclid Mission spacecraft and detector (Brescia et

al. 2011). As for a typical space observing instrument, sources and types of data

outcoming from the Euclid system are:

1. Pre-mission data (catalogues, satellite and mission modeling data, etc.) used before

and during the mission for calibration and modeling purposes mainly. The data for

this processing level are prepared before the mission (and refined/updated during the

in-flight commissioning and initial calibration phase) and are used as appropriate,

before and during the mission.

4 http://www.lsst.org/lsst/scibook

GPU Computing for
Machine Learning Algorithms

20

2. External data (images, catalogues, all relevant calibration and meta-data,

observational data in science-usable format) derived from other missions and/or

external survey projects, reformatted to be handled homogeneously with Euclid data.

This data is required to allow the EC to provide its final data products at the expected

level of accuracy. The data at this level is delivered by the EC.

3. Level 1: is composed of three separate processing levels, namely Level 1a, Level 1b

and Level 1c.

a. Level 1a refers to telemetry checking and handling, including real-time

assessment (RTA) on housekeeping;

b. Level 1b comprises quick-look analysis (QLA) on science telemetry,

production of daily reports, trend analysis on instruments performance and

production of weekly reports. The data for this processing level come from the

satellite via MOC and are used to perform quality control.

c. Level 1c refers to the high-quality removal of instruments signatures which

provides data that will used to process Level 2 data.

4. Level 2: instrumental data processing, including the calibration of the data as well as

the removal of instrumental features in the data. The data processing at this level is

under the responsibility of the SDCs in charge of the instruments monitoring.

5. Level 3: data processing pipelines for the production of science-ready data. The Level

3 data are also produced by SDCs.

It goes without saying that the most valuable asset of Euclid are the data and, due to

the huge data volume, the quality control becomes a crucial aspect of all five items

GPU Computing for
Machine Learning Algorithms

21

listed above and over the entire lifetime of the experiment: not only scientific data

available at all various intermediate stages of the acquiring and processing

workflows and pipelines, as it is foreseen during normal operations, but also

telemetry, diagnostic, control, monitoring, calibration information coming in the

ground segment from the instrument.

DM on MDS poses two important challenges for the computational infrastructure:

asynchronous access and scalability.

Most available web-based DM services run synchronously, i.e., they execute jobs

during a single HTTP transaction. This may be considered useful and simple, but it

does not scale well when it is applied to long-run tasks. With synchronous

operations, all the entities in the chain of command (client, workflow engine, broker,

processing services) must remain up for the duration of the activity: if any

component stops, the context of the activity is lost.

Regarding scalability, whenever there is a large quantity of data, there are three

approaches to making learning feasible. The first one is trivial, consisting of

applying the training scheme to a decimated data set. Obviously, in this case, the

information may be easily lost and there is no guarantee that this loss is negligible in

terms of correlation discovery. This approach, however, may turn very useful in the

lengthy optimization procedure that is required by many ML methods (such as

Neural Networks or Genetic Algorithms).

The second method relies in splitting the problem in smaller parts (parallelization)

sending them to different CPUs and finally combine the results together. However,

implementation of parallelized versions of learning algorithms is not always easy

GPU Computing for
Machine Learning Algorithms

22

(Rajaraman et al. 2010), and this approach should be followed only when the

learning rule, such as in the case of Genetic Algorithms (Meng Joo et al. 2009), or

Support Vector Machines (Chang et al. 2001), is intrinsically parallel. However,

even after parallelization, the asymptotic time complexity of the algorithms cannot

be improved.

A third and more challenging way to enable a learning paradigm to deal with MDS

is to develop new algorithms of lower computational complexity, but in many cases

this is simply not feasible (Paliouras 1993).

In some situations, background knowledge can make it possible to reduce the

amount of data that needs to be processed by adopting a particular learning rule,

since in many cases most of the measured attributes may turn out to be irrelevant or

redundant when background knowledge is taken into account. In many exploration

cases, however, such background knowledge simply does not exist, or it may

introduce biases in the discovery process.

GPU Computing for
Machine Learning Algorithms

23

3 State of the art of computing technology

Over the years, the computational complexity of real-world problems and the

scientific simulation completeness have increased hand in hand with available

computational power. This chase to the performance has led to the need for a

smarter management of available hardware resources and thus to create new

architectures for High Performance Computing (HPC).

Actually the most important architectures commonly used are: Grid Computing,

Cloud Computing and HPC.

Figure 1 - Cluster-Grid-Cloud computing overview and comparison

GPU Computing for
Machine Learning Algorithms

24

3.1 GRID Computing

The term “the Grid” was coined in the mid-1990s to denote a (then) proposed

distributed computing infrastructure for advanced science and engineering. Much

progress has since been made on the construction of such an infrastructure and on its

extension and application to commercial computing problems. And while the term

“Grid” has also been on occasion applied to everything from advanced networking

and computing clusters to artificial intelligence, there has also emerged a good

understanding of the problems that Grid technologies address, as well as a first set of

applications for which they are suited (Foster et al. 1998).

In a short time grid technologies have spread all over the world, especially in

universities and research institutes due to the strong boost of the high energy physics

experiments (such as CERN’s experiments) that involve large international

collaborations.

The aim of grid computing is to share large amounts of memory and computing

resources, distributed on a large scale, belonging to different administrative domains

and characterized by a high degree of dynamism.

Figure 2 – Example of GRID architecture

GPU Computing for
Machine Learning Algorithms

25

This sharing is, necessarily, highly controlled, with resource providers and

consumers defining clearly and carefully just what is shared, who is allowed to

share, and the conditions under which sharing occurs. To deal the administration of

this complex infrastructure, it introduces new important concepts and services

compared to conventional distributed systems5

The first change brought, which is central to the philosophy of the Grid, is the

concept of Virtual Organization (VOrg), which plays a key role, given the multi-

disciplinary nature of large collaborations aimed at by this technology. A VOrg is

defined as a set of mutually distrustful participants with varying degrees of prior

relationship that want share resources in order to perform some task (Foster et al.

1998). It can also be composed of members of a single local institution, which

shares the same structure with other campus (in case of campus Grid). Grid

architectures are therefore designed to handle multi-VOrg environments that work

together with different privileges and access policies about shared resources, unlike

the traditional distributed systems.

Another important innovation of Grid systems is the high level of virtualization

that mediates access to and virtualizes the hardware resource. One who logs the grid

does not know the available resources and existing policies on them, so the access

cannot be done with the classic login process.

The GRID introduces the concept of “GRID certificate” to authenticate users. A

GRID certificate is issued by a Certificate Authority (CA) which checks the identity

of the user and guarantees that the holder of this certificate exists and his certificate

5 http://www.scope.unina.it/C8/grid-computing/default.aspx

GPU Computing for
Machine Learning Algorithms

26

is valid. The certificate is used for authentication instead of the user's account to

avoid the replication of the user's account to all GRID sites. When authenticating to

a site, the user's certificate is mapped to a local account under which all commands

are executed. All GRID jobs use a proxy of the certificate with a limited lifetime.

This enhances security because the user has to re-establish the validity of his

certificate after the lifetime of the proxy has ended.

After logged in the user makes the discovering of available resources using

community and integrated services according to the requirements of its applications.

After an automatic or manual choice of the best resources, user's jobs are submitted

from the front end to the physical Grid resources, which close the virtualization

process, mapping the user on a local account that will run the applications. In Grid, a

resource is a reusable entity that is employed to fulfill a job or resource request. It

could be a machine, network, or some service that is synthesized using a

combination of machines, networks, and software. The Resource broker is defined as

an agent that controls the resource. It acts as a provider for a resource could provide

the consumers with a ‘value added’ abstract resource (Krauter et al. 2002).

The scheduling is critical points of grid computing. Although this problem was

extensively treated for several kinds of systems, many traditional approaches are

inadequate to grid due its characteristics. While in traditional systems, resources and

jobs are under the direct control of the scheduler, in Grids, the resources are

heterogeneous, geographically distributed and belong to different individuals or

organizations, each with their own scheduling policies, cost models of access, loads

work and dynamic availability of resources through the time. The lack of centralized

GPU Computing for
Machine Learning Algorithms

27

control, along with the presence of users that generate jobs different from each

other, make scheduling more complicated than in traditional computing systems.

Due to the expensive scheduling decisions, data staging in and out, and potentially

long queue times, many Grids don’t natively support interactive applications.

3.2 CLOUD Computing

The name cloud computing was inspired by the cloud symbol that's often used to

represent the Internet in flowcharts and diagrams.

Cloud computing means that the user applications and data are managed externally

(online), rather than the user's machine (Viega 2009). The basic idea is to provide a

heterogeneous collection of resources, where features are not known to the user. The

main characteristic of cloud computing is to make available heterogeneous resources

as if they were implemented by a single standard system. The actual implementation

of the resources is not defined in detail as the architecture is service oriented.

Figure 3 – Example of CLOUD architecture

GPU Computing for
Machine Learning Algorithms

28

A Cloud service has three distinct features that differentiate it from traditional

hosting. It is sold on demand, typically by the minute or the hour; it is elastic, i.e. a

user can have as much or as little of a service as he wants at any given time; and the

service is fully managed by the provider. This "service provider hosting" fully

handles the computer hardware and software architecture. Everything that the user

needs is an Internet connection to access their data and to the applications for

manage them. This approach allows access to facilities and services that are often

cost-prohibitive for many organizations to meet or exceed.

These services are organized in three classes:

Software-as-a-Service (SaaS): In the SaaS model, the user buys a subscription to

some software product, but some or all of the data and code resides remotely. It will

be better than buying the hardware and software as keeps off the burden of updating

the software to the latest version, licensing and is of course more economical. It

doesn’t keep any code on the client machine, even though some code might execute

on the client temporarily. For example, Zoho Docs6 (a Google alternative to

Microsoft Office) relies on JavaScript, which runs in the Web browser. In this

model, applications could run entirely on the network, with the user interface living

on a thin client. In this layer, the users can access an application and information

remotely via the Internet and pay only for that they use.

6 https://www.zoho.com/docs/

GPU Computing for
Machine Learning Algorithms

29

Platform-as-a-Service (PaaS): From the consumer viewpoint, PaaS software

probably resembles SaaS, but instead of software developers building the program to

run on their own Web infrastructure, they build it to run on someone else’s. PaaS

offers an advanced integrated environment for building, testing, deploying and

upgrading custom applications. For example, Microsoft offers Windows Azure7,

provides developers with on-demand compute, storage, networking and content

delivery capabilities to host, scale and manages Web applications on the Internet

through Microsoft data centers. A service that lets development organizations write

programs to run specifically on Google's infrastructure.

Infrastructure-as-a-Service (IaaS): Similar to PaaS, IaaS lets the development

organization to define its own software environment. This basically delivers virtual

machine images to the IaaS provider, instead of programs, and the machines can

contain whatever the developers want. The provider can automatically grow or

shrink the number of virtual machines running at any given time so that programs

can more easily scale to high workloads, saving money when resources aren’t

needed. The client typically pays on a per-use basis. Thus, clients can save cost as

the payment is only based on how much resource they really use. Infrastructure can

be expanded or shrunk dynamically as needed.

Cloud Computing model looks very different than Grid one, with resources in the

Cloud being shared by all users at the same time (in contrast to dedicated resources

7 https://partner.microsoft.com/italy/40084702

GPU Computing for
Machine Learning Algorithms

30

governed by a queuing system). This should allow latency sensitive applications to

operate natively on Clouds, although ensuring a good enough level of QoS (Quality

of Service) to the end users is not trivial, and it will likely be one of the major

challenges for Cloud Computing as the Clouds grow in scale, and number of users

(Foster et al. 2008).

3.3 High-Performance Computing (HPC)

The term is frequently used in the field of scientific calculus, generally referring

to all technologies used to create processing systems capable of delivering very high

performance of order of teraflop. The term is often used as a synonym for

“supercomputer”. In this case, the Clusters are a classical example of HPC, mainly

used for calculations, rather than for I/O oriented operations like web services or

database.

Figure 4 – Example of HPC architecture

GPU Computing for
Machine Learning Algorithms

31

HPC was once restricted to institutions that could afford the significantly

expensive and dedicated supercomputers of the time. There was a need for HPC in

small scale and at a lower cost which lead to cluster computing. The emergence of

cluster platforms was driven by a number of academic projects, such as Beowulf8 .

A Beowulf cluster (whose name is inspired by the eponymous hero of the epic

Saxon) is a multi-computer architecture for parallel computing. Usually it consists of

several client nodes controlled by a server node connected to each other via

Ethernet. Once, they were created by assembling more homogeneous but less

powerful PCs, creating bigger computing power. Beowulf was introduced in

Astrophysics to do parallel processing of images observed by the CCD mosaic

(mosaic detectors, where each CCD has a dedicated PC). Middleware systems such

as MPI (Message Passing Interface) or PVM (Parallel Virtual Machine), allow the

creation of clustering programs, portable across a wide variety of clusters.

HPC systems are used to solve advanced computational problems, for example:

decoding genomes, animating movies, analyzing financial risks, streamlining crash

test simulations, modeling global climate solutions and other highly complex

problems, always characterized by extreme processing complexity. The most

common way of solving complex problems has been to use specialized

supercomputing hardware, leading to increase the costs to purchase new hardware,

which would become obsolete quickly.

8 http://www.beowulf.org/

GPU Computing for
Machine Learning Algorithms

32

3.4 GPGPU

GPGPU is an acronym standing for General Purpose Computing on Graphics

Processing Units. It was invented by Mark Harris in 2002 (Harris 2003), by

recognizing the trend to employ GPU technology for not graphic applications.

With such term we mean all techniques able to develop algorithms extending

computer graphics but running on graphic chips. Up to 2006 these chips have been

difficult to be used, mainly because programmers were conditioned to use specific

APIs (Application Programming Interface) to access to graphic devices, hence based

on methods made available by libraries like OpenGL and Direct3D. These APIs

often were strongly limiting applications design and development.

In general the graphic chips, due to their intrinsic nature of multi-core processors

(many-core) and being based on hundreds of floating-point specialized processing

units, make many algorithms able to obtain higher (one or two orders of magnitude)

performances than usual CPUs (Central Processing Units). They are also cheaper,

due to the relatively low price of graphic chip components.

Particularly useful for super-computing applications, often requiring several

execution days on large computing clusters, the GPGPU paradigm may drastically

decrease execution times, by promoting research in a large variety of scientific and

social fields (such as, for instance, astrophysics, biology, chemistry, physics,

finance, video encoding and so on).

Besides the architecture intrinsically compliant with parallel computing, since the

2007 there was an increasing of programming tools, offered by commercial

solutions, growing the computing power and availability. This evolution is still

GPU Computing for
Machine Learning Algorithms

33

extending its exploit, also due to the recent upgrade of the 3D technology (in most

cases pushed up by videogames world). In the past the video technology was based

on a pipeline of pre-defined and static instructions, but progressively it started to

evolve towards a new approach, in which the GPUs are fully programmed by using

the shader models. In the field of computer graphics, a shader is a set of software

instructions that is used primarily to calculate rendering effects on graphics

hardware with a high degree of flexibility. Shaders are used to program the GPUs

programmable rendering pipeline, which has mostly superseded the fixed-function

pipeline that allowed only common geometry transformation and pixel-shading

functions; with shaders, customized effects can be used (Ebert et al. 2000).

Nowadays there is available the shader model 4.0, also named as “model with

unified shaders”, able to use the same instruction set to handle different types of

shaders. This solution can optimize the dynamical resource management for

different types of shaders. More in detail, while past GPU generations were simply

devices able to extend classical graphic pipeline, last generation GPUs have a more

flexible internal engine, supported by a series of processing units specialized in a

predetermined function (Owens et al. 2008).

3.5 A discussion about computing architectures

For over two decades, before the advent of multi-core architectures, the general

purpose CPUs have been characterized, at each generation, by an almost linear

increasing of performances together with a decreasing of costs, also known as

Moore’s Law (Moore 1965), shown in Figure 5,

GPU Computing for
Machine Learning Algorithms

34

Figure 5 – The Moore’s CPU Law

So far, we have now available low-cost desktop PCs able to execute tens of Giga

floating-point Operations per Second (GFLOPS) and server clusters with hundreds

of GFLOPS.

This performance growth engaged a fundamental virtuous cycle in the Computer

Science:

• Users, being rapidly used to performance growth for computers, especially in terms of

execution speed, processing reliability and multi-tasking capability, are continuously

asking for better software systems;

• Developers, by observing the constant increase of software performances, together

with processor technology, always ask for better hardware performances to optimize

application speed.

There is a downside of this virtuous mechanism. The physical constraints of

Thermodynamics started to cause relevant problems of power consumption and heat

GPU Computing for
Machine Learning Algorithms

35

dissipation inside the modern CPUs, by slowing such evolution trend and by forcing

computer manufacturers to a drastic revolution in the processor architecture design.

In fact, in order to make feasible this linear trend of performances, by controlling the

thermal effects, the new strategy was to reduce the clock frequencies and to

distribute working loads over several processing units (cores) located on the same

chip. From the architectural point of view, such new roadmap has inevitably

changed the design approach adopted up to now in the software development

environment.

They in fact moved away from the past sequential structure. Such methodology

appeared obsolete on the new multi-core infrastructure, essentially because the

sequential program can run on a single core, leaving unexploited the rest of

processor cores.

Furthermore, without an effective growth of performances, the developers would not

be able to introduce new features in the software products, blocking de facto the

evolution of the entire computer science business.

So far, in order to maintain the cyclic hardware/software trend, the software

applications had to change their perspective, moving towards parallel computing,

able to fully exploit the availability of parallel architectures. The first systems, on

which the parallel programming started, were indeed HPC mainframes.

GPU Computing for
Machine Learning Algorithms

36

However they are machines, or infrastructures in the Grid/Cloud cases, having some

critical points:

• Large dimensions;

• High costs for equipment and management;

• Difficult to be accessed by external developers and users;

With such problems, many applications are not able to justify these high costs and

this was hardly limiting in practice the parallel programming dissemination.

Nowadays the multi-core technology has reached so high sales volumes that a

parallel programming approach can be considered as usual. This caused a trend

inversion in the software development field.

At the beginning of 2000 every silicon farm posed an important question: which

roadmap to follow in the processor development to reach the business goals?

Multi-core processors were selected by many companies, such as, for instance,

Advanced Micro Devices Inc. (AMD), ARM Ltd., Broadcom Corp., Intel Corp. e

VIA Technologies. Examples of last generation multi-core architectures are present

either in the AMD Phenom X4 and Intel Core i7 families.

More specifically, these multi-core processors are based on an integrated circuit in

which two or more processors were connected to the same socket, in order to

increase their connection speed. Each core implements the full set of x86

instructions and it enhances the performances, reduces consumptions and

implements a more efficient multi-tasking. First models were dual-core, comparable

GPU Computing for
Machine Learning Algorithms

37

to dual-processor systems. Ideally indeed, a dual-core processor would be about two

times more powerful of a single-core processor. But in practice this gap is about one

and half times.

The evolution of such architecture proceeds through a slow enhancement, in which

the number of cores doubles with every new semi-conductor generation. The basic

idea is to grow the core number by maintaining unchanged the execution speed of

pre-existent sequential programs.

The critical points for such architecture come out in case of serial programs. In this

case, in the absence of the parallel approach, the processes are scheduled in such a

way that the full load on the CPU is balanced, by distributing them over the less

busy cores each time. However many software products are not designed to fully

exploit the multi-core features, so far the micro-processors are designed to optimize

the execution speed on sequential programs.

The choice of graphic device manufacturers, like ATI Technologies Inc. (acquired

by AMD in the 2006) and NVIDIA Corp., was the many-core technology (usually

many-core is intended for multi-core systems over 32 cores). The many-core

paradigm is based on the growth of execution speed for parallel applications. Began

with tens of cores smaller than CPU ones, such kind of architectures reached

hundreds of core per chip in a few years.

An example of many-core architecture is the graphic device NVIDIA GeForce GTX

560, with 336 cores, also named Streaming Processor (SP). These cores are grouped

into units, called Streaming Multiprocessor (SM), of 8 cores each (hence in our case

GPU Computing for
Machine Learning Algorithms

38

336/8 = 42 SM). Each SP is an in-order executed scalar processor and it shares both

control logic and instruction cache with others.

The many-core processors, in particular GPU, have led the race for floating point

computation performance since 2004, as shown in Figure 6 (Kirk et al 2010).

Figure 6 – CPU vs. GPU throughput evolution

Since 2009 the throughput peak ratio between GPU (many-core) and CPU (multi-

core) was about 10:1. It must be issued that such values are referred mainly to the

theoretical speed supported by such chips, i.e. 1 TeraFLOPS against 100 GFLOPS.

Such a large difference has pushed many developers to shift more computing-

expensive parts of their programs on the GPUs. The large difference between GPU

and CPU is basically located into the different design philosophy, as shown in

Figure 79.

9 http://developer.nvidia.com/nvidia-gpu-computing-documentation

GPU Computing for
Machine Learning Algorithms

39

Figure 7 – CPUs and GPUs different design philosophies.

In order to maximize the efficiency of sequential code, the CPU must be designed

by following some constraints:

• sophisticated control logics, in order to make single process instructions able to be

executed in parallel (pipelining and multi-threading) or without to follow the

execution order imposed by the programmer (out-of order execution), by appearing as

sequentially executed;

• cache memories of large dimensions, in order to reduce the latency time during data

access or complex instruction execution;

• high difference of memory bandwidth between CPU and graphic chips (about ten

times higher), due to the requirements (coming from operative systems, applications

and I/O devices), to be satisfied by general-purpose processors. This makes difficult a

growth of memory bandwidth. On the contrary, by having more simple memory

models and fewer constraints to follow, GPU designers have been able to enhance the

memory bandwidth in a more easy way. For instance, the chip NVIDIA GTX 590 has

GPU Computing for
Machine Learning Algorithms

40

a memory bandwidth of about 328 GB/sec, while an Intel Core i7-2600 reaches only

20 GB/sec.

Videogames have mainly led and caused such technical evolution trend all over

these years. The demand of higher performances at low cost, together with the need

to obtain a higher number of floating point calculations in less time, caused the

optimization of throughput in the GPUs for the multi-threading execution. Such

hardware is able to exploit the entire GPU at all processing time, by also reducing

the control logic needed for each execution process. In order to maximize the

number of threads accessing to same data in memory, without having to access to

the DRAM, several smaller cache memories are used, helping to respect the

bandwidth requirements. This results in a larger area than chip addressable by

floating point calculations.

The GPUs are particularly efficient to solve problems with a strongly parallel

structure of data. Being able to execute same instructions over each data-element,

there are less strong requirements about control logic.

The latency time of memory access can be masked by the execution time, instead of

using larger cache memories.

However the GPUs provide high performances on specific cases only: scientific

calculations, parallel computing and massive data sets navigation. So far, the

applications which want to exploit all their features will have to use GPUs for more

complex computations, by devoting CPUs for the rest of the sequential code.

GPU Computing for
Machine Learning Algorithms

41

It is important to point out that the performances are not the unique decisional factor

whenever processors are to be selected for specific applications. Other important

factors could also be:

• Standards to follow: such as IEEE (Institute of Electrical and Electronics Engineers)

754, for floating point calculation10. In general to follow specific standards has the

advantage to obtain reproducible results with different processors. GPUs, starting to

support single-precision floating point calculation, have reached a level comparable

with CPU with double-precision. We expect indeed to extend the scientific

application range running on GPUs;

• A wide presence on the marketplace of the particular processor category, in order to

justify the software development costs through a large user base. By using processors

with a low distribution it may cause a low use of the technology. This was the case in

the past for parallel computing. But as said before, this situation has been changed by

the introduction of GPGPU technology.

In conclusion, we are living a particular dynamical era, in which the proliferation of

different computing paradigms reflect the recent recognition of e-science as the

fourth leg of Science, after theory, experimentation and simulation. All these

computing architectures have pro and cons, summarized in the following table.

10 IEEE Standard for Floating-Point Arithmetic
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4610935

GPU Computing for
Machine Learning Algorithms

42

In the following Table 1 (Sadashiv et al. 2011), we summarize a comparison

between Cluster, Grid and Cloud Computing paradigms. GPGPU can be only

partially involved in that comparison, because specifically dedicated to parallel

computing.

FEATURE CLUSTERs GRIDs CLOUDs

Service Level
Agreement limited yes Yes

Allocation centralized decentralized Both

Resource Handling centralized distributed Both

Loose coupling no both Yes

Protocols/API MPI, parallel
virtual

MPI, MPICH-G, GIS,
GRAM

TCP/IP, SOAP, REST,
AJAX

Reliability no half Full

Security yes half No

User friendliness no half Yes

Virtualization half half Yes

Interoperability Yes yes Half

Standardized yes yes No

Business Model no no Yes

Task Size Single large Single large Small & medium

SOA no yes Yes

Multi tenancy no yes Yes

System Performance improves improves Improves

Self service no yes Yes

Computation service computing Max. computing On demand

Heterogeneity no yes Yes

Scalable no half Yes

Inexpensive no no Yes
Data Locality

exploited no no Yes

Application HPC, HTC HPC, HTC, Batch SME interactive apps

Switching cost low low High

Value added service no half Yes

Table 1 – Cluster, Grid and HPC comparison

GPU Computing for
Machine Learning Algorithms

43

3.6 Parallel programming environment

3.6.1 Conventional programming environment: MPI and OpenMP

Parallel programming environments provide the basic tools, language features and

programming interfaces (APIs) needed to build a parallel program. This

programming environment uses an abstraction called a programming model. The

sequential computers use the well-known model of von Neumann (von Neumann

1945). Because all sequential computers use this model, developers who program in

this software abstraction can map onto most, if not all, sequential computers.

Otherwise, there are many possible models for parallel computing.

Due to the wide range of parallel architectures, the research of programmers has

been historically focused on hundreds of parallel programming environments.

Fortunately, by the late 1990s, the parallel programming community converged

predominantly on two environments for parallel programming: Message Passing

Interface (MPI) for the scalable cluster calculations (i.e. distributed memory

systems) and OpenMP for multi-processor systems with shared memory (Mattson et

al. 2004).

MPI is a model in which the computing nodes of a cluster do not share memory11.

Both data sharing and interactions occur through an explicit message exchange. MPI

has been much more employed in the scientific high performance computing

domain. There are in fact, known MPI applications able to work on cluster systems

with more than 100.000 nodes. However the huge effort for the porting of an

11 http://www.mpi-forum.org/docs/-2.2/-report.pdf

GPU Computing for
Machine Learning Algorithms

44

application on this infrastructure could be extremely expensive, especially in case of

absence of shared memory between computing nodes.

On the contrary, OpenMP is quite simple to be programmed. Main advantages come

out from the fact that there are APIs handled by issues from the specific compiler

used (for example, the C code fragment reported below): easier programming,

incremental parallelism (i.e. it is possible to work on a code portion at a time

without drastic changes to the serial code) and unified applications with parallel and

serial code (because the OpenMP blocks are considered as comments by sequential

compilers). However there is the risk to introduce bugs due to synchronization

errors12. Anyway, with such APIs it is not possible to reach scalability higher than

two hundred computing nodes, because there are strict hardware requirements

concerning the overhead of thread handling and cache coherency.

int main(int argc, char *argv[]) {
 const int N = 100000;
 int i, a[N];

 #pragma omp parallel for
 for (i = 0; i < N; i++)
 a[i] = 2 * i;

 return 0;
}

Listing 1 - Example of OpenMP Pragma

12 http://developers.sun.com/solaris/articles/cpp_race.html

GPU Computing for
Machine Learning Algorithms

45

3.7 GPGPU environment: CUDA

CUDA (Compute Unified Device Architecture) is a general purpose parallel

computing architecture introduced by NVIDIA in November 2006 that leverages the

parallel compute engine in NVIDIA GPUs to solve many complex computational

problems in a more efficient way than on a CPU. It includes the CUDA Instruction

Set Architecture (ISA) and the parallel compute engine in the GPU.

CUDA comes with a software environment that allows developers to use C as a

high-level programming language. Other languages or API are supported, such as

CUDA FORTRAN, OpenCL, and DirectCompute.

To the hardware perspective, NVIDIA devoted silicon area to facilitate the ease of

parallel programming, so this did not represent a change in software alone;

additional hardware was added to the chip. CUDA programs no longer go through

the graphics interface at all. Instead, a new general-purpose parallel programming

interface on the silicon chip serves the requests of CUDA programs.

3.7.1 CUDA architecture

Unlike previous generations that partitioned computing resources into vertex and

pixel shaders, the CUDA Architecture included a unified shader pipeline, allowing

each and every arithmetic logic unit (ALU) on the chip to be marshaled by a

program intending to perform general-purpose computations. Because NVIDIA

intended this new family of graphics processors to be used for general-purpose

computing, these ALUs were built to comply with IEEE requirements for single-

GPU Computing for
Machine Learning Algorithms

46

precision floating-point arithmetic and were designed to use an instruction set

tailored for general computation rather than specifically for graphics.

Furthermore, the execution units on the GPU were allowed arbitrary read/write

access to memory as well as access to a software-managed cache known as shared

memory. All of these features of the CUDA Architecture were added in order to

create a GPU that would excel at computation in addition to performing well at

traditional graphics tasks.

Figure 8 - CUDA GPU Architecture

A typical CUDA-capable GPU is organized into an array of highly threaded

streaming multiprocessors (SMs).

In Figure 8, two SMs form a building block; however, the number of SMs in a

building block can vary from one generation of CUDA GPUs to another generation.

Also, each SM has a number of streaming processors (SPs) that share control logic

GPU Computing for
Machine Learning Algorithms

47

and instruction cache. Each GPU currently comes with up to 4 GB of graphics

double data rate (GDDR) DRAM, referred to as global memory. They function as

very-high-bandwidth, off-chip memory, though with somewhat more latency than

typical system memory. For massively parallel applications, the higher bandwidth

makes up for the longer latency. Each SP has a multiply–add (MAD) unit and an

additional multiply unit. In addition, special-function units perform floating-point

functions such as square root (SQRT), as well as transcendental functions. Because

each SP is massively threaded, it can run thousands of threads per application.

GPU Computing for
Machine Learning Algorithms

48

3.7.2 Memory Hierarchy

In CUDA, the host and devices have separate memory spaces. CUDA threads may

access data from multiple memory spaces during their execution as illustrated by

Figure. Each thread has private local memory. Each thread block has shared memory

visible to all threads of the block and with the same lifetime as the block. All threads

have access to the same global memory. At the bottom of the figure, we see global

memory and constant memory that allows read-only access by the device code.

These are the memories that the host code can transfer data to and from the device,

as illustrated by the bidirectional arrows between these memories and the host.

Figure 9 - Overview of the CUDA memory model

GPU Computing for
Machine Learning Algorithms

49

3.7.3 Thread Hierarchy

Figure 10 - CUDA thread organization

When a kernel is invoked, it is executed as grid of parallel threads. Each CUDA

thread grid typically is comprised of thousands to millions of lightweight GPU

threads per kernel invocation. For simplicity, a small number of threads are shown

in Figure 10.

Threads in a grid are organized into a two-level hierarchy, where at the top level,

each grid consists of one or more thread blocks. All blocks in a grid have the same

number of threads. Each block has a unique two-dimensional coordinate given by

GPU Computing for
Machine Learning Algorithms

50

the CUDA specific keywords blockIdx.x and blockIdx.y. All thread blocks must

have the same number of threads organized in the same manner. Blocks are

organized into a one-dimensional, two-dimensional, or three-dimensional array of

threads. On current GPUs a thread block may contain up to 1024 threads. Threads

with the same threadIdx values from different blocks would end up accessing the

same input and output data elements. When the host code invokes a kernel, it sets

the grid and thread block dimensions via execution configuration parameters.

3.7.4 CUDA C Parallel Programming Model

The introduction of multicore CPUs and manycore GPUs introduced the challenge is

to develop application software that transparently scales its parallelism to leverage

the increasing number of processor cores.

The CUDA parallel programming model is designed to overcome this challenge

while maintaining a low learning curve for programmers familiar with standard

programming languages such as C.

At its core are three key abstractions: a hierarchy of thread groups, shared memories,

and barrier synchronization.

These abstractions provide fine-grained data parallelism and thread parallelism,

nested within coarse-grained data parallelism and task parallelism. They guide the

programmer to partition the problem into coarse sub-problems that can be solved

independently in parallel by blocks of threads, and each sub-problem into finer

pieces that can be solved cooperatively in parallel by all threads within the block.

GPU Computing for
Machine Learning Algorithms

51

This decomposition preserves language expressivity by allowing threads to

cooperate when solving each sub-problem, and at the same time enables automatic

scalability. Indeed, each block of threads can be scheduled on any of the available

processor cores, in any order, concurrently or sequentially, so that a compiled

CUDA program can execute on any number of processor cores as illustrated by

Figure 9, and only the runtime system needs to know the physical processor count.

Figure 11 – CUDA with different multi-core architectures

This scalable programming model is designed for transparent and portable

scalability. It allows the CUDA architecture to span a wide market range, from the

high-performance Tesla GPUs to the inexpensive mainstream GeForce GPUs, by

GPU Computing for
Machine Learning Algorithms

52

scaling the number of processors and memory partitions. A CUDA program is

written once and runs on a GPU with any number of processor cores.

3.7.5 CUDA Program Structure

A CUDA program consists of one or more phases that are executed on either the

host (CPU) or a device such as a GPU. The phases that exhibit little or no data

parallelism are implemented in host code. The phases that exhibit rich amount of

data parallelism are implemented in the device code.

A CUDA program is a unified source code encompassing both host and device code.

While the host code is straight ANSI C code, the device code is written using ANSI

C extended with keywords for labeling data-parallel functions, called kernels, and

their associated data structures. The kernels typically generate a large number of

threads to exploit data parallelism. Due to efficient hardware support the CUDA

threads are of much fast and lighter weight than the CPU threads that typically

require thousands of clock cycles to generate and schedule.

The execution of a typical CUDA program starts with host (CPU) execution. When

a kernel function is invoked, the execution is moved to a device (GPU), where a

large number of threads are generated to take advantage of abundant data

parallelism. All the threads that are generated by a kernel during an invocation are

collectively called a grid. When all threads of a kernel complete their execution, the

corresponding grid terminates, and the execution continues on the host until another

kernel is invoked.

GPU Computing for
Machine Learning Algorithms

53

Figure 12 - CUDA program structure

3.7.6 Other GPGPU environment: OpenCL

Recently, some collaboration between major industries, including Apple, Intel,

AMD (formerly ATI) and NVIDIA developed a programming model for

development on heterogeneous architectures across CPU, GPU and other types of

processors, called OpenCL (Open Computing Language). OpenCL will form the

GPU Computing for
Machine Learning Algorithms

54

foundation layer of a parallel computing ecosystem of platform-independent tools,

middleware and applications.

OpenCL has been proposed as an open standard. Similar to CUDA, OpenCL

programming model defines a language, based on the C99 programming language

with extensions and restrictions, and runtime APIs to allow programmers the

management of data parallelism and massively parallel processors13.

OpenCL, being a standardized programming model, allows all applications,

requiring to be developed in this language, to be executed without any modification

to the code, on all devices that support language extensions and APIs.

OpenCL is a technology less known than CUDA. Its level of programming rules is

still less advanced than in CUDA and it is more complex to be used, due to the

absence of a unified SDK (Software Development Kit) to be shared among all

manufacturers.

Furthermore, on the platforms supporting both technologies, the speed reached by

OpenCL applications is still less than CUDA, an important factor influencing

developers, always demanding higher processing speed.

For completeness, we mention the development environments created by ATI: CTM

(Close To Metal) and Stream. These two programming models have been early

abandoned in favor of OpenCL, whose basic positive and negative features can be

summarized as follows:

13 http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/

GPU Computing for
Machine Learning Algorithms

55

Pros

• Acceleration in parallel processing;

• It allows to manage computational resources

o View multi-core CPUs, GPUs, etc. as computational units;

o Allocate different levels of memory;

• Cross-vendor software portability

o Separation of low-level and high-level software;

• Much wider range of hardware and platform support;

o Supports AMD, NVIDIA and Intel GPUs equally. It can also be used on

newer versions of Android phones, iPhones and other devices;

• It can fallback on CPU if the GPU support does not exist;

o In reality, to create thousands of threads on the CPU, it is generally not a good

idea;

• Supports synchronization over multiple devices;

• Easy to get started with integrating OpenCL kernels in to the code.

• An open standard and not vendor locked and a kernel language based on C99

specification.

Con

• public drivers to support OpenCL 1.1. Currently only developer ones exist;

• Lacks mature libraries;

• Debugging and profiling tools are not as advanced as CUDAs.

Moreover, the following table reports a direct comparison between OpenCL and CUDA

(Rosendahl 2010).

GPU Computing for
Machine Learning Algorithms

56

FEATURE CUDA OpenCL

What it is
HW architecture, ISA, API,

programming language, SDK and
tools

Open API and language
specification

Proprietary or
open technology Proprietary Open and royalty‐free

When introduced Q4 2006 Q4 2008

Free SDK Yes Depends on vendor

OS support Windows, Linux, Mac OS X; Depends on vendor
Heterogeneous
device support No, just NVIDIA GPUs Yes (CPUs and GPUs)

Development models compared
Multiple kernel
programming

languages
Yes No, possible vendor‐specific

language

Multiple
programming

interfaces
Yes, including OpenCL No, possible vendor extensions

Data parallel
kernels support Yes, the default model Yes

Task parallel
kernels support No, at least not efficiently Yes

Device level
language Yes, PTX

Implementation specific or no
intermediate language used

Deep host and
device program

integration
Yes, with syntax calls No, only separate compilation

Kernel programming differences
Base language
version defined

“Based on C”, limited C++ features
are supported C99

Access to work ‐‐‐‐
item indices Through built‐in variables Through built‐in functions

Address space
qualification

needed for kernel
pointer arguments

No, defaults to global memory Yes

First ‐‐‐‐class built ‐‐‐‐in
vector types Vector types Vector types, literals, built-in

operators and functions
Voting functions Yes (CC 1.2 or greater) No

Atomic functions Yes (CC 1.1 or greater) Only as extension
Asynchronous

memory copying
and

pre-fetch functions

No Yes

Support for C++
language features

Yes, useful subset of features
supported

Experimental interface

Table 2 – CUDA vs. OpenCL comparison

GPU Computing for
Machine Learning Algorithms

57

4 Technology in machine learning

The sheer size of the foreseen data streams renders impossible to discriminate

objects using traditional software tools, and requires the development of specific

computing infrastructures as well as the implementation of specific and robust

(largely based on the ML paradigm) methods for data analysis and understanding.

ML methods, in order to provide efficient and reliable answers, need also to exploit

all the meta-information made available to any scientific/social community through

the data repositories federated under specific data centers or virtual organizations

(Genova et al. 2002).

The problem of inventing and deploying these new tools under powerful

computational infrastructure has therefore become a worldwide challenge. On the

algorithmic side, we wish to emphasize that commonly used decision algorithms

depend on a fixed number of predefined input features for decision making. This is

not the best option in Time Domain Analysis where some of the inputs may not be

present within the time slot available to make the decision.

There is therefore a demand for a completely new class of tools that can dynamically

select the input features and can consistently give reliable predictions. Most decision

algorithms compute the inverse Bayesian probability to deal with missing attributes

(mostly called features) in the input data.

GPU Computing for
Machine Learning Algorithms

58

Although such algorithms can handle missing features to some extent, there is

always a possibility for asymptotic decline in accuracy. It may be argued that the

possible state of the missing feature can be adequately constrained and compensated

for by the available remaining inputs.

However this is not true, because a feature that can be well constrained by the

remaining inputs is usually redundant and it is not required as an input at the first

place. If this is not the case, its absence can't be appropriately compensated and that

will result in a loss of information.

The idea therefore is to facilitate dynamic learning in which, for instance, the system

learns from all available information (and not on a fixed set of samples) and identify

strategies that can optimally handle situations in which most of the inputs are

missing.

As already underlined, one of next main breakthroughs in many human fields is that

we have reached the physical limit of observations. So far, like all scientific

disciplines focusing their discoveries on collected data exploration, there is a strong

need to employ e-science methodology and tools in order to gain new insights on the

knowledge. But this mainly depend on the capability to recognize patterns or trends

in the parameter space (i.e. physical laws), possibly by overcoming the human limit

of 3D brain vision, and to use known patterns as Base of Knowledge (BoK) to infer

knowledge on self-adaptive models in order to make them able to generalize feature

correlations and to gain new discoveries (for example outliers identification) through

the unbiased exploration of new collected data. These requirements are perfectly

matching the paradigm of ML techniques based on the Artificial Intelligence

GPU Computing for
Machine Learning Algorithms

59

postulate (Bishop 2006). Hence, in principle at all steps of an exploration workflow

ML rules can be applied. Let us better know this methodology.

There is a basic dichotomy in ML, by distinguish between supervised and

unsupervised methodology, as described in the following.

The Greek philosopher Aristotle was one of the first to attempt to codify "right

thinking," that syllogism is, irrefutable reasoning processes. His syllogisms provided

patterns for argument structures that always yielded correct conclusions when given

correct premises. For example, "Socrates is a man; all men are mortal; therefore,

Socrates is mortal." These laws of thought were logic supposed to govern the

operation of the mind; their study initiated the field called logic. Logicians in the

19th century developed a precise notation for statements about all kinds of things in

the world and about the relations among them. Contrast this with ordinary arithmetic

notation, which provides mainly for equality and inequality statements about

numbers.

By 1965, programs existed that could, in principle, process any solvable problem

described in logical notation (Moore 1965). The so-called logicist tradition within

artificial intelligence hopes to build on such programs to create intelligent systems

and the ML theory represents their demonstration discipline. Reinforcement in this

direction came out by integrating ML paradigm with statistical principles following

the Darwin’s Nature evolution laws, (Duda et al. 2001).

GPU Computing for
Machine Learning Algorithms

60

4.1 The learning paradigms

In supervised ML we have a set of data points or observations for which we know

the desired output, expressed in terms of categorical classes, numerical or logical

variables or as generic observed description of any real problem. The desired

output is in fact providing some level of supervision in that it is used by the learning

model to adjust parameters or make decisions allowing it to predict correct output

for new data. Finally, when the algorithm is able to correctly predict observations

we define it a classifier. Some classifiers are also capable of providing results in a

more probabilistic sense, i.e. a probability of a data point belonging to class. We

usually refer to such model behavior as regression.

A typical workflow for supervised learning is shown in the diagram below (Figure

13).

Figure 13 – A workflow based on supervised learning paradigm

The process is:

GPU Computing for
Machine Learning Algorithms

61

• Pre-processing of data. First we need to build input patterns that are appropriate

for feeding into our supervised learning algorithm. This includes scaling and

preparation of data;

• Create data sets for training and evaluation. This is done by randomly splitting

the universe of data patterns. The training set is made of the data used by the

classifier to learn their internal feature correlations, whereas the evaluation set is

used to validate the already trained model in order to get an error rate (or other

validation measures) that can help to identify the performance and accuracy of the

classifier. Typically you will use more training data than validation data;

• Training of the model. We execute the model on the training data set. The output

result consists of a model that (in the successful case) has learned how to predict

the outcome when new unknown data are submitted;

• Validation. After we have created the model, it is of course required a test of its

performance accuracy, completeness and contamination (or its dual, the purity). It

is particularly crucial to do this on data that the model has not seen yet. This is

main reason why on previous steps we separated the data set into training patterns

and a subset of the data not used for training. We intend to verify and measure the

generalization capabilities of the model. It is very easy to learn every single

combination of input vectors and their mappings to the output as observed on the

training data, and we can achieve a very low error in doing that, but how does the

very same rules or mappings perform on new data that may have different input to

output mappings? If the classification error of the validation set is higher than the

training error, then we have to go back and adjust model parameters. The reason

could be that the model has essentially memorized the answers seen in the training

data, failing its generalization capabilities. This is a typical behavior in case of

overfitting, and there are various techniques for overcoming it;

GPU Computing for
Machine Learning Algorithms

62

• Use. If validation was successful the model has correctly learned the underlying

real problem. So far we can proceed to use the model to classify/predict new data.

The kinds of problems that are suited for unsupervised algorithms may seem similar,

but are very different to supervised learners. Instead of trying to predict a set of

known classes, we are trying to identify the patterns inherent in the data that

separate like observations in one way or another. In other words, the main difference

is that we are not providing a target variable like we did in supervised learning.

This marks a fundamental difference in how both types of algorithms operate. On

one hand, we have supervised algorithms which try to minimize the error in

classifying observations, while unsupervised learning algorithms don't have such

gain, because there are no outcomes or target labels. Unsupervised algorithms try to

create clusters of data that are inherently similar. In some cases we don't necessarily

know what makes them similar, but the algorithms are capable of finding

relationships between data points and group them in possible significant ways.

Differently from supervised algorithms, which aim at minimizing the classification

error, unsupervised algorithms try to create groups or subsets of the data, in which

points belonging to a cluster are as similar to each other as possible, by making the

difference between the clusters as high as possible (Haykin 1998).

Another main difference is that in an unsupervised problem, the concept of training
set does not apply in the same way as with supervised learners. Typically we have a
data set that is used to find the relationships in the data that buckets them in different
clusters. A common workflow approach for unsupervised learning analysis is shown
in the diagram below (Figure 14).

GPU Computing for
Machine Learning Algorithms

63

Figure 14 – A workflow based on unsupervised learning paradigm

For unsupervised learning, the process is:

1) Pre-processing of data. As with supervised learners, this step includes selection of

features to feed into the algorithm, by also scaling them to build a suitable training

data set;

2) Execution of model training. We run the unsupervised algorithm on the scaled

data set to get groups of like observations;

3) Validation. After clustering the data, we need to verify whether it cleanly

separated the data in significant ways. This includes calculating a set of statistics

on the resulting outcomes, as well as analysis based on domain knowledge, where

you may measure how certain features behave when aggregated by the clusters.

Once we are satisfied of the resulting creation of clusters (or in general over-

densities), there is no need to run the model with new data (although you can).

GPU Computing for
Machine Learning Algorithms

64

4.2 What we are looking for in the data

In the DM scenario, the ML model choice should always be accompanied by the

functionality domain. To be more precise, some ML models can be used in a same

functionality domain, because it represents the functional context in which it is

performed the exploration of data.

Traditional statistical methods break down partly because of the increase in the

number of observations, but mostly because of the increase in the number of

variables associated with each observation. The dimension of the data is the number

of variables that are measured on each observation.

High-dimensional data sets present many mathematical challenges as well as some

opportunities, and are bound to give rise to new theoretical developments. One of

the problems with high-dimensional data sets is that, in many cases, not all the

measured variables are “important” for understanding the underlying phenomena of

interest. While certain computationally expensive novel methods can construct

predictive models with high accuracy from high-dimensional data, it is still of

interest in many applications to reduce the dimension of the original data prior to

any data modeling (Samet 2006).

In mathematical terms, the problem we investigate can be stated as follows: given

the p-dimensional random variable � = ���,⋯ , �	
�, and a lower dimensional

representation of it, � = ���,⋯ , �
� with k ≤ p, that captures the content in the

original data, according to some criterion. The components of s are sometimes called

the hidden components. Different fields use different names for the p multivariate

GPU Computing for
Machine Learning Algorithms

65

vectors: the term “variable” is mostly used in statistics, while “feature” and

“attribute” are alternatives commonly used in the DM and ML literature.

Generally speaking, dimensional reduction is the process of reducing the number of

random variables under consideration, and can be divided into feature

selection and feature extraction.

Feature selection approaches try to find a subset of the original variables (also called

features or attributes) (Guyon et al. 2003). Two strategies are filter (e.g. information

gain) and wrapper (e.g. search guided by the accuracy) approaches.

Feature extraction transforms the data in the high-dimensional space to a space of

fewer dimensions. The data transformation may be linear, as in Principal

Component Analysis (PCA), but many non-linear techniques also exist (Guyon et al.

2006).

Being based on the covariance matrix of the variables, PCA is a second-order

method. In various fields, it is also known as the Singular Value Decomposition

(SVD), the Karhunen-Loève transform, the Hotelling transform, and the Empirical

Orthogonal Function (EOF) method. In essence, PCA seeks to reduce the dimension

of the data by finding a few orthogonal linear combinations (Principal Components)

of the original variables with the largest variance. In other words, PCA performs a

linear mapping of the data to a lower dimensional space in such a way that the

variance of the data in the low-dimensional representation is maximized.

Another technique belonging, like PCA, to the latent variable methods family, is the

model known as Principal Probabilistic Surfaces (PPS), in which first principal

component accounts for as much of the variability in the data as possible, and each

GPU Computing for
Machine Learning Algorithms

66

succeeding component accounts for as much of the remaining variability as possible

(Chang et al. 2001).

The PPS are able to find a better data aggregation than the PCA method. A PPS is

trained to recognize the best projection functions from the N-dimensional parameter

space to a spherical surface in a 3D space.

This surface is covered by a grid of latent variables (points), representing the

Gaussian peak in the N-parameter space. It permits to visualize all data with a

human compliant 3D diagram, independently from the number of initial parameters.

It is hence possible to individuate the presence of sub-structures in the data. An

interesting aspect is the estimation of each input data parameter incidence on the

latent variables that can help to understand the relationship between the parameter

and the found clusters. The incidence of parameters is calculated by evaluating the

probability density of input vector components in respect of each latent variable.

During the training phase a reference variety is created.

In the test phase, a datum, never seen by the network, is attributed to the closest

spherical variety. Obviously the concept of closest implies a calculation of a

distance between a point and a node in the space. Before that the data must be

projected on the space. This basically because a spherical variety consists of squared

or triangular areas, each of them defined by 3 or 4 variety nodes. After this

projection of the datum the approximated distance is calculated.

In the PPS system three main approximation criteria exist:

• Nearest Neighbor: it founds the minimum square distance from all variety nodes;

• Grid projections: it founds the shortest projection distance on the variety grid;

GPU Computing for
Machine Learning Algorithms

67

• Nearest Triangulation: it founds the projection closest to the possible

triangulations.

The most frequently used is the first one, because it permits to evaluate the distances

between data and all nodes on the spherical variety. The downside is that it is

generally more time-consuming, but more precise than others (LeBlanc et al. 1994).

The technique described above makes clear the role of PPS as an efficient method

for MDS pre-clustering or dimensional reduction.

More generally, the advantage to preliminarily apply a dimensional reduction model

to data is that, in some cases, data analysis such as regression or classification can be

done in the reduced space more accurately than in the original one.

Classification is a procedure in which individual items are placed into groups based

on quantitative information on one or more features inherent to the items (referred to

as features) and based on a training set of previously labeled items (Kotsiantis

2007).

A classifier is a system that performs a mapping from a feature space X to a set of

labels Y. Basically a classifier assigns a pre-defined class label to a sample.

Formally, the problem can be stated as follows: given training data

����, ��
,⋯ , ���, ��
� (where �� are vectors) a classifier h:	X → Y maps an object

x	ϵ	X to its classification label y	ϵ	Y.

Different classification problems could arise:

a) crispy classification: given an input pattern x (vector) the classifier returns its

computed label y (scalar).

GPU Computing for
Machine Learning Algorithms

68

b) probabilistic classification: given an input pattern x (vector) the classifier returns a

vector y which contains the probability of �� to be the "right" label for x. In other

words in this case we seek, for each input vector, the probability of its

membership to the class �� (for each��).

Both cases may be applied to both "two-class" and "multi-class" classification. So

the classification task involves, at least, three steps:

• training, by means of a training set (input: patterns and target vectors, or labels;

output: an evaluation system of some sort);

• testing, by means of a test set (input: patterns and target vectors, requiring a valid

evaluation system from point 1; output: some statistics about the test, confusion

matrix, overall error, bit fail error, as well as the evaluated labels);

• evaluation, by means of an unlabeled data set (input: patterns, requiring a valid

evaluation systems; output: the labels evaluated for each input pattern);

Because of the supervised nature of the classification task, the system performance

can be measured by means of a test set during the testing procedure, in which unseen

data are given to the system to be labeled.

The overall error somehow integrates information about the classification goodness.

However, when a data set is unbalanced (when the number of samples in different

classes varies greatly) the error rate of a classifier is not representative of the true

performance of the classifier. A confusion matrix can be calculated to easily

visualize the classification performance (Provost et al. 1998): each column of the

matrix represents the instances in a predicted class, while each row represents the

GPU Computing for
Machine Learning Algorithms

69

instances in an actual class. One benefit of a confusion matrix is the simple way to

see if the system is mixing two classes.

Optionally (some classification methods does not require it by its nature or simply as

a user choice), one could need a validation procedure.

Validation is the process of checking if the classifier meets some criterion of

generality when dealing with unseen data. It can be used to avoid over-fitting or to

stop the training on the base of an "objective" criterion.

With “objective” we intend a criterion which is not based on the same data we have

used for the training procedure. If the system does not meet this criterion it can be

changed and then validated again, until the criterion is matched or a certain

condition is reached (for example, the maximum number of epochs). There are

different validation procedures. One can use an entire data set for validation

purposes (thus called validation set); this data set can be prepared by the user

directly or in an automatic fashion.

In some cases (e.g. when the training set is limited) one could want to apply a “cross

validation” procedure, which means partitioning a sample of data into subsets such

that the analysis is initially performed on a single subset, while the other subset(s)

are retained for subsequent use in confirming and validating the initial analysis

(Mosteller et al. 1968). Different types of cross validation may be implemented, e.g.

k-fold, leave-one-out, etc.

Summarizing we can safely state that a common classification training task

involves:

• the training set to compute the model;

GPU Computing for
Machine Learning Algorithms

70

• the validation set to choose the best parameters of this model (in case there are

"additional" parameters that cannot be computed based on training);

• the test data as the final “judge”, to get an estimate of the quality on new data that

are used neither to train the model, nor to determine its underlying parameters or

structure or complexity of this model;

The validation set may be provided by the user, extracted from the software or

generated dynamically in a cross validation procedure. In the next paragraphs we

underline some practical aspects connected with the validation techniques for

classification models.

Regression methods bring out relations between variables, especially whose relation

is imperfect (i.e. it has not one y for each given x). The term regression is

historically coming from biology in genetic transmission through generations, where

for example it is known that tall fathers have tall sons, but not as tall on the average

as the fathers. The trend to transmit on average genetic features, but not exactly in

the same quantity, was what the scientist Galton defined as regression, more exactly

regression toward the mean (Galton 1877).

But what is regression? Strictly speaking it is very difficult to find a precise

definition. It seems the existence of two meanings for regression (Hastie et al. 2005),

that can be addressed as data table statistical correlation (usually column averages)

and as fitting of a function.

About the first meaning, let start with a very generic example: let’s suppose to have

two variables x and y, where for each small interval of x there is a distribution of

corresponding y. We can always compute a summary of the y values for that

GPU Computing for
Machine Learning Algorithms

71

interval. The summary might be for example the mean, median or even the

geometric mean. Let fix the points ���, ���), where �� is the center of the ith interval

and ��� the average y for that interval. Then the fixed points will fall close to a curve

that could summarize them, possibly close to a straight line. Such a smooth curve

approximates the regression curve called the regression of y on x. By generalizing

the example, the typical application is when the user has a table (let say a series of

input patterns coming from any experience or observation) with some

correspondences between intervals of x (table rows) and some distributions of y

(table columns), representing a generic correlation not well known (i.e. imperfect as

introduced above) between them. Once we have such a table, we want for example

to clarify or accent the relation between the specific values of one variable and the

corresponding values of the other. If we want an average, we might compute the

mean or median for each column. Then to get a regression, we might plot these

averages against the midpoints of the class intervals.

Given the example in mind let’s try to extrapolate the formal definition of regression

(in its first meaning).

In a mathematical sense, when for each value of x there is a distribution of y, with

density f(y|x) and the mean (or median) value of y for that x given by:

����
 = � � ��|�
"�#$%$ (1)

then the function defined by the set of ordered pairs ��, ����

 is called the

regression of y on x. Depending on the statistical operator used, the resulting

regression line or curve on the same data can present a slightly different slope.

GPU Computing for
Machine Learning Algorithms

72

Sometimes we do not have continuous populations with known functional forms.

But the data may be very extensive (such as in the astrophysical case). In these cases

it is possible to break one of the variables into small intervals and compute averages

for each of them. Then, without severe assumptions about the shape of the curve,

essentially get a regression curve. What the regression curve does is essentially to

give a, let say, “big summary” for the averages for the distributions corresponding to

the set of x’s. One can go further and compute several different regression curves

corresponding to the various percentage points of the distributions and thus get a

more complete picture of the input data set. Of course often it is an incomplete

picture for a set of distributions! But in this first meaning of regression, when the

data are more sparse, we may find that sampling variation makes impractical to get a

reliable regression curve in the simple averaging way described (Menard 2001).

From this assumption, it descends the second meaning of regression.

Usually it is possible to introduce a smoothing procedure, applying it either to the

column summaries or to the original values of y’s (of course after an ordering of y

values in terms of increasing x). In other words we assume a shape for the curve

describing the data, for example linear, quadratic, logarithmic or whatever. Then we

fit the curve by some statistical method, often least-squares. In practice, we do not

pretend that the resulting curve has the perfect shape of the regression curve that

would arise if we had unlimited data, but simply we obtain an approximation. In

other words we intend the regression of data in terms of forced fitting of a functional

form. The real data present intrinsic conditions that make this second meaning as the

official regression use case, instead of the first, i.e. curve connecting averages of

GPU Computing for
Machine Learning Algorithms

73

column distributions. We ordinarily choose for the curve a form with relatively few

parameters and then we have to choose the method to fit it. In many manuals

sometimes it might be founded a definition probably not formally perfect, but very

clear: by regressing one y variable against one x variable means to find a carrier for

x. This introduces possible more complicated scenarios in which more than one

carrier of data can be founded. In these cases it has the advantage that the geometry

can be kept to three dimensions (with two carriers) up to n-dimensional spaces (n >

3, with more than two carriers regressing input data). Clearly, both choosing the set

of carriers from which a final subset is to be drawn and choosing that subset can be

most disconcerting processes.

In substance we can declare a simple, important use of regression, consisting in:

To get a summary of data, i.e. to locate a representative functional operator of the

data set, in a statistical sense (first meaning) or via an approximated trend curve

estimation (second meaning).

And a more common use of regression:

• For evaluation of unknown features hidden into the data set;

• For prediction, as when we use information from several weather or astronomical

seeing stations to predict the probability of rain or the turbulence growing in the

atmosphere;

• For exclusion. Usually we may know that x affects y, and one could be curious to

know whether z is associated with y too, through a possible casual mechanism. In

this case one approach would take the effects of x out of y and see if what remains

is associated with z. In practice this can be done by an iterative fitting procedure

by evaluating at each step the residual of previous fitting.

GPU Computing for
Machine Learning Algorithms

74

This is not exhaustive of the regression argument, but simple considerations to help

the understanding of the regression term and the possibility to extract basic

specifications for the use case characterization in the design phase.

Clustering is a division of data into groups of similar objects. Representing the data

by fewer clusters necessarily loses certain fine details (data compression), but

achieves simplification (Jain et al. 1999).

From a ML perspective clusters correspond to hidden patterns, the search for

clusters is unsupervised learning, and the resulting system could represent a data

concept in the KDD (Knowledge Discovery in Databases).

From a practical perspective clustering plays an outstanding role in DM applications

such as scientific data exploration, information retrieval and text mining, spatial

database applications, Web analysis, Customer Relationships Management (CRM),

marketing, medical diagnostics, computational biology, and many others.

For example, in CRM, marketing applications generally come with predictive

clustering analytics to improve segmentation and targeting, and features for

measuring the effectiveness of online, offline, and search marketing campaigns

(Collica 2007). By evaluating “buy signals,” marketers can see which prospects are

most likely to transact and also identify those who are bogged down in a sales

process and need assistance.

Data mining on MDS adds to clustering the complications of very large data sets

with very many attributes of different types (high dimensionality). This imposes

unique computational requirements on relevant clustering algorithms.

GPU Computing for
Machine Learning Algorithms

75

What are the properties of clustering algorithms we are concerned with in DM?

These properties include:

• Type of attributes that the algorithm can handle;

• Scalability to large data sets;

• Ability to work with high dimensional data (multi-D parameter space, multi-

wavelength, multi-epoch etc…);

• Ability to find clusters of irregular shape;

• Handling outliers;

• Time complexity (when there is no confusion, we use the term complexity);

• Data order dependency;

• Labeling or assignment (hard or strict vs. soft of fuzzy);

• Reliance on a priori knowledge and user defined parameters;

• Interpretability of results;

We have to try to keep these issues in mind, realistically. The above list is in no way

exhaustive. For example, we must deal also with implementation properties, such as

ability to work in pre-defined memory buffer, ability to restart and to provide an

intermediate solution and so on.

4.3 Learning Strategies

Before going into the working mechanisms of ML systems, it is interesting and

useful to focus the attention on the shape and expressions of data to be given as

input to ML information processing models.

GPU Computing for
Machine Learning Algorithms

76

In ML experiments the performance strongly depends from data used for training.

Hence it is crucial the choice of data selection and their representation mode.

Generally, except for some particular cases, the set of input data is provided under

the form of tables or matrices; in which any row identify an example (a complete

pattern in the data parameter space), whose columns are all parameters (features)

and their values the parameter attributes.

It may be frequent that the table can have empty entries (sparse matrix) or missing

(lack of observed values for some features in some patterns). It may also happen that

information of a single table is not homogeneous, i. e. attributes may be of different

types, such as numerical mixed with categorical entries.

This level of diversity in the internal information could be also related with different

format type of data sets, such as tables registered in ASCII code (ANSI et al. 1977),

CSV (Comma Separated Values) (Repici 2002) or FITS (text header followed by

binary code of an image) (Wells et al. 1981).

In order to reach an efficient and homogeneous representation of data sets, to be

submitted to ML systems, it is mandatory to preliminarily take care of the data

format, in order to make them intelligible by the processing framework. In other

words to transform pattern features to assume a uniform representation before to

submit them to the training process.

In this mechanism the real situations could be very different. Let think to time

sequences (coming from any sensor monitoring acquisition), where data are

collected in a single long sequence, not simply divisible, or to raw data (such as

GPU Computing for
Machine Learning Algorithms

77

original images taken by astronomical observations), that could be affected by noise

or aberration factors.

These events always require a pre-processing phase, to clean and opportunely

prepare the data sets to be used for any ML and DM experiment. Of course such

preliminary step must take into account also the functional scope of the experiment

itself.

More in practice, having in mind the functional taxonomy described in the previous

section, there are essentially four kinds of learning related with ML for DM:

1) Learning by association;

2) Learning by classification;

3) Learning by prediction;

4) Learning by grouping (clustering);

The primer, learning by association consists of the identification of any structure

hidden between data. It does not mean to identify the belonging of patterns to

specific classes, but to predict values of any feature attribute, by simply recalling it,

i.e. by associating it to a particular state or sample of the real problem.

It is evident that in the case of association we are dealing with very generic

problems, i.e. those requiring a precision less than in the classification case. In fact,

the complexity grows with the range of possible multiple values for feature

attributes, potentially causing a mismatch in the association results.

In practical terms, fixed percentage thresholds are given in order to reduce the

mismatch occurrence for different association rules, based on the experience on that

GPU Computing for
Machine Learning Algorithms

78

problem and related data. The representation of data for associative learning is thus

based on the labeling of features with non-numerical values or by alpha-numeric

coding.

Classification learning is often named simply “supervised” learning, because the

process to learn the right assignment of a label to a datum, representing its category

or “class”, is usually done by examples. Learning by examples stands for a training

scheme operating under supervision of any oracle, able to provide the correct,

already known, outcome for each of the training sample. And this outcome is

properly a class or category of the examples. Its representation depends on the

available Base of Knowledge (BoK) and on its intrinsic nature, but in most cases is

based on a series of numerical attributes, related to the extracted BoK, organized and

submitted in a homogeneous way.

The success of classification learning is usually evaluated by trying out the acquired

feature description on an independent set of data, having known output but never

submitted to the model before.

Slightly different from classification scheme is the prediction learning. In this case

the outcome consists of a numerical value instead of a class.

The numeric prediction is obviously related to a quantitative result, because is the

predicted value much more interesting than the structure of the concept behind the

numerical outcome.

Whenever there is no any class attribution, clustering learning is used to group data

that show natural similar features. Of course the challenge of a clustering

experiment is to find these clusters and assign input data to them. The data could be

GPU Computing for
Machine Learning Algorithms

79

given under the form of categorical/numerical tables and the success of a clustering

process could be evaluated in terms of human experience on the problem or a

posteriori by means of a second step of the experiment, in which a classification

learning process is applied in order to learn an intelligent mechanism on how new

data samples should be clustered.

In the wide variety of possible applications for ML, DM is of course one of the most

important, but also the most challenging. Users encounter as much problems as

massive is the data set to be investigated. To find hidden relationships between

multiple features in thousands of patterns is hard, especially by considering the

limited capacity of human brain to have a clear vision in a multiple than 3D

parameter space.

Artificial neural networks are one of the best examples of ML methods, inspired by

the human brain architecture and learning rules. Dealing with supervised learning,

these models need training patterns formed by feature-target couples. Indeed for

each given input pattern (list of features), there should be also given the

corresponding list of targets (one or more). We already called such a complete data

set as Base of Knowledge (BoK). With this data set, the network could be able to

learn the right association between input features and location of its output in the

parameter space. The network will be able, after this training process, to correctly

classify any pattern, even if not presented to the network in the training phase

(generalization).

One of the simplest models of supervised neural networks is the Perceptron

(Rosenblatt 1957), composed by a single output neuron and N input neurons. The

GPU Computing for
Machine Learning Algorithms

80

capabilities of this model are very limited, but it is a good starting point for more

advanced and complex variants of such network. The network learns by modifying

the weights to enforce right decisions and discourage those wrong. At each iteration

a new pattern of the training set is presented and the network calculates its output.

Main limit of such model is that it is able to correctly classify the input only if

classes are linearly separable (see Figure 15a). However the division between

classes is much more complex. A typical example is a problem (see Figure 15b),

where it is not possible to find a single split line for the two classes and the

Perceptron fails.

Figure 15 – correct (a) and wrong (b) separation of classes made by a

Perceptron

To overcome this problem it is needed to employ more complex classification

structures, organized on more than one computational layer (Cybenko 1989).

In order to be able to operate non-linear classification, i.e. to separate complex

regions, the solution is to extend the perceptron to the so-called Multi-Layer

Perceptron (MLP), a network composed by one or more hidden layers of neuron,

fully connected, between input and output layers (Figure 16).

GPU Computing for
Machine Learning Algorithms

81

Figure 16 – Regions recognized by a MLP with 0, 1, 2 hidden layers

The classical topology of MLP is shown in Figure. This kind of networks is able to

recognize and classify any type of topological region, having as downside a more

complex learning process. Moreover, the Heaviside function cannot be applied as

activation function, because it is not differentiable. An alternative is to use the

sigmoid function. In this case the activation values of output neurons become

differentiable functions of input values and hidden neuron weights.

The practice and expertise in the ML methods, such as MLP, are important factors,

formed through a long exercise within scientific experiments. In particular the speed

and effectiveness of the results strongly depend on these factors. Unfortunately there

are no magic ways to a priori indicate the best configuration of internal parameters,

involving network topology and learning algorithm, but a series of heuristics.

Figure 17 – Classical topology of a MLP with hidden neurons in white circles

GPU Computing for
Machine Learning Algorithms

82

Furthermore, if we define an error function as the Mean Square Error (MSE)

between expected and network output, we found that it is a differentiable function of

output and weights.

The learning process based on such rule is the so-called BackPropagation (BP),

because the computed error is back propagated in the network from output to input

layer (Rumelhart et al. 1986).

As shown, the BP learning rule tries to adapt weights in order to minimize the error

function E(w). For networks without hidden layers, the error function will be

squared and will assume a multi-dimensional parabolic shape, with only one

absolute minimum. But for a generic MLP, the error function will be much more

complex, with more than one minimum (local minima) in which the error gradient is

zero Figure).

In these last cases it is important to distinguish between absolute and local minima.

When, during the learning process, the error founds a local minimum, with the

above adaption rule, the error function will not move anymore, resulting in a wrong

(not absolute) minimization state.

There are basically two versions of the Descent Gradient Algorithm (hereinafter

DGA): online and batch.

In the online version, referred to the above algorithm, the weights are updated after

each input pattern presentation.

GPU Computing for
Machine Learning Algorithms

83

Figure 18 – typical behavior of error function during learning process

Figure 19 – The variation of weights on different error functions

In the batch version, the weights are updated after each presentation of the whole

training set.

Between the two approaches, the first is preferable if there is a high degree of

redundancy in the training set information, otherwise the second is the best.

Moreover, in all cases the descent gradient is not fast to converge. Fortunately there

exist several methods to overcome these limits. In particular, in the batch case it

results relatively easy to make DGA as a multi-threaded process, in which the

training data sets are split into equally large batches for each of the threads (Heaton

2009).

GPU Computing for
Machine Learning Algorithms

84

Both versions require that the learning rate is a priori defined in a static way. This is

another important point, because a high value of learning rate causes a more instable

convergence of the learning process (the error function jumps along the error surface

without convergence assurance). For a learning rate too small, the convergence will

result extremely slowly.

The good compromise is to gradually reduce, at each learning step, the value of the

learning rate (for example by simply following the law & = 1 (⁄ or by applying more

complex rules), obtaining a faster convergence of the algorithm (Jacobs 1988).

By using the standard DGA, the direction of each updating step is calculated through

the error descent gradient, while the length is determined by the learning rate. A

more sophisticated approach could be to move towards the negative direction of the

gradient (line search direction) not by a fixed length, but up to reach the minimum

of the function along that direction. This is possible by calculating the descent

gradient and analyzing it with the variation of the learning rate.

The problem of line search is in practice a single dimension minimization problem.

There exist many other methods to solve this problem. For example the parabolic

search of a minimum calculates the parabolic curve crossing pre-defined learning

rate points. The minimum d of the parabolic curve is a good approximation of the

minimum of E(λ) and it can be reached by considering the parabolic curve crossing

the fixed points with the lowest error values.

There are also the trust region based strategies to find a minimum of an error

function, which main concept is to iteratively growing or contracting the region of

the function by adjusting a quadratic model function which better approximates the

GPU Computing for
Machine Learning Algorithms

85

error function. In this sense this technique is considered dual to line search, because

it tries to find the best size of the region by preliminarily fixing the moving step (the

opposite of the line search strategy that always chooses the step direction before to

select the step size), (Celis et al. 1985).

Up to now we have supposed that the optimal search direction for the method based

on the line search is given at each step by the negative gradient. That’s not always

true!

If the minimization is done along the negative gradient, next search direction (the

new gradient) will be orthogonal to the previous one. By selecting further directions

equal to the negative gradient, there should be obtained some oscillations on the

error function that slow down the convergence process. The solution could be to

select further more directions such that the gradient component, parallel to the

previous search direction (that is zero), remains unchanged at each step.

In the ML based on supervised paradigm, there is nowadays a considerable interest

in techniques based on margin regularization (Baxter 2000). The concept derives

from the assumption that the distance (typically Euclidean distance) of an example

from the separating hyperplane is the margin of that example and the final goal is to

find the best margin of separation (classification) for the submitted data. Significant

examples include the Support Vector Machine (SVM), (Cortes et al. 1995), a

powerful classification tool that has gained its popularity and interest due to its

theoretical merits and successes in real applications (Burges 1998).

GPU Computing for
Machine Learning Algorithms

86

SVM were originally defined in order to classify two classes of objects linearly

separable. For each class SVM identify the hyperplane that maximize the margin of

separation (Figure 20).

In Figure 20 black dots are the first class, white dots the second class, the three lines

are three possible margins, it is obvious that H3 is not suitable for this problem, H1

separates the two class but it’s very near to some dots of the two class, H2 maximize

the distance from the dots and is the best separator.

Figure 20 – Parameter space separated by hyperplanes through SVM model

Another technique related with the supervised ML is the one including methods

called logic based algorithms. Main examples are decision trees or its derivation,

rule-based estimators.

We have already introduced decision trees in the previous sections. By dealing with

supervised learning, they try to classify patterns by sorting them on the base of their

feature values.

However they have some defects. First, the construction of optimal binary decision

trees is a well-known NP-complete problem (Hyafil et al. 1976), hence it requires

complex heuristics to overcome this limit. Second, for their nature decision trees are

GPU Computing for
Machine Learning Algorithms

87

univariate, i.e. they split the parameter space on a single feature at each node,

revealing inefficient in case of diagonal partitioning requirements. The solution is

hence to use alternative multivariate trees, usually obtained by the combination

between linear discriminant method and decision trees (Brodley et al. 1995).

As known, it is always possible to derive a rule-based estimator by a decision tree,

simply associating one tree path to a separated rule.

One positive aspect of a decision tree is of course its comprehensibility and ease of

use. It is intuitive enough to understand that a decision tree corresponds to a

hierarchy of tests done by simply making the data flowing through the tree branches

and taking output at its leaves (Kotsiantis 2007).

In the unsupervised case, the learning mechanism has something apparently magic.

The data analysis model appears a closed system, except for the input data. It never

interacts with external environment neither receives any kind of target outputs, but it

learns!

Behind this apparently mysterious behavior, we can observe that the unsupervised

learning consists in the internal re-organization of the input, based on the retrieved

correlations hidden into the data by some quantities of unknown noise contributions.

In a certain way, unsupervised learning can be interpreted as a self-adaptive

mechanism to find patterns in the data beyond what can be considered pure

unstructured noise (Gharamani 2004). Two important classic functional examples of

such learning type are clustering and dimensional reduction.

Almost all unsupervised methods may be considered strictly connected with

statistical and probabilistic issues. In this sense the final goal is to estimate a model

GPU Computing for
Machine Learning Algorithms

88

representing a probabilistic distribution of input data, conditioned by the previous

sequence of data submitted to the system. Obviously the simplest case is when the

ordering of the data sequence is irrelevant, because the variables are considered

independent.

Under these conditions we can make use of the classical Bayesian rule (Berger

1985) in which, given a certain model A, considered as an unknown probability

distribution over a data set S = {x1,…,xN}, the conditioned probability that the

model fits the data is:

*�+|,
 = -�.
-�/|.

-�/
 (2)

And the corresponding model distribution, representing the estimation of the model

output on new data can be expressed as:

*��|,
 = *��|+
*�+|,
 (3)

An unsupervised model based on such considerations can be applied in many

functional DM cases, such as classification, prediction, outlier detection and

certainly data parameter space dimensional reduction.

Up to now we are making an important assumption, that is the input data are

independent and distributed in an identical way. Although this is a very limiting

condition, unreasonable in many real world cases, where current and incoming

observed data are correlated with previous ones, it can be applied to time series

analysis.

GPU Computing for
Machine Learning Algorithms

89

Many other clustering techniques are developed, primarily in ML, that either are

used traditionally outside the DM community, or do not fit in previously outlined

categories. They are basically specialized for KDD (Knowledge Discovery in

Databases) and KDT (Knowledge Discovery in Text). There are relationships with

unsupervised learning and evolutionary methods (simulated annealing and genetic

algorithms). There is however the emerging field of constraint-based clustering

(Tung et al. 2001), that is influenced by requirements of real world DM applications.

Another frequently used technique in clustering is referred to the field of Artificial

Neural Networks (ANN), in particular the model Self-Organized Map (SOM),

(Kohonen 2007). SOM is very popular in many fields (such as vector quantization,

image segmentation and clustering) and in this context its analytical description can

be omitted, except for two important features: (i) SOM is based on the incremental

approach, by processing one-by-one all input patterns; (ii) it allows to map centroids

into 2D plane that provides for a quite simple visualization. In addition to SOM,

other ANN developments, such as Adaptive Resonance Theory (ART), (Carpenter et

al. 1991), or PPS have also relations with clustering.

4.4 The new generation of data mining infrastructures

As discussed in the previous chapter, the broad development and dissemination of

Web 2.0 technologies have dramatically changed the perspective of how to make

DM and analysis experiments, either from the user access and engineering design

points of view. The huge dimensions of data, the recently discovered relevance of

multi-disciplinary and cross correlation in modern DM and the advanced complexity

GPU Computing for
Machine Learning Algorithms

90

of ML methodologies have rapidly modified the requirements for applications and

services to be made available to virtual communities of users, in industry, social

networks, finance as well in all scientific and academic environments.

Such new requirements are indeed related with hardware computing infrastructures

together with software tools, applications and services:

• Computing time efficiency, high storage systems, distributed multi-core

processing farms and parallel programming: modern computing architectures,

such as cloud, grid, HPC (High Performance Computing), GPU (Graphics

Processing Unit) cannot be hosted by single user offices and require to

concentrate computing facilities in data centers, accessible to worldwide user

communities.

• The access to computing facilities must be as much as possible user-friendly, by

embedding to the end user, potentially not technically skilled, all internal

mechanisms and setup procedures;

• The remote access to data centers and analysis services must be asynchronous, in

order to avoid the need for the user to maintain open the connection sockets for a

potentially huge amount of time. It is in fact well known that massive data

processing experiments, based on ML, are time-consuming;

• Data mining with ML methods are in principle structured as workflows (for

example pipelines of data reduction and analysis in astrophysics), made by an

ordered sequence of conceptual steps (data preparation, training, validation, test),

one depending on each other. Any of the analysis and mining services must offer a

complete set of tools to perform all these operational steps. In particular they

should be able to offer scripting tools, to make custom setup and execution of

different scripts, composed by various ML experiments automatically sequenced

and ordered;

GPU Computing for
Machine Learning Algorithms

91

• Machine learning methods require a strong experience and both scientific and

technological knowledge on their internal setup and learning mechanisms. In

principle the end user should have an expert of ML techniques available during all

phases of the experiments. So far, in the absence of human experts, the remote

applications and services must guarantee the possibility to guide users through

simple and intuitive interfaces to all conceptual steps of the experiments;

• Multi-disciplinary data centers must be interoperable, i.e. all archives require an

high level of data format and access standardization in order to perform join and

cross correlation activities in a fast and efficient way, without constraining a pre-

treatment of data to obtain their uniformity and homogeneity;

• Massive data sets are often composed by GB or TB of data. It is unthinkable to

make repetitive data moving operation on the network in a fast and efficient way.

The use of metadata could represent a good compromise for any user who intends

to manipulate data and to submit them to ML services in a remote way. So far, the

available application frameworks must make available such mechanisms;

• The human machine as well as graphical user interfaces of remote data analysis

systems should guarantee the interoperability between their ML engines, by

making use of standards for algorithm description, setup and engineering. This

could permit an efficient sharing mechanism between different data warehouses,

avoiding replications of tools and confusion in the end users;

• In many scientific communities, users are accustomed to use their own algorithms

and tools, sometimes specifically created to solve limited problems. Such tools

were not originally designed by following programming standards or to be

executed and portable on cross platforms. Modern ML service infrastructures

should make available automatic plug-in features able to give to users the

GPU Computing for
Machine Learning Algorithms

92

possibility to integrate and execute their own scripts or algorithms on the remote

computing platforms.

The above list of requirements is not exhaustive, but is sufficient to clear the

important aspects related with what the modern virtual communities should expect

to take full advantages of available Information and Communication Technologies

(ICT) in the era of e-science.

Data mining with ML intrinsically contains so high levels of complexity and a wide

degree of multi-disciplinary generalization to be a good candidate as benchmark for

the new ICT solutions, being able to fully exploit its revolutionary features and

products.

Currently there are a lot of applications and services, related to DM with ML,

available in the world. Some of them were originally conceived for general purpose,

others specialized to treat problems for a specific discipline or science/social

community.

For example, DAMEWARE (Data Mining & Exploration Web Application

REsource) is a rich internet application, one of the main products made available

through the DAME international Program Collaboration. It provides a web browser

based front-end, able to configure DM experiments on massive data sets and to

execute them on a distributed computing infrastructure (cloud/grid hybrid platform),

hidden to the users. DAMEWARE offers the possibility to access different DM

functionalities (supervised classification, regression and clustering) implemented

with different ML methods (among them, traditional MLPs, Support Vector

Machines, Genetic Algorithms). Originally specialized and scientifically validated

GPU Computing for
Machine Learning Algorithms

93

on DM in Astrophysics, it can be used in a wide range of real problems and

disciplines, by offering a completely transparent architecture, a user friendly

interface, standards to ensure the long-term interoperability of data and the

possibility to seamlessly access a distributed computing infrastructure. It also makes

available an automatic tool to create user customable workflows and models,

plugged in the application engine. In order to effectively deal with MDS, DAME

offers asynchronous access to the infrastructure tools, thus allowing the running of

activity jobs and processes outside the scope of any particular web application

operation and without depending on the user connection status. The user, via a

simple web browser, can access the application resources and can keep track of his

jobs by recovering related information (partial/complete results) without having the

need to maintain open the communication socket. Furthermore its GUI has widgets

that make it interoperable with KNIME processing engine. The service is currently

available as a beta release and under completion and test for some crucial aspects

(experiment execution scheduling system, integration of new ML models, plug-in

procedure). The main limit is the inability to setup and execute custom scripting

procedures, constraining to manually setup and execute multiple ML experiments in

a sequential way. The DAME Program website hosts other web-based services and

resources for the astronomical virtual community, together with many documents

useful especially for novices of ML techniques and DM methodology.

GPU Computing for
Machine Learning Algorithms

94

4.5 Selected strategy

Another important category of supervised ML models and techniques, in some way

related with the Darwin’s evolution law, is known as evolutionary (or genetic)

algorithms, sometimes also defined as based on genetic programming (Michalewicz

et al. 1996).

These names however present some differences. What we can surely assert is that

Evolutionary or Genetic models are a category of algorithms that emulate the living

organism evolution law. In the Nature all species follow that law in order to adapt

their life style to the outdoor environment and to survive. In the ML paradigm this

kind of self-adaptive methods try to solve optimization problems.

The relationship is strong between them, because the surviving can be considered an

optimization problem as well.

The slight conceptual difference between evolutionary and genetic algorithms is that

the formers are problem-dependent, while the latters are very generic. This is also a

concept derived from the biologic models, in which all living species are commonly

driven by genetic laws, but present specific internal mechanisms to achieve their

proper evolution through population generations.

At the base of all evolutionary models there are some general concepts, present in

both biological and ML models:

• Individuals as set of genetic features (chromosomes composed by genes);

• Population of individuals evolving in parallel;

• Reproduction of individuals based on re-combination operators and on random

mutation;

GPU Computing for
Machine Learning Algorithms

95

• Selection of better individuals (solutions of the optimization problem) through

fitness operators;

These common features are easily assembled in a form of computational algorithms

and are demonstrated very effective by their success in the biological case. There

could be also proved that such genetic programming rules are able to solve

optimization (either minimization or maximization) problems, statistically

converging to the best solution (Mitchell 1998).

In order to be more precise, the question is: what we intend for optimization

problem solvable by genetic/evolutionary models?

Well, such problem must include some generic issues:

• Its solution depends on many parameters, to be evolved in strict combination

between them;

• It must be always an optimization problem (minimization or its dual,

maximization). This is easy to understand by thinking at the final goal of

evolution in Nature, i.e. optimization of species adaptation;

• The optimization evaluation function (fitness function in evolutionary jargon) is a

complex one, i.e. frequently it has not a closed mathematical expression. For

instance, sometimes it is given under the form of a simulation of a real physical

system;

• The problem has in principle unknown structure and complexity;

• The problem presents aspects or possible representations that could require a

parallel processing. Genetic algorithms are intrinsically parallel, at different

GPU Computing for
Machine Learning Algorithms

96

levels, from lowest, in which the population members can be created and/or

grown independently, to highest, where several independent populations can be

grown in parallel or genetic operators can be applied to various population

members in an independent way.

In all cases, genetic programming and evolutionary algorithms try always to mimic

the evolution in Nature. With such issue in mind, it is easy to deduce that the genetic

population corresponds to a set of possible optimization solutions to the given real

problem.

The experience on such systems reveals that genetic and evolutionary algorithms are

very generic, but if a specific algorithm could be created, it is very likely to be

effective in the problem solving.

4.5.1 Data Quality Enhancement with data mining

In the traditional DQ methodology, briefly touched in the previous chapter, the

statistical approach is usually employed for measuring the quality of data, in many

common cases with good results (for example financial, enterprise, medical

warehouses). But dealing with much more complex cases, especially in data

warehouses designated as repositories of high precision scientific experiment results

(like in the Euclid case), the traditional approach appears to be quite insufficient.

The major limit of statistical methods, when applied directly on data quality control,

is the fact that traditionally DQ modifies the data themselves (Farzi et al. 2010)

while for scientific data this needs to be avoided. Data Mining, on the contrary, is a

methodology for measuring the quality of data, preserving their intrinsic nature. DM

algorithms extract some knowledge that can be used to measure the quality of data,

GPU Computing for
Machine Learning Algorithms

97

with particular reference to the quality of input transactions and then, eventually flag

the data of poor quality.

A typical procedure to measure DQ of data transactions should be based on three

steps:

1. Extract all association rules, which depend on input transactions;

2. Select compatible association rules;

3. Add confidence factor of compatible rules as criteria of data quality of transaction.

There are two important challenging issues. First, the extraction of all association

rules needs a lot of time and next, in most cases there is no exact mathematical

formula for measuring data quality.

So far, a more effective DM approach to DQ should be alternative to find exact

deterministic or statistical formulas. Therefore, for us, the answer is in employing

methodologies derived from Machine Learning (ML) paradigms, such as (a) active

on-line learning, which addresses the issue of optimizing the combination and trade-

off of losses incurred during data acquisition; (b) associative reinforcement learning,

(Kaelbling 1994), connected with the predictive quality of the final hypothesis.

Moreover, one of the guidelines of our proposed approach is to conjugate these

machine learning paradigms with features coming from biological adaptive systems.

The key principles are to process information systems using a connectionist

approach to computation, in order to emulate the powerful correlation ability at the

base of the cognitive learning engine of human brain (Gould 2002), together with

the optimization process at the base of biological evolution (Darwin’s law).

GPU Computing for
Machine Learning Algorithms

98

Our experience in such methodology has produced the DAME14 (Data Mining &

Exploration) Program, which includes several projects, mostly connected with

Astrophysics, although spread into various of its scientific branches and sub-

domains. Data Mining is usually conceived as an application

(deterministic/stochastic algorithm) to extract unknown information from noisy data,

(Dunham 2002). This is basically true but in some way it is too much reductive with

respect to the wide range covered by mining concept domains. More precisely, in

DAME, data mining is intended as techniques of exploration on data, based on the

combination between parameter space filtering, machine learning and soft

computing techniques associated to a functional domain. In the data mining

scenario, the machine learning model choice should always be accompanied by the

functionality domain. To be more precise, some machine learning models can be

used in a same functionality domain, because it represents the functional context in

which it is performed the exploration of data.

It needs to be stressed that, for what raw images streamed by the experiment are

concerned, data quality would be based on the global and local properties of the

images themselves, as well as on some a –priori constraints. For instance, on

parameters, such as the average background counts, the filling factor of objects (i.e.

number of pixels above a given flux threshold) as a function of many internal and

external parameters (such as lim mag, galactic latitude, etc.). This implies the need

14 http://dame.dsf.unina.it/

GPU Computing for
Machine Learning Algorithms

99

for an intelligent, reliable and fast on the fly segmentation of the image such as, for

instance, that provided by the NExt-II software15.

From the technological point of view, the employment of state of the art web 2.0

technologies, allows the end user (i.e. the data centers) to be in the best condition to

interact with the DQ process by making use of a simple web browser.

The approach outlined above has three immediate advantages:

• DQ controls can be approached by remote, through homogeneous and interoperable

interfaces, federated whereas possible under VO standards.

• Different DQ models and algorithms available by remote web applications can be

tested by the end user (SDC) in a standard and intuitive way. In other words, the SDC

does not need to be particularly skilled with DM methodologies to create and

configure workflows on data;

• DM applications could be executed by remote cloud/grid frameworks, embedding all

the complex management issues of the distributed computing infrastructure.

However, another indirect positive issue for our approach arises by considering that,

in a massive data centric project like EDW, one of the unavoidable constraints is to

minimize data flow traffic and down/up-load operations from remote sites. DQ tools

should therefore be installed and maintained at the SDC.

It is worth to stress that this approach fits perfectly within the recently emerging area

of interest named DQM (Data Quality Mining). DQ uses information attributes as a

tool for assessing quality of data products. The goal of DQM is to employ data

mining methods in order to detect, quantify, explain and correct DQ deficiencies in

15 http://dame.dsf.unina.it/next.html

GPU Computing for
Machine Learning Algorithms

100

very large databases. For this reason there is a reciprocal advantage between the two

application fields (DQ is crucial for many applications of KDD, which on the other

side can improve DQ results).

4.5.2 Data Quality Mining and scalability issues

DQ and DQM are computing intensive and their computational cost grows quickly

with the size and complexity of the data to be analyzed. In what follows we shortly

describe how Graphic Processing Units (GPUs) could offer an effective and

inexpensive way to deal with such problem even in the framework of a mission as

complex as Euclid is.

In Euclid SGS warehouse the scientific quality control is particularly referred with

data and metadata related to both images and spectra. Most of the KDD techniques

based on machine learning that could directly be employed on such kind of data can

be considered naturally parallel in terms of their analysis computation.

As an example let us consider a Multi Objective Genetic Algorithm (MOGA), based

on the linkage between feature selections and association rules, that is one of the key

concepts in the DQ methodology. The main motivation for using GA in the

discovery of high-level prediction rules is that they perform a global search and cope

better with attribute interaction, often used in DM problems (Das et al. 2009).

Therefore a parallel GA further promotes the performance of computing,

particularly required on massive data warehouse quality control.

A traditional parallel computing environment is very difficult and expensive to set

up. This can be circumvented by recurring to graphics hardware, inexpensive, more

GPU Computing for
Machine Learning Algorithms

101

powerful, and perfectly comparable with other more complex HPC mainframes in

terms of computing power (many frameworks based on GPU architecture are

already included in the top 500 HPC worldwide supercomputer ranking16).

The DAME Program has already started the investigation on the design and

implementation of a hierarchical parallel genetic algorithm, implemented on new

technology based on multi-core Graphics Processing Unit (GPU) provided by

NVIDIA Company, by using the Compute Unified Device Architecture (CUDA)

parallel programming SDK. CUDA is a platform for massively parallel high-

performance computing on the company’s powerful GPUs (Zhang et al. 2009). At

its cores are three key abstractions: (a) a hierarchy of thread groups, (b) shared

memories, and (c) barrier synchronization that are simply exposed to the

programmer as a minimal set of language extensions. These abstractions provide

fine-grained data parallelism and thread parallelism, nested within coarse grained

data parallelism and task parallelism.

Figure 21 – GPU CUDA memory handling architecture

16 http://www.top500.org/

GPU Computing for
Machine Learning Algorithms

102

The amount of performance benefit an application will realize by running on CUDA

depends entirely on the extent to which it can be parallelized. As mentioned

previously, code that cannot be sufficiently parallelized should run on the host,

unless doing so would result in excessive transfers between host and device.

Amdahl’s law specifies the maximum speed-up that can be expected by parallelizing

portions of a serial program (Amdahl 1967). Essentially, it states that the maximum

speed-up (S) of a program is:

, = �
��%-
#�- 1⁄
 (4)

where P is the fraction of the total serial execution time taken by the portion of code

that can be parallelized and N is the number of processors over which the parallel

portion of the code runs.

The larger N is (that is, the greater the number of processors), the smaller the P/N

fraction. It can be simpler to view N as a very large number, which essentially

transforms the equation into ()PS −= 11 . For example, if ¾ of a program is

parallelized, the maximum speed-up over serial code is () 44
311 =−=S .

Moreover, effective bandwidth is calculated by timing specific program activities

and by knowing his equation how data is accessed by the program. To do so, we can

use the formula:

2 23(45267�89�8:; =	<�=> +=9
 10AB C (4D2B (5)

GPU Computing for
Machine Learning Algorithms

103

where the effective bandwidth is in units of GBps (Giga Byte per second), Br is the

number of bytes read per kernel, Bw is the number of bytes written per kernel, and

time is given in seconds.

For example, to compute the effective bandwidth of a 2048 x 2048 matrix copy, the

formula (5) could be used obtaining:
2 23(45267�89�8:; = <�2048H × 4 × 2
 10AB C (4D2B (6)

The number of elements is multiplied by the size of each element (4 bytes for a

float), multiplied by 2 (because of the read and write), divided by 109 to obtain GB

of memory transferred. This number is divided by the time in seconds to obtain

GBps.

In our vision such mix between software DM and ML techniques together with

hardware high performance at low cost distributed computation architecture, could

engage and maintain an adequate level of reliability and performance in the DQ

control during both the design and development stages of the Euclid Data

Warehouse.

GPU Computing for
Machine Learning Algorithms

104

5 Genetic Algorithms within CUDA parallel architect ure

Genetic Algorithms (GA) are methods inspired to natural evolution as described by

Darwin. They are powerful instruments to solve problems where parameter space is

not well defined to find best solution. They always ensure the convergence towards

the best solution, avoiding typical limits of other algorithms, such as local minima.

Figure 22 – Genetic Algorithms in the hierarchical search method taxonomy

GAME (Genetic Algorithm Mining Experiment) is a pure genetic algorithm

specially designed to solve supervised optimizations problems related with

regression or classification functionalities, scalable to efficiently manage Massive

Data Sets (MDS) and based on the usual genetic evolution methods (crossover,

genetic mutation, roulette/tournament, elitism).

GPU Computing for
Machine Learning Algorithms

105

GAME as a genetic algorithm needs the creation of chromosomes’ population

(genome), this means that we need an internal representation (encoding genes of the

chromosomes, normalization) and a fitness function able to evaluate the goodness of

a chromosome than other. This depends obviously from the problem examined and

hence from nature and the intrinsic characteristics of the dataset evaluated.

In order to give a level of abstraction able to make simple adapt the algorithm to the

specific problem, a family of polynomial developments was chosen. This

methodology makes the algorithm itself easily expandable, but this abstraction

requires a set of parameters that allows to fit the algorithm to the specific problem.

From an analytic point of view, a pattern, composed of N features contains an

amount of information correlated between the features corresponding to the target

value. Usually in a real scientific problem that correlation is “masked” from the

noise (both intrinsic to the phenomenon, and due to the acquisition system); but the

unknown correlation function can ever be approximated with a polynomial

sequence; degree and non-linearity of the chosen function determine the

approximation level, e.g. in the hybrid model GA+MLP, the polynomial sequence is

represented from the weights of the net and from the activation function of neurons;

hence the mathematical validity of the method is guaranteed and preserved.

The generic function of a polynomial sequence is based on these simple

considerations:

Given a generic dataset with N features and a target t, pat a generic input pattern of

the dataset,	JK(= � �,⋯ , 1 , (
 and g(x) a generic real function, the representation

GPU Computing for
Machine Learning Algorithms

106

of a generic feature fi of a generic pattern, with a polynomial sequence of degree d

is:

L� �
 ≅ KN + K�	O� �
 + ⋯+ K8	O8� �
 (7)

Hence, the k-th pattern (patk) with N features may be represented by:

PQ(�JK(
 ≅ ∑ L� �
 ≅ KN + ∑ ∑ KS	OS� �
8ST�1�T�1�T� (8)

Then target tk, concerning to pattern patk, can be used to evaluate the approximation

error of the input pattern to the expected value:

U = �(− PQ(�JK(

H (9)

If we generalize the expression (8) to an entire dataset, with NP patterns number (k

= 1, …, NP), at the end of the “forward” phase (batch) of the GA, we have NP

expressions (8) which represent the polynomial approximation of the dataset.

In order to evaluate the fitness of the patterns as extension of (9) Mean Square Error

(MSE) or Root Mean Square Error (RMSE) may be used:

W,U = ∑ �:X%YZ:�	7:X

[\]X^_ 1- (10)

`W,U = a∑ �:X%YZ:�	7:X

[\]X^_ 1- (11)

Then we define a GA with this characteristic:

GPU Computing for
Machine Learning Algorithms

107

• The expression (8) is the fitness function;

• The array (a0, …, aM) defines M genes of the generic chromosome (initially they are

generated random and normalized between -1 and +1);

• All the chromosomes have the same size (constrain from a classic GA);

• The expression (9) gives the standard error to evaluate the fitness level of the

chromosomes;

• The population (genome) is composed by a number of chromosomes imposed from

the choice of the function g(x) of the polynomial sequence.

About the last item we can say that this number is determined by the following

expression:

bcWdefYgY/Ygh/ = �" ∙ b
 + 1 (12)

where N is the number of features of the patterns and B is a multiplicative factor that

depends from the g(x) function, in the simplest case is just 1, but can arise to 3 or 4

in more complex cases.

A derivation of the Holland's theory (Holland 1975), states that the best solutions

may be found using a population of 20, up to 50, chromosomes. By using much

more chromosomes it doesn’t help the convergence of the GA, also dramatically

increasing the computational time.

GPU Computing for
Machine Learning Algorithms

108

The parameter B also influence the dimension of each chromosome (number of

genes):

bcWjh1h/ = �" ∙ =
 + 1 (13)

where d is the degree of the polynomial.

For example if we use the trigonometric polynomial sequence, given by the

following expression,

J��
 = KN + ∑ Kk cos�D	�
 +�kT� ∑ ok sin�D	�
�kT� (14)

and to have 2000 patterns, each one with 11 features, the expression for the single

(k-th) pattern, using (8) with degree 3, will be:

PQ(�JK(
 ≅ ∑ L� �
 ≅ KN + ∑ ∑ KS	3r��s	 �
tST����T����T� + ∑ ∑ oS 	�4u�s	 �
tST����T� (15)

for k = 1,…,2000.

In the (15) we have two groups of coefficients (sin and cosine), B will be 2, so the

number of chromosomes for each generation will be:

bcWdefYgY/Ygh/ = �2 ∙ 11
 + 1 = 23

Each chromosome will be composed by a number of genes given from (13):

bcWjh1h/ = �2 ∙ 3
 + 1 = 7

Hence the generic genome (population at a generic evolution stage), will be

composed by 23 chromosomes, each one with 7 genes [a0, a1, a2, a3, b1, b2, b3],

with each single gene (coefficient of the polynomial) in the range x−1,+1y and

initially random generated.

GPU Computing for
Machine Learning Algorithms

109

By evaluating the goodness of a solution through MSE or RMSE metrics, sometimes

it may happen that a better solution in terms of MSE is a worse solution for the

model, for example if we have a simple crispy classification problem with two

patterns (class types 0 and 1).

As an example, if the solutions are, respectively, 0.49 for the class 0 and 0.51 for the

class 1, the efficiency is 100% (i.e. each pattern is correctly classified), with a MSE

= 0.24. But a solution of 0 for the class 0 and 0.49 for the class 1 (efficiency of

50%), gives back a MSE = 0.13 and consequently the model will prefer the second

solution, although with a lower efficiency.

In order to circumvent this problem, we decide to implement in GAME the so-called

convergence tube.

Despite its name, its formulation is quite simple: for a given radius R the error

within R is placed equal to 0 so that the equation (9) becomes:

if Ko�	�(− PQ(�JK(

H > ` → U = �(− PQ(�JK(

H

if Ko�	�(− PQ(�JK(

H ≤ ` → U = 0 (16)

With the previous example, using R = 0.5, in the first case we have a MSE = 0,

while in the second case MSE = 0.13, recognizing the first solution better than the

second one and indeed revealing much better a correct trend according the efficiency

of the algorithm.

GPU Computing for
Machine Learning Algorithms

110

5.1 GPU Design Model

To better address the GPU-based design starting from the serial implementation of

the application, we choose to use an ad hoc software development methodology, for

instance APOD (Assess, Parallelize, Optimize, and Deploy)(NVIDIA Corp. 2011).

APOD design cycle aims at quickly identify the portions of code that could take

more easily the advantages and benefits of GPU acceleration, and begin to exploit

the speedups resulting in production as fast as possible. APOD is a cyclical process:

initial speedups can be achieved, tested, and deployed quickly, at which point the

cycle can start over to identify further optimization opportunities.

Figure 23 - APOD

GPU Computing for
Machine Learning Algorithms

111

5.1.1 Assess

The first step is to evaluate the multi-core application code to identify the parts

responsible for most of the execution time. To identify the critical points and start to

draw up a list of candidates for parallelization, the developers can use profiler tools.

These bottlenecks are evaluated, de facto starting to investigate on parallelizable

GPU acceleration. An upper limit of performance improvement can be estimated

considering requirements and constraints, and by applying Amdahl's and

Gustafson’s laws (Gustafson 1988).

Gustafson’s Law states that the problem size scales with the number of processors.

Practically, for Gustafson the maximum speedup S of a program is:

 , = b + �1 − *
�1 − b
	

where P is the fraction of the total serial execution time taken by the portion of code

that can be parallelized and N is the number of processors over which the parallel

portion of the code runs.

5.1.2 Parallelize

Once identified the hotspots and having established the theoretical speedup

achievable, we need to parallelize the code. By exposing the parallelism to improve

performance and simply maintain the code of sequential applications, we are able to

ensure also the maximum parallel throughput on GPU CUDA-capable. This could

be as simple as adding a few preprocessor directives, such as OpenMP as

GPU Computing for
Machine Learning Algorithms

112

OpenACC, or it can be done by calling an existing GPU-optimized library such as

cuBLAS, cuFFT, or Thrust.

Specifically, Thrust (Bell N. et al. 2010) is a parallel C++ template library like C++

STL (Standard Template Library) (Stepanov et al. 1995), it provides a rich

collection of data parallel primitives such as scan, sort, and reduce, which can be

composed together to implement complex algorithms with concise, readable source

code. Thrust is implemented entirely within CUDA C/C++ and maintains

interoperability with the rest of the CUDA ecosystem. The native interoperability

with CUDA C is a powerful feature. Interoperability ensures that Thrust always

complements CUDA C and that a Thrust plus CUDA C combination is never worse

than either Thrust or CUDA C alone.

The Thrust library provides two vector containers: host_vector stored in host

memory and device_vector lives in device memory and like the vector container in

the C++ STL, both are generic containers that can be resized dynamically.

In Listing 2 acts on the vector containers using generate, sort, and copy algorithms.

In this example, the iterators h_vec.begin() and h_vec.end() can be thought

of as a pair of int pointers. Together the pair defines a range of integers of size

h_vec.end() - h_vec.begin() .

GPU Computing for
Machine Learning Algorithms

113

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

int main(void)
{
 // generate 16M random numbers on the host
 thrust::host_vector<int> h_vec(1 << 24);
 thrust::generate(h_vec.begin(), h_vec.end(), ran d);

 // transfer data to the device
 thrust::device_vector<int> d_vec = h_vec;

 // sort data on the device
 thrust::sort(d_vec.begin(), d_vec.end());

 // transfer data back to host
 thrust::copy(d_vec.begin(), d_vec.end(), h_vec.b egin());

 return 0;
}

Listing 2 - Simple sort example using Thrust

Note that even though the computation implied by the call to the sort algorithm

suggests one or more CUDA kernel launches, the programmer has not specified a

launch configuration. Thrust’s interface abstracts these details. The choice of

performance-sensitive variables such as grid and block size, the details of memory

management, and even the choice of sorting algorithm are left to the library

implementations.

5.1.3 Optimize

After the parallelization step is complete, we can move to optimize the outcome to

improve performance. As well APOD, optimization is an iterative process (identify

an opportunity for optimization, apply and test optimization, verify the speedup

achieved, and repeat), which means that it is not necessary to spend large amounts of

time trying all possible optimization strategies. Instead, strategies can be applied

GPU Computing for
Machine Learning Algorithms

114

incrementally and using profiling tools can come in handy once again for guiding

this process. Performance optimization is based on:

• Maximizing parallel execution;

• Optimizing memory usage to achieve maximum memory bandwidth;

• Optimizing instruction usage to achieve maximum instruction throughput.

Maximizing parallel execution starts with structuring the algorithm in order to

expose as much "data parallelism" as possible. Once the parallelism of the algorithm

has been exposed, should be mapped to the hardware as efficiently as possible. This

is usually done by carefully choosing the running configuration of each kernel

launch and maximizing competition between host and the device.

Optimizing memory usage starts by minimizing the host-to-device data transfers

because they have much lower bandwidth than the device-to-device transfers.

Sometimes, the best memory optimization could be simply to avoid any transfer of

data by recalculating them whenever needed.

As for optimizing instruction usage, the use of arithmetic instructions that have low

throughput should be avoided. This suggests trading precision for speed when it

does not affect the end result, such as using single precision instead of double

precision. Finally, particular attention must be paid to control flow instructions due

to the SIMT (Single Instruction Multiple Thread) nature of the device.

5.1.4 Deploy

After completed an acceleration cycle, we can compare the result with the original

implementation. Before tackling other critical points, the current partially

GPU Computing for
Machine Learning Algorithms

115

parallelized implementation is deployed. This allows us to profit from the

improvements as fast as possible (the speed increase may be partial, but it is still

valid).

With each generation of NVIDIA processors, new features are added to the GPU

that CUDA can leverage. Consequently, it’s important to understand the

characteristics of the architecture. The computing capability describes the features of

the hardware and reflects the set of instructions supported by the device as well as

other specifications, such as the maximum number of threads per block and the

number of registers per multiprocessor. Higher computing capability versions are

backward compatible.

When in doubt about the computing capability of the hardware that will be present at

runtime, it is best to assume a computing capability of 1.0 or 1.3, depending on the

required double-precision arithmetic.

5.2 Multi-core Design Description

In a GA each element (called chromosome) has its DNA, in the form of a vector of

genes, representing a potential solution to the problem.

GPU Computing for
Machine Learning Algorithms

116

Figure 24 – GAME serial (multi-core) version class diagram

In particular, by referring to the class diagram of Figure 24, the crucial

implementing aspects are:

the class Chromosome handles its own stack array vector<double> DNA with all

genes and the stack array vector<double> outputData ; which includes for

each chromosome the vector of outputs for all input patterns. It must be taken into

account that at the moment the program can execute experiments related to one-

output (one-class or crispy) classification and one-output regression;

the class Population handles the stack array vector<Chromosome*> popv ; that

is a matrix with rows corresponding to the number of chromosomes and columns

corresponding to the vector DNA of each chromosome;

the class GASControl, at an higher level, handles the object Population *P , and

the stack matrices related to input and target patterns, respectively,

GPU Computing for
Machine Learning Algorithms

117

vector<vector<double> > inputData ; and vector<vector<double> >

targetData ;

for the class Population, the most important methods are the constructor,

GASControl::GasControl , which initializes the population and the method

GASControl::next , which implements the population evolution during training;

Through several cycles, the population of chromosomes, originally created from a

random generation (typically following the normal distribution), is replaced at each

step by a new one obtained by applying genetic operators, trying to evolve it

towards best population (solution). The DNA is usually a solution to a problem,

codified (normalized) in order to permit an easier application of genetic operators.

Typical representations used are the binary code or the values in [-1, 1] for each

element (gene) of a chromosome. But sometimes, a normalization cannot be applied,

depending on the problem topic area.

How a GA can evolve? Well, at the first stage, an initial random population is

created.

There are available three types of random generation criteria:

• RANDOM: it generates pseudo-random values in [-1, +1];

• GRANDOM: it generates random values following the normal distribution in [-1, +1];

• DRANDOM: it generates pseudo-random values in [0, 1];

Then its chromosomes are evaluated in terms of their qualification to solve a

specific problem, whose initial solutions are the chromosomes of the first random

population. The evaluation is made by a specified fitness function. This operator

GPU Computing for
Machine Learning Algorithms

118

assigns a score to each chromosome. The best scored is the best solution for the

current population. The choice of the best fitness function is one of the crucial

design steps of a GA.

After the calculation of fitness operator for all chromosome of a generation, next

step is the evolution (reproduction) of the population. The reproduction is done by

using typical genetic operators, such as crossover, random mutation, whose common

scope is to introduce genetic variety inside the original population, during the

generation evolution. In practice, the reproduction is done by selecting stronger

chromosomes and by killing others. But how to select them?

Obviously, the selection cannot be done randomly, otherwise the population will not

evolve towards better solutions. The selection is done applying a well fixed fitness

function.

GPU Computing for
Machine Learning Algorithms

119

Figure 25 – Schematic block diagram for the execution flow of a GA

As mentioned above, the choice of the evaluation method to look for the best

candidates to be reproduced over the generations of chromosomes, the so-called

fitness function, is a crucial step in the GA design.

There is a large variety of possible fitness functions. One of the simplest is to codify

chromosomes in an convenient way, such as BCD binary code, and then to compare

a target value through its difference with the sum of half-groups of chromosomes.

In the present project, the idea is to use GA to solve supervised one-class

classification and regression problems, typically related to an high-complexity

parameter space where the background analytic function is not known, except for a

GPU Computing for
Machine Learning Algorithms

120

limited number of couples of input-target values, representing solutions to a physical

category of phenomena.

In such cases, we want to train a GA to recognize the correct output to be assigned

to other input samples extracted by real world cases. A typical case is to classify

astronomical objects based on some solution samples (Base of Knowledge or BoK)

and to learn to recognize new values extracted by further observations.

To accomplish such behavior we designed a function (a polynomial expansion) to

combine input patterns. The coefficients of these polynomials are the chromosome

genes. The goal is to find the best chromosome so that the related polynomial

expansion is able to approximate the right solutions to input pattern

classification/regression.

So far, the fitness function for such representation consists of the error, obtained as

absolute difference between the polynomial output and the target value for each

pattern. Due to the fact that we are interested to find the minimum value of the error,

the fitness is calculated as the opposite of the error (i.e. 1-error) and the problem is

reduced to find the chromosome achieving the maximum value of fitness. At each

evolution step (batch update of population) there are the following options, that can

be chosen by user at configuration step:

• error function type: MSE (Mean Square Error), TMSE (Threshold MSE)

or RMSE (Root MSE);

• selection type: the selection function to be used to extract some chromosomes as

candidates to participate to the tournament, in order to be used to make evolution in

the population. It is possible to choose between RANKING and ROULETTE type. In

the RANKING case the winner chromosome is the one with the highest fitness. In

GPU Computing for
Machine Learning Algorithms

121

the ROULETTE the winner chromosome is selected with the highest probability,

calculated as the ratio between its fitness and the sum of all chromosome fitness

values inside the current population. It is called Roulette, because in the selection all

chromosomes participate like in a classical roulette wheel random selection. In all the

two cases above, the number of candidates chromosomes is randomly extracted from

the current population (the number of candidates is one of the user selected

parameters). After the tournament, the winner chromosome is used together with a

new one, randomly created from scratch, to apply genetic operators (crossover and/or

mutation).

• Another mechanism for evolving the population is the Elitism . It consists of a user

selection of the number of copies of winner chromosome at current population, to be

maintained as it is in the next generation, in order to preserve the best fitness obtained

up to the current evolution step. This value should be taken low in order to don't

waste members with worst fitness, that in any case, can play an important role during

the entire evolution process. In fact we recall that the members with worst fitness play

a not irrelevant role in the population evolution, because their "genetic material" can

and must be subject of useful mesh inside the population during evolution, by

applying genetic operators, such as crossover.

There are two genetic operators. They are used to mesh the genes between selected

chromosomes (by one of the above tournament selection criteria).

Crossover happens when two chromosomes "break" themselves at the same point

(inside the string coding the gene vector) and "exchange" their segments. For

example, let's suppose to maintain the same fitness function of the example in the

previous section:

(1) 00100101 (2 + 5 = 7) with fitness 15 - 7 = 8

(2) 00010111 (1 + 7 = 8) with fitness 15 - 8 = 7

GPU Computing for
Machine Learning Algorithms

122

Let's apply the crossover at index 3:

(1) 00100 101 � 00100 111 � 00100111 (2 + 7 = 9) with fitness 15 - 9 = 6

(2) 00010 111 � 00010 101 � 00010101 (1 + 5 = 6) with fitness 15 - 6 = 9

In the example, the chromosome son (1) has been optimized in terms of their fitness

and it is a better solution than its fathers. The crossover implementation is

at Population::crossover .

As all genetic operators, the crossover is not always applied in the genetic

recombination, but with an associated probability (parameter

Population::crossover_rate). While the breaking point inside the

chromosome where to apply crossover is selected randomly (int crosspoint =

rand()length ;).

The mutation operator makes a single change in a gene of a chromosome, replacing

it with a new value (Population::Mutation). As for crossover case, mutation is

not always applied, but with a certain probability.

As mentioned above, the GA is implemented by a hierarchy of classes. The atomic

element in this case is the class Chromosome, representing a single member of a

population. It identifies a single vector of genes (coefficient of the polynomial

expansion). A family of chromosomes is grouped in the class Population,

representing a set of solutions (polynomial coefficients) racing in the selection of the

best solution for the current problem identified by input patterns (user dataset).

The object of class Chromosome is identified by the vector of values in [-1, +1].

GPU Computing for
Machine Learning Algorithms

123

The constructor (Chromosome::Chromosome) creates a chromosome from scratch,

assigning random values.

Inside this class there are various methods to manage genes. Main attributes are the

vector DNA (the genes), fitness and the vector outputData (all output values for each

input pattern related to the specific chromosome).

The class Population combines a set of chromosomes, plus a series of methods

useful to perform crossover, reproduction etc...

The constructor is very simple. It takes as input the number of chromosomes of the

population and set the population and chromosome sizes, by following formulas

described above.

The method Population::crossover implements the genetic operator, already

described above.

The method Population::Mutation implements the genetic operator, already

described above.

The method Population::getChromosomeFromRankTournament implements

the already mentioned RANKING selection criterion, providing the winner

chromosome (candidate with best fitness, i.e. with lowest training error).

The method Population::getChromosomeFromRouletteTournament

implements the already mentioned ROULETTE selection criterion, providing the

winner chromosome (candidate with best fitness probability).

GPU Computing for
Machine Learning Algorithms

124

Figure 26 – Roulette selection technique

The methods Population::best and Population::worst are used to extract,

respectively, winner and the worst candidate inside the current population, useful for

the ordering of the chromosome vector.

Finally the overloading of the operator [] is a special mechanism useful to directly

access to the members of population as being elements of a generic array, i.e. the

same as for the specific method Population::getMember .

The reproduction, starting from the above array is done by the

method Population::next , that applies genetic operators to obtain a new

population. In this method it is important to mention the elitism mechanism. The

elitism paradigm tries to maintain alive one or more copies of the best chromosome

in the next population. This is done to prevent possible genetic modification of

winner chromosome, causing its death during the evolution process, through several

genetic recombinations of DNAs. The parameter (user defined) related to this elitism

GPU Computing for
Machine Learning Algorithms

125

mechanism defines the number of copies of the winner to be transmitted unchanged

in the next population.

We recall also that the algorithm performs a batch error evaluation (i.e. by

considering the error for each chromosome as calculated on the entire pattern set).

The project GAME is organized in functional portions, each one devoted to a

specific use case to be executed.

The foreseen use cases are related to a typical machine learning model execution

modes:

• TRAIN: the first mandatory case, consisting into submitting training datasets in order

to build and store the best GA population, where best is in terms of its problem

solving capability;

• TEST: case to be used in order to verify and validate the learning performance of the

trained GA;

• RUN: the normal execution mode after training and validation;

• FULL: a workflow case, including in cascade TRAIN and TEST cases;

The choice of the current use case is done by user at setup time from external

configuration files.

Also the functionality can be chosen by user. At the moment it is possible to run

classification or regression types.

Depending on different use cases and experiments, the user should be able to

perform a setup of many parameters and input/output files, without need to re-

GPU Computing for
Machine Learning Algorithms

126

compile the code. In order to implement this requirement, a set of input/output files

has been designed.

5.2.1 Input Files

As input to the program (depending on specific use case) the user must provide

following setup files:

• input dataset (input and/or desired output data)

• specific experiment (training/test/run) configuration file

• specific use case (train/test/full) configuration file

5.2.2 Input Dataset

The input dataset represents the input patterns to be processed for both training

and/or test phases. These data must be submitted as an ASCII-file, with columns

separated by spaces and without header. Each pattern must be filled in as a row

vector. All patterns must be of the same size.

Depending on the specific use case, the input dataset should be made of:

The training and test dataset must consist of an ASCII file with first columns

referred to input features, followed by (usually) two columns representing the targets

(desired output) associated to each feature pattern.

GPU Computing for
Machine Learning Algorithms

127

EXAMPLE:

24.4753 -0.1139 1.822 51.29 0 1

22.6316 0.8065 5.002 80.45 1 0

22.4708 -0.3912 -7.425 5.66 0 1

23.9033 8.397 14.79 88.5 1 0

The above list is an example of an input dataset valid for training/test use cases,

made of 4 patterns, with four feature columns, followed by two target columns.

In the other cases, run use case, only the feature columns must be present in the

input file.

EXAMPLE:

24.4753 -0.1139 1.822 51.29

22.6316 0.8065 5.002 80.45

22.4708 -0.3912 -7.425 5.66

23.9033 8.397 14.79 88.5

This is the run use case version of the same train/test example, where the targets

columns were removed.

5.2.3 Specific use case (training/test/run) configuration file

This group of files is related to the specific type of experiment the user wants to

execute. There are three types of files: training, test and run setup.

GPU Computing for
Machine Learning Algorithms

128

In case of a training experiment, the user must provide an ASCII-coded file, with a

specific format 38 rows x 1 column, whose meaning is the following:

• row 1 : <string> header label

• row 2 : <string> name of input dataset file

• row 3 : <string> header label

• row 4 : <string> initial population generation mode. It must be one of the following

strings:

RANDOM � pseudo-random generation in [-1, +1];

DRANDOM � pseudo-random generation in [0, +1];

GRANDOM � gaussian random generation in [-1, +1];

NORANDOM � not random, but loaded from an external file (useful in case

of training resume experiment);

• row 5 : <string> header label

• row 6 : <string> "none" or name of trained population file (depending on row 4)

• row 7 : <string> header label

• row 8 : <real> number of input features

• row 9 : <string> header label

• row 10: <integer> number of target columns

• row 11: <string> header label

• row 12: <real> order (max degree) of polynomial expansion

• row 13: <string> header label

• row 14: <string> type of polynomial expansion as combination for genes

It can assume the following values:

CL_POLY_TRIGO � trigonometric polynomial expansion (sum of sin and cosin);

• row 15: <string> header label

• row 16: <string> type of error calculation function. It can be:

MSE � Mean Square Error

TMSE � Thresholded Mean Square Error

RMSE � Root Mean Square Error

• row 17: <string> header label

GPU Computing for
Machine Learning Algorithms

129

• row 18: <real> value of error rounded threshold (for TMSE only)

• row 19: <string> header label

• row 20: <string> type of selection function for evolving population. It can be:

ROULETTE � uniform probability on entire population fitness function

RANKING � absolute fitness rank of chromosomes

• row 21: <string> header label

• row 22: <real> error threshold (one of the stopping criteria)

• row 23: <string> header label

• row 24: <integer> max number of iterations (one of the stopping criteria)

• row 25: <string> header label

• row 26: <integer> frequency (number of iterations) of error reporting on stdout

• row 27: <string> header label

• row 28: <real> crossover (genetic operator) occurrence rate (range [0, 1])

• row 29: <string> header label

• row 30: <real> mutation (genetic operator) occurrence rate (range [0, 1])

• row 31: <string> header label

• row 32: <integer> number of chromosomes candidates to selection tournament

• row 33: <string> header label

• row 34: <integer> elitism factor (copies of winner into next generation)

• row 35: <string> header label

• row 36: <string> name of file where to store trained population

• row 37: <string> header label

• row 38: <string> name of output error log file

• row 39: <string> header label

• row 40: <string> name of GA output file

In case of test/run experiment, the user must provide an ASCII-coded file, with a

specific format 8 rows x 1 column, whose meaning is the following:

• row 1 : <string> header label

GPU Computing for
Machine Learning Algorithms

130

• row 2 : <string> name of input test/run dataset file

• row 3 : <string> header label

• row 4 : <string> name of trained population file

• row 5 : <string> header label

• row 6 : <string> name of internal parameters file (fixed during training)

• row 7 : <string> header label

• row 8 : <string> name of test output file

5.2.4 Use case (train/test/run/full) configuration file

This group of files is related to the specific use case the user wants to launch. This is

the main configuration file passed to the object Params through the constructor

(class GASParams).

There are four types of files: train, test, run and full setup.

In case of TRAIN , TEST or RUN use cases, the ASCII-coded configuration file

must contain the following information:

• row 1 : <string> header label

• row 2 : <string> functionality for the current experiment. It can be:

CLASSIFICATION � classification (one-class) type

REGRESSION � regression type

• row 3 : <string> header label

• row 4 : <string> name of use case. It can be:

TRAIN � training use case type

TEST � test use case type

RUN � run use case

• row 5 : <string> header label

• row 6 : <string> name of input parameter setup file

In the FULL use case, the file has two more rows:

GPU Computing for
Machine Learning Algorithms

131

• row 1 : <string> header label

• row 2 : <string> functionality for the current experiment. It can be:

CLASSIFICATION � classification (one-class) type

REGRESSION � regression type

• row 3 : <string> header label

• row 4 : <string> name of use case. It must be:

FULL � training+test use case type

• row 5 : <string> header label

• row 6 : <string> name of TRAIN input parameter setup file

• row 7 : <string> header label

• row 8 : <string> name of TEST input parameter setup file

5.2.5 Output Files

The output from the program strongly depends on specific use case).

Remember that for FULL use case, the outputs will be the sum of files obtained

from training and test cases.

Common to all use cases (TRAIN, TEST, RUN) the output files are:

• GAME_<use case>_output.txt � the training data output file;

• GAME_<use case>.log � normal log status of the executed job;

• verbose_debug.log � a verbose log status report (the name is fixed);

Specific to TRAIN and TEST will be present also the following files;

• <functionality>_GAME_<use case>_confmat.txt � the confusion matrix for

statistical results on the output;

• GAME_<use case>_error.txt � the list of errors at several cycles;

• internal_targets.txt � intermediate file (for internal use only);

GPU Computing for
Machine Learning Algorithms

132

Specific only to TRAIN will be present two more files;

• the trained population file;

• classification_trained_GAME_internal_params.txt � the list of used parameters as

chosen by user. This file must be used for test/run cases;

GPU Computing for
Machine Learning Algorithms

133

5.3 Parallel Requirement Analysis

In all execution modes (use case), GAME exploits the polyTrigo function,

consisting in a polynomial expansion in terms of sum of sines and cosines.

Specifically in the Training use case, corresponding to the GA building and

consolidation phase, the polyTrigo() is used at each iteration as the

transformation function applied to each chromosome to obtain the output on the

problem input dataset, and indirectly also to evaluate the fitness of each

chromosome. It is indeed one of the critical aspects of the serial algorithm to be

investigated during the parallelization design process.

Moreover, after having calculated the fitness function for all genetic population

chromosomes, this information must be back-propagated to evaluate and evolving

the genetic population (by using the selected genetic operators). This back and forth

procedure must be replicated as many times as it is the training iteration number or

the learning error threshold, both decided and imposed by the user at setup time of

any experiment.

The direct consequence of the above issues is that the training use case takes much

more execution time than the others and therefore is the one we are going to

optimize. The key computational steps in this calculation loop are

1. generate initial population of chromosomes random.

2. calculate the fitness functions to find and order the best chromosomes in the

population

3. evaluate the stop criteria (error or number of iteration)

4. stop or use the genetic evolution methods to evolve the population and goto 2

GPU Computing for
Machine Learning Algorithms

134

Figure 27- GA flow parallel specializations

Main design aspect approaching the software architecture analysis for the GPU is

the partition of work: i.e. which work should be done on the CPU vs. the GPU.

As we can see in Figure 27, we have identified as time consuming critical parts, and

hence potential tasks to be executed on the GPU, the generation of random

population and the calculation of the fitness functions of chromosomes. For instance

we focused the attention on these tasks as better candidates to exploit the data

parallelism on the GPU.

In fact, the key principle is that we need to perform the same

instruction simultaneously on as much data as possible. In random generation of

population, the number of elements involved is never extremely large but it may

GPU Computing for
Machine Learning Algorithms

135

occur with an high frequency. This is because also during the population evolution

loop a variable number of chromosomes are randomly generated to replace older

individuals. To overcome this problem we may generate a large number of

chromosomes randomly una tantum, by drawing elements from these whenever

required. On the contrary, the evaluation of fitness functions involves all the input

data, which is assumed to be massive datasets, so it already has an intrinsic data-

parallelism.

5.4 GPU-based Development Description

5.4.1 Assess

Since CUDA programming involves code running concurrently on a host with one

or more CPUs and one or more CUDA-enabled GPU devices where the devices

have a dramatically different design from the hosts, it is important to keep in mind

that these differences affect application performance to use CUDA effectively. To

better exploit the resources, we have to use host and device together where the

sequential work is done on the host and parallel work on the device. Which parts to

run on the device? The device is designed for exploit massive data parallelism. This

typically involves arithmetic operations on large datasets where the same operation

can be performed on all dataset items.

To generate an application profile, we used Microsoft Visual Profiler which is the

profiler that came with Microsoft Visual Studio 2010.

GPU Computing for
Machine Learning Algorithms

136

Figure 28 - Visual Profiler discover a Hotspot

In Figure 28, we can see that the function polyTrigo() (excluding its child

functions) takes about three-quarters of the total execution time of the application

while the total including child functions amounts to about 7/8 of total time

execution. This will be our first candidate for parallelization.

It is worth noting that if other functions had taken a significant portion of total

execution time, even if parallelizing these functions would increase our speedup, we

would opted for parallelizing these functions in a later step because APOD is a

cyclical process.

The benefits that can be achieved depend on the extent to which code can be

parallelized. The code that cannot be well parallelized should be run on the host,

unless that by doing so would lead to excessive host-to-device transfers.

Having analyzed the application profile, we apply either Amdahl’s or Gustafson’s

Law to estimate an upper limit of the speedup achievable.

GPU Computing for
Machine Learning Algorithms

137

5.4.2 Parallelize

Once we have located a hotspot in our application’s profile assessment and

determined that custom code is the best approach, we can use Thrust library to

expose the parallelism in that portion of our code as a call to an external function.

We can then launch this external function onto the GPU and retrieve the results

without requiring major rewrites to the rest of our application.

The function polyTrigo() was previously identified as candidate for

parallelization and using Microsoft Visual Profiler we can check which of its

statements is CPU time consuming.

Figure 29 - polyTrigo instructions profile

Analyzing the instruction:

ret+=v[j]*cos(j*input[i])+v[j+poly_degree]*sin(j*in put[i])

where v[j] is a vector containing DNA of a chromosome and input[i] is a

vector containing a row of input dataset.

GPU Computing for
Machine Learning Algorithms

138

Noting that while the vector v[] is continually evolving, input[] (the elements of

the input dataset) are being used in calculation of ret at each iteration but they are

never altered, we rewrite the function by calculating in advance the sums of sines

and cosines, storing the results in two vectors and then use them in the function

polyTrigo() at each iteration.

This brings huge benefits because we calculate trigonometric functions, which are

those time consuming, only once instead of at every iteration and exploit the

parallelism on large amount of data because it assumes that we have large input

datasets.

In Listing 3 we can see how the elements of vectors are calculated using Thrust

struct sinFunctor {

 __host__ __device__
 double operator()(thrust::tuple<double, double> t) {

 return sin(thrust::get < 0 > (t) * thrust::get < 1 > (t));
 }
};

struct cosFunctor {

 __host__ __device__
 double operator()(thrust::tuple<double,double > t) {

 return cos(thrust::get < 0 > (t) * thrust::get < 1 > (t));
 }
};

…

thrust::transform
 (thrust::make_zip_iterator
 (thrust::make_tuple(data.begin(),index.begin())),
 thrust::make_zip_iterator
 (thrust::make_tuple(data.end(),index.end())),
 tmpS.begin(),
 sinFunctor());
double s = reduce(tmpS.begin(),tmpS.end());

GPU Computing for
Machine Learning Algorithms

139

thrust::transform
 (thrust::make_zip_iterator
 (thrust::make_tuple(data.begin(),index.begin())),
 thrust::make_zip_iterator
 (thrust::make_tuple(data.end(),index.end())),
 tmpC.begin,
 cosFunctor());
double c = reduce(tmpC.begin(),tmpC.end());
…

Listing 3 – First parallelization

5.4.3 Optimize

Thrust’s native CUDA C interoperability is a powerful feature. Interoperability

ensures that Thrust always complements CUDA C and that a Thrust plus CUDA C

combination is never worse than either Thrust or CUDA C alone. Indeed, while it

may be possible to write whole parallel applications entirely with Thrust functions,

it is often valuable to implement domain-specific functionality directly in CUDA C.

The level of abstraction targeted by native CUDA C affords programmers fine-

grained control over the precise mapping of computational resources to a particular

problem. Programming at this level provides developers the flexibility to implement

specialized algorithms. Interoperability also facilitates an iterative optimization

strategy: (1) quickly prototype a parallel application entirely in Thrust, (2) identify

the application’s hot spots, and (3) write more specialized algorithms in CUDA C

and optimize as necessary.

So, to further improve the speedup it is possible to develop some algorithms in

CUDA C by exploiting the interoperability, but we have skipped this step, by

preferring a Thrust code optimization rather than a rewriting in CUDA. In brief, at

the cost of lower speedup we gain rapid development and a better code readability.

GPU Computing for
Machine Learning Algorithms

140

There are three high-level optimization techniques that programmers may employ to

yield significant performance speedups when using Thrust.

1. Fusion: In computations with low arithmetic intensity, the ratio of calculations per

memory access, are constrained by the available memory bandwidth and do not fully

exploits the GPU. One technique for increasing the computational intensity of an

algorithm is to fuse multiple pipeline stages together into a single one.

for (int i = 0; i < N; i++)
 U[i] = F(X[i],Y[i],Z[i]);

for (int i = 0; i < N; i++)
 V[i] = G(X[i],Y[i],Z[i]);

�

for (int i = 0; i < N; i++)
{
 U[i] = F(X[i],Y[i],Z[i]);
 V[i] = G(X[i],Y[i],Z[i]);
}

Listing 4 - Fusing Loops example

The simplest form of kernel fusion is scalar function composition.

for (int i = 0; i < N; i++)
 Y[i] = F(X[i]); (y=f(x))

for (int i = 0; i < N; i++)
 sum += Y[i]; (z=g(y))

 �

for (int i = 0; i < N; i++)
 sum += F(X[i]); (z=g(f(x)))

Listing 5 - Scalar Function Composition

In Thrust a better approach is to fuse the functions into a single operation O� ��

and halve the number of memory transactions. Unless f and g are computationally

expensive operations, the fused implementation will run approximately twice as fast

as the first approach.

Fusing a transformation with other algorithms is a worthwhile optimization. Thrust

provides transform iterator which allows transformations to be fused with any

algorithm. Indeed, transform_reduce is simply a convenience wrapper for the

appropriate combination of transform_iterator and reduce.

GPU Computing for
Machine Learning Algorithms

141

2. Structure of Arrays (SoA): An alternative way to improve memory efficiency is to

ensure that all memory accesses benefit from coalescing, since coalesced memory

access patterns are considerably faster than non-coalesced transactions.

The most common violation of the memory coalescing rules arises when using an

Array of Structures (AoS) data layout. An alternative to the AoS layout is the SoA

approach, where the components of each struct are stored in separate arrays. The

advantage of the SoA method is that regular access to its components of a given

vector is coalesceable. The problem with SoA is that there is nothing to logically

encapsulate the members of each element into a single entity.

The zip_iterator takes a number of iterators and zip them together into a virtual

range of tuples. Note that zip_iterator is used for both input and output ranges,

transparently packing the underlying scalar ranges into tuples and then unpacking the

tuples into the scalar ranges.

3. Implicit Sequences: the use of implicit ranges, i.e., ranges whose values are defined

programmatically and not stored anywhere in memory. Thrust provides

counting_iterator , which acts like an explicit range of values but does not carry

any overhead. Specifically, when counting iterator is dereferenced it generates the

appropriate value “on the fly” and yields that value to the caller.

GPU Computing for
Machine Learning Algorithms

142

typedef thrust::tuple<double, double> Tuple2;
// return the couple (cos(j*x), sin(j*x))
struct sincosFunctor {
 int deg;

 __host__ __device__
 tupleFunctor(int _deg) : deg(_deg) {
 }

 template <typename Tuple >
 __host__ __device__
 Tuple2 operator()(Tuple t) {
 int j= (thrust::get < 1 > (t) % deg) + 1;
 // Fusing Loops
 double c = cos(thrust::get < 0 > (t) * j);
 double s = sin(thrust::get < 0 > (t) * j);
 return Tuple2(c, s);
 }
};

…
Tuple2 result;
// fusion of transform with reduce algorithm
// (scalar function composition)
result = thrust::transform_reduce
 // SoA
 (thrust::make_zip_iterator
 (thrust::make_tuple
 // implicit sequence instead of stored v ector
 (data.begin(),thrust::counting_iterator<int>(1))),
 thrust::make_zip_iterator
 (thrust::make_tuple
 (data.end(), thrust::counting_iterator<int>(my Col))),
 thrust::make_zip_iterator
 (thrust::make_tuple
 (tmpC.begin(), tmpS.begin())),
 sincosFunctor(poly_degree));
…

Listing 6 - Appling Transformations Optimizations

In Listing 6 has shown the optimized version of the code in Listing 3

GPU Computing for
Machine Learning Algorithms

143

5.4.4 Deploy

Results obtained using double-precision arithmetic will frequently differ from the

same operation performed via single-precision arithmetic due to the greater

precision of the former and due to rounding issues. Devices of compute capability

1.3 and higher provide native support for double-precision floating-point values.

This means that whenever doubles are used, use at least the --arch=sm_13 option on

the nvcc command line;

So, paying in terms of backward compatibility with old GPUs, we target to devices

with computing capability of 1.3 and higher, given the importance of double

precision in scientific computing.

GPU Computing for
Machine Learning Algorithms

144

6 Test results and performances

At this stage the CPU version of GAME, an optimized version of the serial

algorithm (hereinafter Opt), where the parallelism is explained, and the final version

for GPU (hereinafter ELGA) have been compared basically by measuring their

performance in terms of execution speed. Initially, the tests have been organized by

distinguishing between classification and regression functional modes. By analyzing

early trials, however, it resulted that the performance growth was virtually achieved

in both cases.

6.1 Metrics Definition

All data in the graphs refer to the average of five executions of the same experiment.

It has served to mediate the various workloads about the CPUs and for the GPU to

reduce the effect of an unexpected bias, a sort of transient from 4 to 6 seconds

before the start of the first experiment run.

To measure the increase of performance, the speed, i.e. the ratio between the

execution time of the serial version and the parallel one, has been calculated.

6.2 Comparison between Multi-core and GPU architectures

The performance of each use case was evaluated on several hardware platforms.

The input datasets were selected to be:

GPU Computing for
Machine Learning Algorithms

145

• representative for problems both in regression and classification;

• simulation data that researchers often work with;

• to exercise the limits of our algorithms, particularly in the case of the GPU.

We compared our production GPU code with a CPU implementation of the same

algorithm. However, the CPU implementation’s serial structure limited its

computation to a single core.

The benchmarks were run on a 2.0 GHz Intel Core i7 2630QM quad core CPU

running 64-bit Windows 7 Home Premium SP1. The CPU code was compiled using

the Microsoft® C/C++ Optimizing Compiler version 16.00 and GPU benchmarks

were performed using the NVIDIA CUDA programming toolkit version 4.1 running

on several generations of NVIDIA GPUs GeForce GT540M.

6.3 Classification test

First of all we detail the results for a classification problem. Here we intend

classification as defined in the case (a) described in section 4.2.

The input dataset chosen for classification is named GCSearch, a real dataset that

refers to the following (Brescia et al. 2011b).

The scientific problem which is used here as a testbed for data mining applications is

the study of GC populations in external galaxies. This topic is of interest to many

astrophysical fields: from cosmology, to the evolution of stellar systems, to the

formation and evolution of binary systems.

The study of Globular Clusters populations in external galaxies requires the use of

wide-field, multi-band photometry. In fact GCs in galaxies more than a few Mpc

GPU Computing for
Machine Learning Algorithms

146

away, appear as unresolved sources in ground-based astronomical images and are

thus hardly distinguishable from background galaxies, leading to severe

contamination problems. For such reason they are traditionally selected based on

source color and magnitude.

However, in order to minimize contamination and to measure GC properties, such as

sizes and structural parameters (core radius, concentration, binary formation rates)

high-resolution data are required as well, which are only available through the use of

space facilities (i.e. Hubble Space Telescope, HST).

The dataset used in this experiment consists in wide field HST observations of the

giant elliptical NGC1399 in the Fornax cluster. This galaxy represents an ideal test

case since, due to its distance (20 Mpc), it is possible to cover a large fraction of its

GC system with a limited number of observations. Furthermore at this distance GC

are only marginally resolved even by HST, allowing to verify our experiment in a

worst-case scenario. This dataset was used to study the GC-LMXB connection and

the structural properties of the GC population.

The optical data were taken with the HST Advanced Camera for Surveys (ACS,

program GO-10129), in the F606W filter, with integration time of 2108 seconds for

each field. The observations were arranged in a 3x3 ACS mosaic, and combined into

a single image using the MultiDrizzle routine. The final scale of the images is

0.03\arcsec/pix, providing Nyquist sampling of the ACS PSF. The field of view of

the ACS mosaic covers ~100 square arcmin, extending out to a projected

galactocentric distance of 55 kpc. The source catalog was generated with SExtractor,

requiring a minimum area of 20 pixels. The NGC1399 region covered by our HST

GPU Computing for
Machine Learning Algorithms

147

mosaic, has no complete color coverage. In this experiment we will make use of two

ancillary multi-wavelength datasets: archival HST g-z observations, which cover the

very central region of the galaxy (10% of the sample), and ground based

photometry. The latter is only available for 14% of our sources, and due to

background light contamination, is very incomplete close to the galaxy center. In

total 2740 sources of our catalog have multi-band photometry, Figure 30.

Figure 30 – The field of view (FOV) covered by the 3x3 HST/ACS mosaic in the
F606W band. The central field, with a different orientation, shows the region

covered by previous archival ACS observations in g and z bands.

The dataset file used consists of 2100 rows (input patterns) and 11 columns

(features), 9 as input and last two as class targets (class labels, respectively, 0 for not

GC and 1 for GC objects).

As execution parameters were chosen combinations of:

• max number of iterations: 1000, 2000, 4000, 10000, 20000 and 40000;

GPU Computing for
Machine Learning Algorithms

148

• order (max degree) of polynomial expansion: 1, 2, 4 and 8;

The other parameters remain unchanged for all test and they are setted as follow:

• Random mode for initial population: GRANDOM, generates random values

following the normal distribution in [-1, +1].

• type of error function (fitness): Threshold Mean Square Error (TMSE).

• error threshold: 0.001 for Regression and 0.49 for Classification.

• selection type criterion: both RANKING and ROULETTE, types of selection function

for evolving population.

• Error threshold: 0.001, used as a stopping criteria.

• Crossover rate: 0.9, occurrence rate of crossover genetic operator.

• Mutation rate: 0.2, occurrence rate of mutation genetic operator

• Number of tournament chromosomes: 4, number of chromosomes candidates to

selection tournament.

• Elitism rate: 2, number of copies of winner chromosome into next generation.

GPU Computing for
Machine Learning Algorithms

149

6.3.1 Results

In this section we presented several graphs and tables which demonstrate the

expected speed performance variation between the different computing

architectures.

Figure 31 – Execution time comparison with degree=1

Figure 32 – Execution Time comparison with degree=2

1

10

100

1000

10000

1000 11000 21000 31000 41000

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

Max number of iterations

polynomial degree = 1

serial

Opt

GPU

1

10

100

1000

10000

1000 11000 21000 31000 41000

E
x

e
cu

ti
o

n
 t

im
e

 (
se

c)

Max number of iterations

polynomial degree = 2

serial

Opt

GPU

Commento [MB1]: Da aggiornare
grafico

Commento [MB2]: Da aggiornare
grafico

GPU Computing for
Machine Learning Algorithms

150

Figure 33 - Execution Time comparison with degree=4

Figure 34 - Execution Time comparison with degree=8

The trends are immediately obvious from previous graphs. The execution time

increases always in a linear way with the number of iterations fixed the polynomial

1

10

100

1000

10000

100000

1000 11000 21000 31000 41000

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

Max number of iterations

polynomial degree = 4

serial

Opt

GPU

1

10

100

1000

10000

100000

1000 11000 21000 31000 41000

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

Max number of iterations

polynomial degree = 8

serial

Opt

GPU

Commento [MB3]: Da aggiornare
grafico

Commento [MB4]: Da aggiornare
grafico

GPU Computing for
Machine Learning Algorithms

151

degree. This is what we expected since the algorithm repeats the same operations at

each iteration.

Figure 35 - Speedup comparison

In Figure 35, the speedup increases with a proportional factor of about 3 with

increase of the maximum polynomial degree. This is because the GPU model

requires a large number of genes, and so a greater degree, to be elaborate at the same

time for effective speedup. This is typical for GPU algorithms, especially those

relying on data parallelism.

Speedup

degree vs. Serial step vs. Opt step

1 8x 6x

2 23x 2.9 16x 2.7
4 66x 2.9 45x 2.8
8 200x 3.0 125x 2.8

Table 3 - Speed compared against CPU

0

50

100

150

200

250

0 2 4 6 8 10

S
p

e
e

d
u

p
 (

x
)

polynomial degree

serial vs GPU

opt vs GPU

GPU Computing for
Machine Learning Algorithms

152

The table lists results for the average speed in a range of iteration from 1000 to

40000 intended to show scaling performance for a very computationally demanding

test case. Results come from comparison of parallel version against the initial

version of the program (serial) and the optimized serial algorithm (Opt.).

The algorithm exploiting the data parallelism is as more powerful, as much data are

simultaneously processed. As previously mentioned, an increase of maximum

degree in the polynomial expansion leads to an increase in the number of genes and

consequently to a larger population matrix. This may explain the upward trend in

speedup shown in Table 3.

The GPU algorithm outperforms the CPU performance by a factor ranging from 8x

to 200x in the first case and a range from 6x to 125x in the second one, enabling

intensive use of the algorithm that were previously impossible to be achieved with a

CPU.

6.4 Regression test

This section is dedicated to describe the results for a regression problem. Here we

intend regression as defined in section 4.2.

The input dataset chosen for regression was constrained to be compliant with the

sample selected for classification. Compliant means to maintain the same number of

patterns (dataset rows) and features (dataset columns), in order to make both cases

comparable in terms of speed performance evaluation.

In order to achieve this goal, we slightly modified the dataset used for classification,

by adapting it to have same number of patterns and 11 columns, by assigning,

respectively, first 10 columns as input features and the last one as the regression

GPU Computing for
Machine Learning Algorithms

153

target. The final scope of the problem was indeed to train the GA to learn the hidden

correlation between the 10 features and the target one. Remember that all columns

of original dataset were intrinsically correlated by the extraction of parameters from

the reduced astronomical catalogue.

Of course, also the default GA parameters were maintained unchanged in respect of

the classification test.

6.4.1 Results

As theoretically expected, by the choice of compliant datasets for classification and

regression cases, the speed performances and comparisons show perfectly identical

results and trends as already shown in the classification test report.

So far, we omit here to report the graphs and tables, because exactly the same of the

previous ones, already shown in section 6.3.1.

Moreover, the perfectly analogous results for classification and regression functional

cases demonstrate the consistency of the implementation for the three different

computing architectures.

GPU Computing for
Machine Learning Algorithms

154

7 Conclusions and future developments

7.1 Conclusions

The original work of this thesis has touched on various topics. First of all, it was

investigated the state of the art computing technologies, in order to choose the one

best suited to our problem and later a multi-purpose genetic algorithm implemented

with GPGPU / CUDA parallel computing technology has been designed and

developed. The model comes from the machine paradigm of supervised learning,

addressing both the problems of classification and regression applied on massive

data sets. The model was derived from a serial implementation named GAME,

deployed on the DAME Program hybrid distributed infrastructure and already

scientifically tested and validated on astrophysics massive data sets problems with

successful results (Brescia et al. 2011b).

Since genetic algorithms are inherently parallel, the parallel computing paradigm

has provided an exploit of the internal training features of the model, permitting a

strong optimization in terms of processing performances.

We described our effort to adapt our genetic algorithm for general purpose on GPU.

We showed how this algorithm can be redesigned to efficiently use Thrust, the

vendor-provided library routines. We discussed the efficiency and computational

GPU Computing for
Machine Learning Algorithms

155

costs of various components involved that are present in the algorithm. Several

benchmark results were shown and the final test simulations were performed for

Regression and Classification use.

The use of CUDA translates into a 75x average speedup. Clearly, we have been

successful at eliminating the largest bottleneck in the CPU code. Although a

speedup of up to 200X over a modern CPU is impressive, it ignores the larger

picture of use a Genetic Algorithm as a whole. In any real-world the dataset can be

very large (those we have previously called Massive Data Sets) and

this requires greater attention to GPU memory management, in terms of scheduling

and data transfers host-to-device and vice versa.

Moreover, the identical results for classification and regression functional cases,

based also taking into account the constraints to maintain the structure of datasets

perfectly compliant in both cases, demonstrate the consistency of the

implementation for the three different computing architectures.

7.2 Future Work

We presented our experimental implementation of parallel Genetic Algorithm on

GPUs. In our future development we are investigating possible optimizations.

The next step will be:

• Moving the formation of the population matrix and its evolution in place on the GPU,

this approach has the potential to significantly reduce the number of operations in the

core computation, but at the cost of higher memory usage.

• Exploring more improvement by mixing Thrust and CUDA C code, that should allow

a modest speedup justifying development efforts at a lower level.

GPU Computing for
Machine Learning Algorithms

156

• Use of new features available on NVIDIA’s Fermi architecture, such as faster

atomics and more robust thread synchronization and multi GPUs capability.

After these optimizations, we plan to use this method in the ESA mission EUCLID

for data quality.

A second direction for further work is the implementation of following Machine

Learning algorithms, inspired by the models provided by DAME: Support Vector

Machine (SVM), Multilayer Perceptron (MLP) and Probabilistic Principal Surfaces

(PPS).

GPU Computing for
Machine Learning Algorithms

157

8 Acknowledgments

Desidero ringraziare il Professor Giorgio Ventre per avermi dato la possibilità di

svolgere questo lavoro di tesi ed il Professor Antonio Pescapè per la disponibilità e

la cortesia avute nei miei confronti.

Un grazie particolare al Dottor Massimo Brescia senza il quale forse questa tesi non

avrebbe visto luce, e al Professor Giuseppe Longo per essere stato mentore e amico

in tutti questi anni.

Grazie per averci creduto.

GPU Computing for
Machine Learning Algorithms

158

9 References

Aha, W.; Kibler, D.; Albert, M.K., Instance-Based Learning Algorithms. 1991, Machine

Learning, Kluwer Academic Publishers, Boston MA, USA, Vol. 6, pp.37-66.

Aho, A. V.; Hopcroft, J. E.; Ullman, J. D., Data Structures and Algorithms. Addison-Wesley,

1983. ISBN 0-201-00023-7.

Aldrich, J., R.A. Fisher and the making of maximum likelihood 1912–1922. 1997, Statistical

Science 12 (3), pp. 162–176.

Amdahl, G.; Validity of the Single Processor Approach to Achieving Large-Scale Computing

Capabilities. 1967, AFIPS Conference Proceedings (30): 483–485.

American National Standards Institute, et al. 1977, American National Standard Code for

Information Interchange. The Institute.

Armstrong, J. S., Principles of forecasting: a handbook for researchers and practitioners,

2001, Kluwer Academic Publishers, Norwell, Massachusetts, ISBN 0-7923-7930-6.

Baum, E.; Wilczek, F., Supervised learning of probability distributions by neural networks.

1988, Neural Information Processing Systems, Anderson, D.Z. ed., American Institute of

Physics, New York, pp. 52-61.

Baum, L.E.; Petrie, T., Statistical inference for probabilistic functions of finite state Markov

chains, 1966. Annals of Mathematical Statistics, Vol. 37, Nr.6.

GPU Computing for
Machine Learning Algorithms

159

Bell, N.; Hoberock J., Thrust: A Productivity-Oriented Library for CUDA. 2011, GPU

Computing Gems, Jade Edition, Hwu W., pp. 359-371, Morgan Kaufmann,

ISBN: 0123859638.Berger, J. O., Statistical decision theory and Bayesian Analysis.

1985, 2nd ed., Springer-Verlag, New York.

Berkhin, P. 2002, Survey Of Clustering Data Mining Techniques, Technical Report, Accrue

Software Inc.

Bijaoui, A.; Rué, F., A Multiscale Vision Model, 1995, Signal Processing Nr. 46, Vol. 345.

Bishop, C.M., Pattern Recognition and Machine Learning, 2006, Springer ISBN 0-387-

31073-8.

Borne, K.D., AstroInformatics: A 21st Century Approach to Astronomy. 2009, in Astro2010

Decadal Survey State of the Profession, arXiv: 0909.3892v1.

Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.; Yergeau, F.; Cowan, J., XML 1.1

(Second Edition). 2006, W3C Recommendation, http://www.w3.org/TR/2006/REC-

xml11-20060816/

Breiman, L.; Friedman, J.; Ohlsen, R.; Stone, C., Classification and regression trees. 1984,

Wadsworth, Belmont, CA.

Brescia, M.; Longo, G.; Pasian, F., Nuclear Instruments and Methods in Physics Research

2010, Section A, Elsevier Science, Vol. 623, Issue 2, pp. 845-849, ISSN 0168-9002.

Brescia, M.; Longo, G., Euclid Consortium Scientific Ground Segment Data Quality Mining.

2011, Technical Communication to Euclid Consortium, document code EUCL-OAC-

SGS-TN-00085.

GPU Computing for
Machine Learning Algorithms

160

Brescia, M.; Cavuoti, S.; Paolillo, M.; Longo, G.; Puzia, T.; The Detection of Globular

Clusters in galaxies as a data mining problem. 2011b, accepted by MNRAS (in press), 11

pages, electronically available at arXiv: 1110.2144v1.

Brodley, C.E.; Utgoff, P.E., Multivariate Decision trees. 1995, Journal of Machine Learning,

Kluwer Academic Publishers, Hingham, MA, USA, Vol. 19, Issue 1, pp. 45-77.

Broyden, C. G., The convergence of a class of double-rank minimization algorithms.

1970, Journal of the Institute of Mathematics and Its Applications, Vol. 6, pp. 76–90.

Burges, C.J.C., A tutorial on support vector machines for pattern recognition. 1998, Data

Mining and Knowledge Discovery, Vol. 2, pp. 955-974.

Cabena, P.; Hadjinian, P.; Stadler, R.; Verhees, J. & Zanasi, A., Discovering Data Mining:

From Concepts to Implementation. 1998, Prentice Hall.

Carpenter, G.A.; Grossberg, S.; Rosen, D.B, Fuzzy art: Fast stable learning and

categorization of analog patterns by an adaptive resonance system. 1991, Neural

Networks, Vol. 4, pp. 759-771.

Celis, M.; Dennis, J. E.; Tapia, R. A., A trust region strategy for nonlinear equality

constrained optimization. 1985, in Numerical Optimization, P. Boggs, R. Byrd and R.

Schnabel eds, SIAM, Philadelphia USA, pp. 71–82.

Chang, C. C., Lin, C. J., Training Support Vector Classifiers: Theory and algorithms, 2001.

In Neural Computation, Vol. 13, pp. 2119-2147.

Chang, C. C., Lin, C. J., LIBSVM: a library for support vector machines. 2011, ACM

Transactions on Intelligent Systems and Technology, Vol. 2, pp. 1-27.

Chang, K.; Ghosh, J., Unified model for probabilistic principal surfaces, IEEE Transactions

on Pattern Analysis and Machine Intelligence, Publisher: IEEE, 2001, Vol. 23, pp. 22-41.

GPU Computing for
Machine Learning Algorithms

161

Clark, L. A; Pregibon, D., Tree-based models, 1992, In Statistical Models in Statistics, eds J.

M. Chambers and T. J. Hastie, Chapter 9. New York, Chapman & Hall.

Collica R. S. 2007, CRM Segmentation and Clustering Using SAS Enterprise Miner, SAS

Publishing, p. 290.

Cortes, C.; Vapnik, V., Support-Vector Networks. 1995, Machine Learning, Vol. 20.

Cybenko, G., Approximation by superpositions of a sigmoidal function. 1989, Mathematics

of Control, Signals, and Systems, Vol. 2, pp. 303–314.

Das, S.; Saha, B.; Data Quality Mining using Genetic Algorithm. 2009, (IJCSS) Volume (3):

Issue (2), 105-112.

Duda, R.O., Hart, P.E., Stork, D.G., 2001, Pattern Classification, A Wiley-Interscience

Publication, New York USA, ISBN 0-471-05669-3.

Dunham, M.; Data Mining Introductory and Advanced Topics. 2002, Prentice-Hall.

Ebert, D.S.; Kenton Musgrave, F.; Peachey, D.; Perlin, K.; Worley, S.; Texturing and

modeling: a procedural approach. 2000, AP Professional, ISBN 0-12-228730-4.

Fabbiano, G.; Calzetti, D.; Carilli, C.; Djorgovski, S. G.; Recommendations of the VAO-

Science Council, 2010, arXiv:1006.2168v1 [astro-ph.IM].

Farzi, S.; Dastjerdi, A.; Data Quality Measurement using Data Mining. 2010, IJCTE Vol. 2,

No. 1, 1793-8201.

Fletcher, R., A New Approach to Variable Metric Algorithms. 1970, Computer Journal, Vol.

13, pp. 317–322.

Forgy, E., Cluster analysis of multivariate data: Efficiency versus interpretability of

classification. 1965, Biometrics, Vol. 21, pp. 768-780.

GPU Computing for
Machine Learning Algorithms

162

Foster, I.; Kesselman, C.; The grid: blueprint for a new computing infrastructure. 1998, The

Elsevier Series in Grid Computing, ISBN 1-55860-933-4.

Foster, I.; Zhao, Y.; Raicu, I.; Lu, S.; Cloud Computing and Grid Computing 360-Degree

Compared. 2008, IEEE Grid Computing Environments (GCE08), co-located with

IEEE/ACM Supercomputing 2008.

Galton, F. 1877, Typical laws of heredity, Nature 15.

Garofalo, M.; Seminario di tecnologie Web. 2010, Corso di Tecnologie Astronomiche, Corso

di Laurea Magistrale in Astrofisica e Scienze dello Spazio, Facoltà di Scienze, Università

degli Studi di Napoli Federico II, Anno Accademico 2009/10.

Goldfarb, D., A Family of Variable Metric Updates Derived by Variational Means.

1970, Mathematics of Computation, Vol. 24, pp. 23–26.

Golub, G.H.; Ye, Q., Inexact Preconditioned Conjugate Gradient Method with Inner-Outer

Iteration. 1999, SIAM Journal of Scientific Computation, Vol. 21, pp. 1305-1320.

Genova, F.; Rixon, G.; Ochsenbein, F.; Page, C.G., Interoperability of archives in the VO,

Proceedings of SPIE Conference Virtual Observatories, Alexander S. Szalay Editor, Vol.

4846, pp.20-26, 2002.

Ghahramani, Z., Unsupervised Learning. Bousquet, O., Raetsch, G. and von Luxburg, U.

(eds), 2004, Advanced Lectures on Machine Learning, Springer-Verlag, LNAI 3176.

Goldstein, M., Swing model filtering using filter objects to reinterpret data and state models,

2001, available at http://www-106.ibm.com/developerworks/java/library/j-filters/.

Gould, S.J.; The Structure of Evolutionary Theory, 2002, Harvard University Press.

Guenther, R.; Radebaugh, J., Understanding Metadata. 2004, National Information Standards

Organization (NISO) Press, Bethesda MD, USA.

GPU Computing for
Machine Learning Algorithms

163

Gustafson J. L.; Reevaluating Amdahl's Law. 1988, Communications of the ACM, 31(5),

pp. 532-533.

Guyon, I.; Elisseeff, A., 2003, An Introduction to Variable and Feature Selection, Journal of

Machine Learning Research, Vol. 3, pp. 1157-1182.

Guyon, I.; Elisseeff, A. In Feature Extraction, Foundations and Applications, Guyon, I.;

Gunn, S.; Nikravesh, M.; Zadeh, L. A. Editors; Series: Studies in Fuzziness and Soft

Computing, Springer, 2006, Vol. 207.

Han, J.; Kamber, M., Data Mining. 2001, Morgan Kaufmann Publishers.

Harris, M.J.; Real-Time Cloud Simulation and Rendering. 2003, University of North Carolina

Technical Report #TR03-040.

Hartigan, J.; Wong, M., Algorithm AS136: A k-means clustering algorithm. 1979, Applied

Statistics, Vol. 28, pp. 100-108.

Hastie, T.; Tibshirani, R.; Friedman, J.; Franklin, J., The elements of statistical learning: data

mining, inference and prediction. The Mathematical Intelligencer, 2005, Springer New

York, Vol. 27, pp. 83-85.

Haykin, S., 1998, Neural Networks - A Comprehensive Foundation (2nd. ed.). Prentice-Hall,

Upper Saddle River, NJ USA.

Heaton, J., Applying Multithreading to Resilient Propagation and Backpropagation. 2009,

Heaton Research Inc., http://www.heatonresearch.com/encog/mprop/compare.html.

Hey, T.; Tansley, S.; Tolle, K., The Fourth Paradigm: Data-Intensive Scientific Discovery;

ISBN-10: 0982544200, 2009; Microsoft Research, Redmond Washington, USA, 2009.

GPU Computing for
Machine Learning Algorithms

164

Hoberock, J.; N. Bell, Thrust: A parallel template library, 2010, available on line at

http://code.google.com/ p/thrust/Holland, J.; Adaptation in Natural and Artificial

Systems; The MIT Press, 1975.

Hyafil, L.; Rivest, R.L., Constructing Optimal Binary Decision Trees is NP-complete.

1976, Information Processing Letters, Vol. 5, pp. 15–17.

Inmon, B., Building the Data Warehouse. 1992. John Wiley and Sons. ISBN 0471569607.

Jacobs, R.A., Increased rates of convergence through learning rate adaptation. 1988, Neural

Networks, Vol. 1, pp. 295–307.

Jain, A.; Dubes, R., Algorithms for Clustering Data. 1988, Prentice-Hall, Englewood Cliffs,

NJ.

Jain, A.K.; Murty, M.N.; Flynn, P.J., Data Clustering: A Review, 1999, ACM Computing

Surveys, Vol. 31, No. 3, pp. 264-323.

Kaelbling, A.; Associative reinforcement learning: Functions in k-dnf. 1994, Machine

Learning, 15(3):279–298.

Kaufman, L.; Rousseeuw, P., Finding Groups in Data: An Introduction to Cluster Analysis.

1990, John Wiley and Sons, New York, NY.

Kirk, D. B.; Hwu, W.; Programming Massively Parallel Processor, A Hands-on Approach.

2010, Morgan Kaufmann Publishers, ISBN 0123814723.

Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model

selection. 1995, Proceedings of the Fourteenth International Joint Conference on

Artificial Intelligence, Morgan Kaufmann Editions, San Mateo, Vol. 2, pp. 1137–1143.

GPU Computing for
Machine Learning Algorithms

165

Kohavi, R.; Provost, F., Glossary of Terms. 1998, In Editorial for the Special Issue on

Applications of Machine Learning and the Knowledge Discovery Process, Machine

Learning, Vol. 30, pp. 2-3.

Kohonen, T., Self-Organizing Maps. 2007, Springer, Heidelberg, Second ed., Vol. 30.

Kotsiantis, S. B., Supervised Machine Learning: A Review of Classification Techniques,

Proceeding of the 2007 conference on Emerging Artificial Intelligence Applications in

Computer Engineering, IOS Press Amsterdam, The Netherlands, 2007, Vol. 160, pp. 3-

24.

Krauter, K.; Buyya, R.; Maheswaran, M.; A Taxonomy and Survey of Grid Resource

Management System for Distributed Computing. 2002, Software Practice and

Experience, 32(2):135-- 164.

LeBlanc, M.; Tibshirani, R., Adaptive principal surfaces, 1994, Journal of the American

Statistical Association, vol. 89, pp. 53–64.

Lehmann, E. L.; Casella, G., Theory of Point Estimation. 1998, (2nd ed.), Springer, New

York NY.

Lindeberg, T., Feature detection with automatic scale selection, 1998, International Journal

of Computer Vision 30 (2): pp. 77–116.

Lindeberg, T., Edge detection, in Encyclopedia of Mathematics, M. Hazewinkel (editor),

2001, Kluwer/Springer, ISBN 1402006098.

Mattson, T. G.; Sanders, B. A.; Massingill, B. L.; Patterns of parallel programming. 2004,

Upper Saddl and River, NJ: Addison -Wesley page. 21.

McLachlan, G.; Basford, K., Mixture Models: Inference and Applications to Clustering.

1988, Marcel Dekker ed., New York, NY.

GPU Computing for
Machine Learning Algorithms

166

McCulloch, W. S.; Pitts, W. H., A logical calculus of the ideas immanent in nervous

activity. 1943, Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133.

Menard, S. W. 2001. Applied logistic regression analysis, Sage University Papers Series on

Quantitative Applications in the Social Sciences, Thousand Oaks, CA, Vol. 106.

Meng Joo, E.; Fan, L.; Genetic algorithms for MLP neural network parameters optimization.

2009, in Control and Decision Conference, Guilin, China, 3653-3658.

Michalewicz, Z., Genetic Algorithm +Data Structures = Evolution Programs. 1996, Third

ed., Springer-Verlag New York.

Mitchell, M., An Introduction to Genetic Algorithms. 1998, The MIT Press, Cambridge MA.

Moore, G. E. 1965, Cramming more components onto integrated circuits. Electronics

Magazine, Vol. 38, Number 8.

Mosteller F.; Turkey J.W., Data analysis, including statistics. In Handbook of Social

Psychology. Addison-Wesley, Reading, MA, 1968.

Murtagh, F., Clustering in massive data sets. 2002, Handbook of massive data sets, Kluwer

Academic Publishers Norwell, MA USA.

Neapolitan, R. E., Learning Bayesian Networks, 2003. Prentice Hall, New York USA, ISBN-

13 978-0130125347.

Nocedal, J., Updating Quasi-Newton Matrices with Limited Storage. 1980, Mathematics of

Computation, Vol. 35, pp. 773–782.

Nocedal, J.; Wright, S. J., Numerical optimization. Springer Verlag, New York, NY, 1999.

NVIDIA Corporation, CUDA C Best Practices Guide v4.0. NVIDIA Corporation, Santa

Clara, CA, 2011. Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips,

J.C.; GPU Computing. 2008, Proceedings of the IEEE, vol. 96, No. 5, pp. 879–899.

GPU Computing for
Machine Learning Algorithms

167

Paliouras, G.; Scalability of Machine Learning Algorithms. 1993, M. Sc. Thesis, University

of Manchester.

Park, J. M.; Lu, Y., Edge detection in grayscale, color, and range images, in B. W. Wah

(editor) Encyclopedia of Computer Science and Engineering, 2008, doi

10.1002/9780470050118.ecse603.

Pasian, F.; Ameglio, S.; Becciani, U.; Borgani, S.; Gheller, C.; Manna, V.; Manzato, P.;

Marseglia, L.; Smareglia, R.; Taffoni, G., Interoperability and integration of theoretical

data in the Virtual Observatory. 2007, Highlights of Astronomy, IAU XXVI General

Assembly, Vol. 14, p.632.

Pearl, J., Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning,

1985. Proceedings of the 7th Conference of the Cognitive Science Society, University of

California, Irvine, CA. pp. 329–334.

Phansalkar, V.V.; Sastry, P.S., Analysis of the back-propagation algorithm with momentum.

1994, IEEE Transactions on Neural Networks, Vol. 5, Issue 3, pp. 505-506.

Pratt, W. K., Digital Image Processing, 4th Edition, 2007, John Wiley & Sons Eds., Los

Altos, California.

Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P., Markov Models and Hidden

Markov Modeling. 2007, Numerical Recipes: The Art of Scientific Computing (3rd ed.),

Section 16.3, Cambridge University Press, New York NY.

Provost, F.; Fawcett, T.; Kohavi, R., The Case Against Accuracy Estimation for Comparing

Induction Algorithms, Proceedings of the 15th International Conference on Machine

Learning, 1998, Morgan Kaufmann. pp. 445-553.

GPU Computing for
Machine Learning Algorithms

168

Rajaraman, A.; Ullmann, J.D.; Mining of Massive Data Sets. 2010, available on line at http://

infolab.stanford.edu/~ullman/mmds.html.

Repici, J., (2010), How To: The Comma Separated Value (CSV) File Format. 2010,

Creativyst Inc., http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm

Ripley, B.D., Statistical Data Mining, 2002, Springer-Verlag, New York

Rosenblatt, F., The Perceptron - a perceiving and recognizing automaton. 1957, Report 85-

460-1, Cornell Aeronautical Laboratory.

Rosendahl, S.; Presentation for T-106.5800. 2010, Seminar on Software Techniques.

Rubinstein, R.Y.; Kroese, D.P., The Cross-Entropy Method: A Unified Approach to

Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. 2004,

Springer-Verlag, New York NY.

Ruckstuhl, A.F.; Welsh, A.H., Reference Bands for Nonparametrically Estimated Link

Functions. 1999, Journal of Computational and Graphical Statistics, Vol. 8, Nr. 4, pp.

699-714.

Rumelhart, D.; Hinton, G.; and Williams, R., Learning internal representations by error

propagation. 1986, In Parallel Distributed Processing, MIT Press, Cambridge, MA,

chapter 8.

Sadashiv, N.; Dilip Kumar, S.M.; Cluster, Grid and Cloud Computing: A Detailed

Comparison. 2011, Proceedings of The 6th International Conference on Computer Science

& Education (ICCSE 2011), August 3-5, SuperStar Virgo, Singapore, pg. 477-482.

Samet, H., 2006, Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann, San Francisco, USA. ISBN 0123694469.

GPU Computing for
Machine Learning Algorithms

169

Selim, S. Z.; Ismail, M. A., K-Means-Type Algorithms: A Generalized Convergence

Theorem and Characterization of Local Optimality, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 1984, Vol. 6, Issue 1, IEEE Publishing, pp. 81-87.

Shadbolt, N.; Hall, W.; Berners-Lee, T.; The Semantic Web Revisited, IEEE Intelligent

Systems, vol. 21, no. 3, pp. 96–101, 2006, doi: 10.1109/MIS.2006.62.

Shanno, D. F., Conditioning of quasi-Newton methods for function minimization.

1970, Mathematics of Computation, Vol. 24, pp. 647–656.

Shapiro, L. G.; Stockman, G. C., Computer Vision, 2001, New Jersey, Prentice-Hall, ISBN 0-

13-030796-3, pp. 279-325.

Sorenson, H. W., Parameter estimation: principles and problems. 1980, M. Dekker Editor,

Control and systems theory, Vol. 9, New York.

Stepanov A.; Lee M., The Standard Template Library, HP Laboratories Technical Report 95-

11(R.1), November 1995.

Sutter, H.; The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,

Dr. Dobb's Journal, 30(3), March 2005.

Sutton, R. S.; Barto A. G., Reinforcement Learning: An Introduction. 1998, The MIT Press,

Cambridge, MA.

Taylor, I.J.; Deelman, E.; Gannon, D. B.; Shields, M. Eds., Workflows for e-Science:

Scientific Workflows for Grids. London: Springer, 2007.

Tung, A.K.H.; NG, R.T.; Lakshmanan, L.V.S.; Han, J., Constraint-Based Clustering in

Large Databases. 2001, In Proceedings of the 8th ICDT, London, UK.

Vapnik, V.N., The Nature of Statistical Learning Theory, 1995, Springer.

Vapnik, V. N., Statistical Learning Theory, 1998, John Wiley and Sons, New York.

GPU Computing for
Machine Learning Algorithms

170

Vetterling, T.; Flannery, B.P., Conjugate Gradients Methods in Multidimensions. 1992,

Numerical Recipes in C - The Art of Scientific Computing, W. H. Press and S. A.

Teukolsky Eds, Cambridge University Press; 2nd edition.

Viega, J; Cloud Computing and the Common Man. 2009, Computer, vol.42, no.8, pp.106-

108, doi: 10.1109/MC.2009.252.

Vogl, T. P.; Mangis, J. K.; Rigler, A. K.; Zink, W. T.; Alkon, D. L., Accelerating the

convergence of the back-propagation method. 1988, Biological Cybernetics, Vol. 59, pp.

257-263.

von Neumann, J., First Draft of a Report on the EDVAC. 1945.

Zahn, C. T., Graph-theoretical methods for detecting and describing gestalt clusters,

1971, IEEE Transactions on Computers, Vol. 20, No. 1, pp. 68-86.

Zhang, S.; He, Z; Implementation of Parallel Genetic Algorithm Based on CUDA. 209, Z.

Cai et al. (Eds.): ISICA 2009, LNCS 5821, pp. 24-30, Springer-Verlag Berlin Heidelberg.

Weigend, A.S.; Mangeas, M.; Srivastava, A.N., Nonlinear gated experts for time series:

discovering regimes and avoiding overfitting, 1995, International Journal of Neural

Systems, pp.373-399.

Wells, D.C.; Greisen, E.W.; Harten, R.H., FITS: a Flexible Image transport System. 1981,

Astronomy & Astrophysics Supplement Series, Vol. 44, p. 363.

Witten, I.H.; Frank, E., Data Mining: Practical machine learning tools and techniques. 2005,

2nd Edition, Morgan Kaufmann, San Francisco, USA.

