
Università degli Studi di Napoli
Federico II

Data-rich astronomy: mining
synoptic sky surveys

Stefano Cavuoti

PhD Thesis XXV cycle

Supervisors:

Ch.mo Prof. Giuseppe Longo
Dott. Massimo Brescia

Academic Year 2012/2013





Contents

Preamble 1

1 Introduction 5
1.1 From Data-Archives to Users . . . . . . . . . . . . . . . . . . . . 8
1.2 Beyond the VO . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Outstanding Challenges . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Euclid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Astronomical Data Mining 17
2.1 Data Mining Functionalities . . . . . . . . . . . . . . . . . . . . 20
2.2 Technological requirements . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Data Mining Packages . . . . . . . . . . . . . . . . . . . 25
2.3 Model 1: SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 SVM parameter determination strategy . . . . . . . . . . 29
2.4 Model 2: MLPQNA . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 The implementation of MLPQNA . . . . . . . . . . . . . 33
2.4.2 The Quasi Newton learning rule . . . . . . . . . . . . . . 34

2.5 Model 3: GAME . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.1 GAME . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.2 The parallelization of GAME . . . . . . . . . . . . . . . 48
2.5.3 The Experiment . . . . . . . . . . . . . . . . . . . . . . . 51
2.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Scientific Gateways and web 2.0 61
3.1 DAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.2 DAMEWARE design and architecture . . . . . . . . . . . 63
3.1.3 Dame Scalability . . . . . . . . . . . . . . . . . . . . . . 70
3.1.4 Evolution and further developments . . . . . . . . . . . . 71
3.1.5 Present Status . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 STraDiWA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.1 Simulation Pipeline . . . . . . . . . . . . . . . . . . . . . 79
3.2.2 Setup Phase . . . . . . . . . . . . . . . . . . . . . . . . . 80

I



II CONTENTS

3.2.3 Stuff: creation of the static sky . . . . . . . . . . . . . . . 82
3.2.4 SkyMaker . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.5 Rules for variable objects . . . . . . . . . . . . . . . . . . 84
3.2.6 Classical Cepheids . . . . . . . . . . . . . . . . . . . . . 84
3.2.7 Type Ia Supernovae . . . . . . . . . . . . . . . . . . . . . 85
3.2.8 Catalog extraction . . . . . . . . . . . . . . . . . . . . . 90
3.2.9 Simulation example . . . . . . . . . . . . . . . . . . . . 92

3.3 Euclid Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.1 Data Quality General Requirements and Targets . . . . . . 98
3.3.2 Technical Aspects of Data Quality . . . . . . . . . . . . . 98
3.3.3 Scientific Aspects of Data Quality . . . . . . . . . . . . . 102
3.3.4 Data Quality enhancement with Data Mining . . . . . . . 104
3.3.5 DQ, DQM and scalability issues . . . . . . . . . . . . . . 106

4 Classification Problems 109
4.1 Comparison of source extraction software . . . . . . . . . . . . . 109

4.1.1 Image Simulations . . . . . . . . . . . . . . . . . . . . . 111
4.1.2 Source extraction software . . . . . . . . . . . . . . . . . 113
4.1.3 Catalog extraction . . . . . . . . . . . . . . . . . . . . . 117
4.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.1.5 Non uniform star distribution . . . . . . . . . . . . . . . . 128
4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.2 Globular Cluster Classification . . . . . . . . . . . . . . . . . . . 136
4.2.1 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3 Photometric AGN Classification . . . . . . . . . . . . . . . . . . 151
4.3.1 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.3.2 The experiments . . . . . . . . . . . . . . . . . . . . . . 157
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5 Regression Problems: Photometric redshifts 167
5.1 The PHAT contest . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.1.1 The experiment workflow . . . . . . . . . . . . . . . . . 172
5.1.2 Application to the PHAT1 dataset . . . . . . . . . . . . . 175
5.1.3 The PHAT1 results and comparison with other models . . 175
5.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.2 Redshifts for quasars . . . . . . . . . . . . . . . . . . . . . . . . 180
5.2.1 The Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.2.2 Statistical Indicators . . . . . . . . . . . . . . . . . . . . 185
5.2.3 The experiments . . . . . . . . . . . . . . . . . . . . . . 185
5.2.4 Discussion and conclusions . . . . . . . . . . . . . . . . 190



CONTENTS III

6 The variable sky 197
6.1 Types of Pulsating Variables . . . . . . . . . . . . . . . . . . . . 199

6.1.1 Period-Luminosity relation . . . . . . . . . . . . . . . . . 201
6.1.2 Cataclysmic variables: Supernovae . . . . . . . . . . . . 202
6.1.3 Classification of Supernovae . . . . . . . . . . . . . . . . 203
6.1.4 Type Ia Supernovae light curves . . . . . . . . . . . . . . 207

6.2 The detection experiments . . . . . . . . . . . . . . . . . . . . . 208
6.2.1 The experiments . . . . . . . . . . . . . . . . . . . . . . 209
6.2.2 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.2.3 Choice of parameters for MLPQNA . . . . . . . . . . . . 213
6.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.3 Euclid Supernovae Working Group . . . . . . . . . . . . . . . . . 219
6.3.1 Summary of Euclid Science Ground Segment specifications 220
6.3.2 SN Pipeline description . . . . . . . . . . . . . . . . . . 222

7 Conclusions? 225

Acknowledgements 229

Bibliography 231

List of figures 258

List of tables 260

A Setup of Globular Clusters Experiments 261
A.1 Multi Layer Perceptron trained by Back Propagation (MLP-BP) . 261
A.2 Support Vector Machines (SVM) . . . . . . . . . . . . . . . . . . 262
A.3 Genetic Algorithm Model Experiment (GAME) . . . . . . . . . . 262
A.4 Multi Layer Perceptron trained by Quasi Newton (MLPQNA) . . 263
A.5 Multi Layer Perceptron trained by Genetic Algorithms (MLPGA) 264



IV CONTENTS



Preamble

“One of the greatest challenges for 21st-century
science is how we respond to this new era of data-
intensive science. This is recognized as a new
paradigm beyond experimental and theoretical re-
search and computer simulations of natural phe-
nomena - one that requires new tools, techniques,
and ways of working.”
Douglas Kell, University of Manchester.

In the last decade a new generation of telescopes and sensors has allowed the
production of a very large amount of data and astronomy has become, a data-rich
science; this transition is often labeled as: “data revolution” and “data tsunami”. The
first locution puts emphasis on the expectations of the astronomers while the second
stresses, instead, the dramatic problem arising from this large amount of data: which
is no longer computable with traditional approaches to data storage, data reduction
and data analysis. In a new, age new instruments are necessary, as it happened in the
Bronze age when mankind left the old instruments made out of stone to adopt the
new, better ones made with bronze. Everything changed, even the social structure.
In a similar way, this new age of Astronomy calls for a new generation of tools and,
for a new methodological approach to many problems, and for the acquisition of
new skills. The attems to find a solution to this problems falls under the umbrella of
a new discipline which originated by the intersection of astronomy, statistics and
computer science: Astroinformatics, (Borne, 2009; Djorgovski et al., 2006).

The various topics which I addressed during Ph. D. fall exactly in this intersec-
tion and explore some new possibilities offered by this new discipline.

The present work is structured as follow: in Chapter 1, I present the scientific
and methodological background of my work, in Chapter 2, I give a short overview
about data mining and I present three different methods involved in this work; in
Chapter 3 I present the two scientific gateways that I contributed to implement; in
section 3.1, I give an overview about the DAME infrastructure; while in section
3.2, I describe the STRADIWA project. In chapters: 2.5, 2.4 and 2.3, I present
three different methods involved in this work. Chapter part:science presents three
application to different classification problems: the Globular Cluster classification
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(sec. 4.2) while section 4.1 contains a comparison to different extraction software
and in section 4.3, I present an attempt to automatically disentangle different types
of AGN; and in chapter 5, I show two applications to the estimation of photometric
redshift. In chapter 6 I show the very preliminary results of our work on transients
detection.

Conclusions will be presented in chapter 7.
The structure of the thesis reflects the fact that it has been largely extracted from

the following papers which I completed during my PhD.

1. Cavuoti, S.; Brescia, M.; D’Abrusco, R.; Longo, G.; Photometric AGN
Classification in the SDSS with Machine Learning Methods to be Submitted
to MNRAS

2. Brescia, M.; Cavuoti, S.; Garofalo, M.; Guglielmo, M.; Longo, G.; Nocella,
A.; Riccardi, S.; Vellucci, C.; Djorgovski, G.S.; Donalek, C.; Mahabal, A.
Data Mining in Astronomy with DAME. to be Submitted to PASP

3. Brescia, M.; Cavuoti, S.; D’Abrusco, R.; Longo, G.; Mercurio, A.; 2013,
Photo-z prediction on WISE - GALEX - UKIDSS - SDSS Quasar Catalogue,
based on the MLPQNA model, Submitted to ApJ

4. Cavuoti, S.; Garofalo, M.; Brescia , M.; Paolillo, M.; Pescape’, A.; Longo,
G.; Ventre, G.; GPUs for astrophysical data mining. A test on the search for
candidate globular clusters in external galaxies, Submitted to New Astron-
omy, accepted

5. Annunziatella, M.; Mercurio, A.; Brescia, M.; Cavuoti, S.; Longo, G.; 2013,
Inside catalogs: a comparison of source extraction software, PASP, 125, 68

6. Cavuoti, S.; Brescia, M.; Longo, G.; Mercurio, A.; 2012, Photometric Red-
shifts with Quasi Newton Algorithm (MLPQNA). Results in the PHAT1
Contest, A&A, Vol. 546, A13, pp. 1-8

7. Brescia, M.; Cavuoti, S.; Paolillo, M.; Longo, G.; Puzia, T.; 2012, The
detection of Globular Clusters in galaxies as a data mining problem, MNRAS,
Volume 421, Issue 2, pp. 1155-1165, available at arXiv:1110.2144v1.

8. Cavuoti, S.; Brescia, M.; Longo, G., 2012, Data mining and Knowledge
Discovery Resources for Astronomy in the Web 2.0 Age, Proceedings of
SPIE Astronomical Telescopes and Instrumentation 2012, Software and Cy-
berinfrastructure for Astronomy II, Ed.(s): N. M. Radziwill and G. Chiozzi,
Volume 8451, RAI Amsterdam, Netherlands, July 1-4 refereed proceeding

9. Cavuoti, S.; Garofalo, M.; Brescia, M.; Pescape’, A.; Longo, G.; Ventre, G.,
2012, Genetic Algorithm Modeling with GPU Parallel Computing Technol-
ogy, 22nd WIRN, Italian Workshop on Neural Networks, Vietri sul Mare,
Salerno, Italy, May 17-19 refereed proceeding

http://arxiv.org/abs/1110.2144v1
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10. Cavuoti, S.; Brescia, M.; Longo, G.; Garofalo, M.; Nocella, A.; 2012, DAME:
A Web Oriented Infrastructure for Scientific Data Mining and Exploration,
Science - Image in Action. Edited by Bertrand Zavidovique (Universite’
Paris-Sud XI, France) and Giosue’ Lo Bosco (University of Palermo, Italy)
. Published by World Scientific Publishing Co. Pte. Ltd., 2012. ISBN
9789814383295, pp. 241-247

11. Djorgovski, S. G.; Longo, G., Brescia, M., Donalek, C., Cavuoti, S., Paolillo,
M., D’Abrusco, R., Laurino, O., Mahabal, A., Graham, M., “DAta Mining and
Exploration (DAME): New Tools for Knowledge Discovery in Astronomy”.
American Astronomical Society, AAS Meeting #219, #145.12, Tucson, USA,
January 08-12

12. Brescia M., Cavuoti, S., Djorgovski, G.S., ,Donalek, C., Longo, G., Pao-
lillo, M., 2011, Extracting knowledge from massive astronomical data sets,
arXiv:1109.2840, Springer Series in Astrostatistics, Volume 2, Springer Me-
dia New York, ISBN 978-1-4614-3322-4 15 pages [invited review].

13. Brescia, M.; Cavuoti, S.; D’Abrusco, R.; Laurino, O.; Longo, G.; 2010,
DAME: A Distributed Data Mining & Exploration Framework within the
Virtual Observatory, INGRID 2010 Workshop on Instrumenting the GRID,
Poznan, Poland, in Remote Instrumentation for eScience and Related Aspects,
F. Davoli et al. (eds.), Springer Science+Business Media, LLC 2011, DOI
10.1007/978-1-4614-0508-5 17
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Whereas possible I tried to avoid repetitions but, being thesis largely assembled
from the above papers some might have escaped my attention. During my PhD
work I produced also the following technical documents:
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Chapter 1

Introduction

“... while data doubles every year, useful informa-
tion seems to be decreasing, creating a growing
gap between the generation of data and our under-
standing of it...”
Dunham (2002).

As it was already mentioned in the preamble, my thesis spans a quite variegate
spectrum of topics: from algorithms to information and communication technologies
(ICT), to observational astronomy and cosmology; the main drivers being the
interest in cosmology and the need to cope with the methodological revolution that
is currently taking place in astronomy.

Astronomical data originate from sensors and telescopes operating in some
wavelength regime, either from the ground or from the space. These data come
in one or more of the following forms: images, spectra, time series, or data cubes

this chapter is largely extracted from:
• Cavuoti, S.; Brescia, M.; Longo, G., 2012, Data mining and Knowledge Discovery Resources for Astronomy in the Web 2.0 Age, Pro-

ceedings of SPIE Astronomical Telescopes and Instrumentation 2012, Software and Cyberinfrastructure for Astronomy II, Ed.(s): N. M.
Radziwill and G. Chiozzi, Volume 8451, RAI Amsterdam, Netherlands, July 1-4 refereed proceeding

• Brescia, M.; Cavuoti, S.; Garofalo, M.; Guglielmo, M.; Longo, G.; Nocella, A.; Riccardi, S.; Vellucci, C.; Djorgovski, G.S.; Donalek, C.;
Mahabal, A. Data Mining in Astronomy with DAME. to be Submitted to PASP

• Cavuoti, S.; Brescia, M.; Longo, G.; Garofalo, M.; Nocella, A.; 2012, DAME: A Web Oriented Infrastructure for Scientific Data Mining
and Exploration, Science - Image in Action. Edited by Bertrand Zavidovique (Universite’ Paris-Sud XI, France) and Giosue’ Lo Bosco
(University of Palermo, Italy) . Published by World Scientific Publishing Co. Pte. Ltd., 2012. ISBN 9789814383295, pp. 241-247

• Djorgovski, S. G.; Longo, G., Brescia, M., Donalek, C., Cavuoti, S., Paolillo, M., D’Abrusco, R., Laurino, O., Mahabal, A., Graham,
M., “DAta Mining and Exploration (DAME): New Tools for Knowledge Discovery in Astronomy”. American Astronomical Society, AAS
Meeting #219, #145.12, Tucson, USA, January 08-12

• Brescia M., Cavuoti, S., Djorgovski, G.S., ,Donalek, C., Longo, G., Paolillo, M., 2011, Extracting knowledge from massive astronomical
data sets, arXiv:1109.2840, Springer Series in Astrostatistics, Volume 2, Springer Media New York, ISBN 978-1-4614-3322-4 15 pages
[invited review].

• Brescia, M.; Cavuoti, S.; D’Abrusco, R.; Laurino, O.; Longo, G.; 2010, DAME: A Distributed Data Mining & Exploration Framework
within the Virtual Observatory, INGRID 2010 Workshop on Instrumenting the GRID, Poznan, Poland, in Remote Instrumentation for
eScience and Related Aspects, F. Davoli et al. (eds.), Springer Science+Business Media, LLC 2011, DOI 10.1007/978-1-4614-0508-5 17

• Djorgovski, S. G.; Longo, G., Brescia, M., Donalek, C., Cavuoti, S., Paolillo, M., D’Abrusco, R., Laurino, O., Mahabal, A., Graham, M.,
2012, DAta Mining and Exploration (DAME): New Tools for Knowledge Discovery in Astronomy. American Astronomical Society, AAS
Meeting #219, #145.12, Tucson, USA, January 08-12

• Brescia, M.; Longo, G.; Castellani, M.; Cavuoti, S.; D’Abrusco, R.; Laurino, O., 2012, DAME: A Distributed Web Based Framework for
Knowledge Discovery in Databases, 54th SAIT Conference, Astronomical Observatory of Capodimonte, Napoli, Italy, May 6, Mem. S.A.It.
Suppl. Vol. 19, 324
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(Brunner et al., 2001b; Djorgovski et al., 2012d). Data typically represent signal
intensity as a function of the position on the sky, wavelength or energy, and time.
The bulk of the data are obtained in the form of images (in radio astronomy, as
interferometer fringes, but those are also converted into images). The sensor output
is then processed by the appropriate custom pipelines, that remove instrumental
signatures and perform calibrations. In most cases, the initial data processing and
analysis phase segments the images into catalogs of detected discrete sources (e.g.,
stars, galaxies, etc.), and their measurable attributes, such as their position on the
sky, flux intensities in different apertures, morphological descriptors of the light
distribution, ratios of fluxes at different wavelengths (colors), and so on. These first
order data products are then stored in local (instrument or mission based) or national
archives hosting raw and processed sensor data, and the initial derived data products
such as source catalogs with their measured attributes, which are provided through
dedicated archives and are accessible online.
Since almost thirty years scientific analysis proceeds from such first-order data
products and, in this respect, not much would be changed if it were not for the
data size, data quality and data complexity. The trend in figure 1.1 shows how
much a typical astronomical archive has increases in size over the last thirty years.
Such exponential growth is not matched by an equivalent increase in the number of
data analyst (figure 1.2) and already now data analysis requirements have largely
exceeded the power of dedicated human brains, thus pushing astronomy into the
rather exclusive club of data intensive sciences.
Even more complex appears to be the near future where other challenges are waiting.
Think for instance of the Large Synoptic Survey Telescope (LSST) which will likely
become operational in 2016 and will produce a data flow of ca. 16 TB per observing
night, or many PB/year (Ivezic et al., 2011), and the EUCLID space mission,
foreseen to be operational in 2019, where a complete data release is estimated to
have a size of more than 13 PB of data, mixed between catalogues and images
(Brescia & Longo, 2011c)... but we shall come back to this later on.

Nowadays existing national and mission based archives have been federated
into the Virtual Observatory and more and more large datasets keep being added to
it every day. By incorporating the subtleties of data modeling and understanding
provided by the domain experts into complex data models, these modern archives
allow everyone to pursue scientific projects of unprecedent complexity (multiwave-
lenght, multiepoch, ...) and size (millions of objects rather than the few dozens was
in the past) creating a potential cornucopia for discoveries.

Computer assisted decision making, statistical pattern recognition, data mining,
machine learning, web 2.0 technologies... are just a few of the many new words
and locutions with which the present and future generations of astronomers need to
become acquainted.

This change must not be underestimated since it affects deeply not only the
every day praxis of scientific research, but also the underlaying methodology and
the type of science which is enabled. In 2009 Tony Hey analysed the problem of
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Figure 1.1: The Data Gap: Data growth in the ESO case, credit of ESO.

data rich sciences in a seminal book named The Fourth Paradigm (Hey et al., 2009)
and he explained why data analysis needs to be considered the fourth independent
methodological pillar of modern science after experiment, theory and simulations.
When the amount of data exceeds the human capability to see, evaluate and un-
derstand each data point, scientists need to rely more and more upon automated
machine driven procedures capable to isolate significant from redundant features, to
identify correlations and patterns of high dimensionality, to identify rare or peculiar
behaviours.
This, however, is only a part of the story, since also astrophysical and cosmological
understanding come, in fact, more and more from complex numerical simulations
producing results in the form of multiTera or Peta byte data sets. The falsification
of these theories calls for the comparison of these huge simulated datasets with the
even larger data sets from observations, and for the compression of the resulting
datasets to a size and a level of complexity understandable for a human brain.

In other words, astronomers are, as it has never happened before tied to ICT,
and the new generations will need to know more and more about data fusion
and federation, about virtual working environments, about web 2.0 technologies,
machine learning and data mining, advanced visualization, etc... a large set of
disciplines which since a few years falls under the umbrella of the emerging field of
Astroinformatics (Borne, 2009): a new discipline placed at the crossroad between
traditional astronomy, applied mathematics, computer science and ICT technologies.

As it always happens, innovations do not come without a price and this thesis is
about this price, about the need to change the traditional and comfortable environ-
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Figure 1.2: The Data Gap: Data growth against the number of analyst, from
Grossman (2001). In spite of the large increase in data, the number of FTE (Full
Time Equivalent) involved in data analysis remains in practice constant.

ment of old fashioned astronomy, to enter a new, un-familiar era based on a more
extreme exploitation the possibilities enabled by ICT.

1.1 From Data-Archives to Users

Already in the late nineties the astronomical community realized the complexity
of the problems they were facing, and began to think about a “Virtual Observatory”,
(VO). The concept was strongly endorsed by the influential NSF “decadal” report
(Mc Kee et al., 2001) and further explored in a seminal meeting held the same year
in Pasadena (Brunner et al., 2001a). VO was imagined as a complete, distributed
(Web-based) research environment for astronomy, with large and complex data sets
to be implemented by federating geographically distributed data and computing
infrastructures, and the necessary tools and expertise for their use (Brunner et al.,
2001a; Djorgovski et al., 2002a). VO was also supposed to facilitate the transition
from the old data poverty regime, to the overwhelming data abundance, and to be a
mechanism by which the progress in ICT could easily be used to solve scientific
challenges. The concept immediatly lead to a number of national and international
VO organizations, now federated through the International Virtual Observatory
Alliance (IVOA; http://ivoa.net). In Italy, the VO is currently embodied as
Italian Virtual Observatory (http://vobs.astro.it/) while in Europe and US
the VO initatives are under the umbrella of Euro-VO (http://euro-vo.org) and
Virtual Astronomical Observatory (VAO; http://usvao.org) respectively.

In other words, one can regard the VO as a meta-infrastructure gathering of
heterogeneous data streams from a global network of telescopes and space missions,

http://ivoa.net
http://vobs.astro.it/
http://euro-vo.org
http://usvao.org
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Name Description
Simple Cone Search (SCS) Retrieve all objects within a circular region on the sky
Simple Image Access (SIA) Retrieve all images of objects within a region on the sky

Simple Spectral Access (SSA) Retrieve all spectra of objects with a region on the sky
Simple Line Access (SLA) Retrieve spectral line data

Simulations (SIMDAL) Retrieve simulation data
Table Access (TAP) Retrieve tabular data

Table 1.1: Different types of data access protocol defined by the IVOA.

enabling data access and federation, and making such value-added data sets available
for a further analysis, as it is schematically illustrated in Fig.1.3.
The implementation of the VO framework over the past decade was focused on the
production of the necessary data infrastructure, interoperability, standards, protocols,
middleware, data discovery services, and even a few useful data federation and
analysis services, that we describe below; see (Djorgovski et al., 2005; Hanisch,
2007; Graham et al., 2007), for quick summaries and examples of practical tools
and services implemented under the VO umbrella.

While much still remains to be done, data discovery and access in astronomy
have never been easier, and the established infrastructure can at least in principle
expand and scale up to the next generation of sky surveys, space missions, etc.

Even before the VO astronomers had already done very successful attempts
toward standardization see, for instance the fact that they adopted early universal
standards for data exchange, such as the Flexible Image Transport System (FITS;
Wells et al. 1981).

Within the VO, a common set of data access protocols ensures that the same
interface is employed across all data archives, no matter where they are located, to
perform the same type of data query (see Table 1.1 for a summary of those defined).

Although common data formats may be employed in transferring data, e.g.,
VOTable for tabular data, individual data providers usually represent and store their
data and metadata in their own way. Common data models define the shared ele-
ments across data and metadata collections and provide a framework for describing
relationships between them so that different representations can interoperate in
a transparent manner. Most of the data access protocols have an associated data
model, e.g., the Spectral data model defines a generalized model for spectropho-
tometric sequences and provides a basis for a set of specific case models, such
as Spectrum, SED and TimeSeries. There are also more general data models for
spatial and temporal metadata, physical units, observations and their provenance,
and characterizing how a data set occupies multidimensional physical space.

When individual measurements of arbitrarily named quantities are reported,
either as a group of parameters or in a table, their broader context within a standard
data model can be established through the IVOA Utypes mechanism.

These strings act as reference pointers to individual elements within a data
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Figure 1.3: The evolving modes of observational astronomy. Top left: In the tradi-
tional approach, targeted observations from a single telescope (sensor), sometimes
combined with other data, are used to derive science. This mode is typical of
Megabyte to Gigabyte-scale data sets. Top right: In the survey mode, data from a
given survey are stored in an archive, and may be used to produce science on its own.
Sometimes, they may be matched to another survey. Selection of interesting targets
using data mining can then lead to new targeted observations, and new results. This
mode is characterized by Terabyte scale data sets. Bottom: In the VO mode, a
large variety of surveys, space missions, and ground-based observatory archives
are federated in the VO framework. Data fusion can lead to new science, or can
be used to select targets for follow-up observations, that themselves contribute to
the evolving data grid. This mode is characteristic of Terabyte to Petabyte-scale
data sets. A new generation of synoptic sky surveys imposes a requirement that the
data-to-research cycle happens in a real time. In practice, all three modes continue
to coexist (courtesy of G. S. Djorgovski).
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model thus identifying the concept that the reported value represents, e.g., the
UType “Data.FluxAxis.Accuracy. StatErrHigh” identifies a quantity as the upper
error bound on a flux value defined in the Spectral data model. Namespaces allow
quantities/concepts defined in one data model to be reused in another one.

Data models can only go so far in tackling the heterogeneity of data sources;
they provide a way to identify and refer to common elements but not to describe
how these are defined or related to each other. Concept schemes, from controlled
vocabularies to thesauri to ontologies, specify in increasing levels of detail the
domain knowledge that is ultimately behind the data models. It then becomes
possible, for example, to automatically construct a set of extragalactic sources with
consistent distances, even if each initially has it specified in a different way; the
Tully-Fisher relationship can be used with those with HI line widths whereas surface
brightness and velocity dispersion can be used for elliptical galaxies.

Working with large amounts of data also requires certain infrastructure compo-
nents:

The VO provides a lightweight common interface “VOSpace” to the host of
data storage solutions that are available, ranging in scale from a local filesystem
on a laptop to a data farm in the cloud. It does not define how data is stored or
transferred, only the control messages to gain access to data and manage data flows,
such as online analysis of large distributed data sets. VOSpace can also be used to
support data caches for temporary interprocess results, such as checkpoints, and as
staging areas for both initial data and final results, where permanent storage is not
required.

The Universal Worker Service (UWS) defines a design pattern for asynchronous
services and a security framework supports authentication and credential delegation
to allow a chain of secure services all working together, e.g., in a workflow with
proprietary data. Finally, the IVOA provides a Registry tool where descriptions of
available data archives and services can be found, e.g., catalogs of white dwarfs or
photometric redshift services.

The key to further progress is the availability of data exploration and analysis
tools capable to operate on the Terascale data sets and beyond. Progress in this arena
is being made mainly by individual research groups in universities, or associated
with particular observatories and surveys... and this is where Astroinformatics
comes into the game.

The idea behind Astroinformatics is, in fact, that of providing an informal, open
environment for the exchange of ideas, software, etc., and to act as a “connecting
tissue” between the researchers working in this general arena. The motivation is to
engage a broader community of researchers, both as contributors and as consumers
of the new methodology for data-intensive astronomy, thus building on the data-grid
foundations established by the VO framework. The field is still young, and a good
introduction to it are the talks and discussions at the series of the international As-
troinformatics conferences, starting with http://astroinformatics2010.org
and continuing through the 2012 edition.

http://astroinformatics2010.org
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1.2 Beyond the VO into the exascale regime

Over the past several years, improvements in detector technology enabled a new
generation of synoptic sky surveys that cover large swaths of the sky repeatedly; they
represent a panoramic cosmic cinematography. Some recent and current examples
include:

• Palomar-Quest (PQ; Mahabal et al. 2005; Djorgovski et al. 2008,

• Catalina Real-Time Transient Survey (CRTS; Drake et al. 2009; Mahabal et
al. 2011; Djorgovski et al. 2012a; http://crts.caltech.edu),

• Palomar Transient Factory (PTF, Rau 2009; Law et al. 2009, http://www.
astro.caltech.edu/ptf/),

• PanSTARRS (Kaiser 2004; http://pan-starrs.ifa.hawaii.edu/),

• VST VOICE
(http://people.na.infn.it/˜covone/vst_project/VOICE_letter_
of_intent.pdf),

• VST KIDS (http://www.astro-wise.org/projects/KIDS/),

• VISTA VIKING (http://www.astro-wise.org/projects/VIKING/).

The Large Synoptic Sky Survey (LSST; Tyson 2002; Ivezic et al. 2009; http:
//lsst.org) will be an 8.4-m wide-field telescope that will be located at Cerro
Paranal in Chile. It will take more than 800 panoramic images each night, with 2
exposures per field, covering the accessible sky twice each week. The data (images,
catalogs, alerts) will be continuously generated and updated every observing night.
In addition, calibration and co-added images, and the resulting catalogs, will be
generated on a slower cadence, and used for data quality assessments. The final
object catalog is expected to have more than 40 billion rows, comprising 30 TB
of data per night, for a total of 60 PB over the envisioned duration of the survey.
Its scientific goals and strategies are described in detail in the LSST Science Book
(Ivezic et al., 2009). Processing and analysis of this huge data stream poses a number
of challenges in the arena of real-time data processing, distribution, archiving, and
analysis.

The Square Kilometer Array (SKA; http://skatelescope.org) will be the
world’s largest radio telescope, hoped to be operational in the mid-2020’s, divided
into two facilities, one in Australia, and one in South Africa. It will consist of
thousands of individual radio dishes, with a total collecting area of ∼ 1 km2, with a
continuous frequency coverage from 70 MHz to 30 GHz. The data processing for the
SKA poses significant challenges, even if we extrapolate Moore’s law to its projected
operations. The data will stream from the detectors into the correlators at a rate of
∼ 4.2 PB/s, and then from the correlators to the visibility processors at rates between
1 and 500 TB/s, depending on the observing mode, which will require processing

http://crts.caltech.edu
http://www.astro.caltech.edu/ptf/
http://www.astro.caltech.edu/ptf/
http://pan-starrs.ifa.hawaii.edu/
http://people.na.infn.it/~covone/vst_project/VOICE_letter_of_intent.pdf
http://people.na.infn.it/~covone/vst_project/VOICE_letter_of_intent.pdf
http://www.astro-wise.org/projects/KIDS/
http://www.astro-wise.org/projects/VIKING/
http://lsst.org
http://lsst.org
http://skatelescope.org
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capabilities of ∼ 200 P f lops to ∼ 2.5 E f lops. Subsequent image formation
needs ∼ 10 P f lops to create data products (∼ 0.5 − 10 PB/day), which would be
available for science analysis and archiving, the total computational costs of which
could easily exceed those of the pipeline. Of course, this is not just a matter of
hardware provision, even if it is specially purpose built, but also high computational
complexity algorithms for wide field imaging techniques, deconvolution, Bayesian
source finding, and other tasks. Each operation will also place different constraints
on the computational infrastructure, with some being memory bound and some CPU
bound that will need to be optimally balanced for maximum throughput. Finally the
power required for all this processing will also need to be addressed assuming the
current trends, the SKA data processing will consume energy at a rate of ∼ 1 GW.
These are highly non-trivial hardware and infrastructure challenges.

With the new scientific opportunities come new challenges. Processing and
analysis of these massive data streams inherits all of the same challenges pertaining
to the single-pass surveys, described above, but with larger data volumes, and with
new ones brought by the time axis, that describe the variations in brightness as
pointed out by Djorgovski et al. 2001a,b, 2002b, 2006. In addition to the traditional
notion of sources on the sky, i.e., a flux distribution in a spatial sense, we now also
have events, that are spatio-temporal in nature. Moreover, most of the phenomena
of interest in the time domain, e.g., supernova explosions, are highly perishable,
and must be followed up with other observations as soon as possible. Thus, there
is a need for real-time processing and analysis of massive data streams from the
sky, and discovery and characterization of detected events; this urgency sharpens
many of the challenges. Some of the TDA studies are focused on such transient
events, but others are not time-critical, e.g., studies of variability of sources of some
astrophysical type: a supernova can explode only once, but a variable star can be
pulsing, or a black hole accreting for many millions of years; yet there is unique
information in their temporal variability.

We are therefore entering the Petascale regime in terms of the data volumes,
but the exponential growth continues. As already mentioned one important recent
development is the advent of synoptic sky surveys, which cover large areas of the
sky repeatedly, thus escalating the challenges of data handling and analysis from
massive data sets to massive data streams, with all of the added complexities. This
trend is likely to continue, pushing astronomy towards the Exascale regime. Two
major upcoming facilities deserve a special mention:

1.3 Outstanding Challenges

It is not just the data abundance that is fueling this ongoing revolution, but
also Internet-enabled data access, and data re-use. The informational content of
the modern data sets is so high as to make archival research and machine learning
not merely profitable, but practically obligatory: in most cases, researchers who
obtain the data can only extract a small fraction of the science that is enabled by
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it. Furthermore, numerical simulations are no longer just a crutch of an analytical
theory, but are increasingly becoming the dominant or even the only way in which
various complex phenomena (e.g., star formation or galaxy formation) can be
modeled and understood, often hand in hand with traditional analytics. These
numerical simulations also produce copious amounts of data as their output; in other
words, theoretical statements are expressed not as formulae, but as data sets. Since
physical understanding comes from the confrontation of experiment and theory,
and both are now expressed as ever larger and more complex data sets, science is
truly becoming data-driven in the ways that are both quantitatively and qualitatively
different from the past.

Many good statistical and data mining tools and methods exist, and are gradually
permeating the practicing science communities, astronomy included, although their
uptake has been slower than what may be hoped for. Social issues aside, one tangible
technical problem is the scalability of DM tools: most of the readily available ones
do not scale well to massive data sets. The key problem is not so much the data
volume, but the dimensionality (expressible, e.g., as a number of feature vectors in
some data set): most algorithms may work very well in 2 or 3 or 6 dimensions, but
are simply impractical when the intrinsic dimensionality of the data sets is measured
in tens, hundred, or thousands. Effective, scalable software and a methodology
needed for knowledge discovery in modern, large and complex data sets typically
do not exist yet.

A closely related, but even more difficult problem is the effective visualization of
hyper-dimensional data sets. Visual data examination and exploration is valuable in
itself, and it is also necessary to guide the data mining process. Finally, visualization
is usually the way we reach an intuitive understanding of some phenomenon. Here
we run into the intrinsic limitations of the human perception: we are biologically
optimized for 3D, and we can encode up to a dozen dimensions in a graphical
display. Our modern, complex data sets may, and probably do contain meaningful
structures in� 3 dimensions, representing new knowledge to be discovered, that
cannot be projected to some humanly comprehensible display without a loss of
information. This, for instance, could also explain why all empirical law known
so far depend at most on three parameters only. Improving our ability to visualize
highly dimensional data structures is a key challenge for “big data” science.

As the data streams such as those from synoptic sky surveys replace stationary
data sets, new, additional data analysis challenges arise, especially if there are per-
ishable, short-lived phenomena that need to be addressed or followed up with further
measurements in a time-critical manner. In astronomy, those could be various types
of stellar explosions, flares, etc., but one can easily see that equivalent situations
may arise in other fields, e.g., environmental monitoring, security, etc. While the
process of detection of transient events (e.g., by comparing the new data with some
sliding average baseline) is relatively straightforward, their characterization or clas-
sification is a much harder problem. In contrast to most “textbook” ML applications
for automated classification, here the data are generally very sparse, incomplete, and
heterogeneous, and have to be supplemented by generally heterogeneous archival
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data, and contextual information that is hard to capture in a quantitative manner.

1.4 Euclid

Before closing this introductory chapter I feel the need to spend a few words
about the EUCLID MISSION which I joined during the 3rd year of my PhD and
will likeley represent the arena where in the near future I shall apply my “know
how”. In the Euclid mission I joined two groups: the Data Quality Common Tools,
and the Science Working group for the Legacy Science requirements definitions
dedicated to transient objects detection and classification.

Euclid, is a mission devised to provide insight into the nature of dark energy
and dark matter by accurate measurement of the accelerated expansion of the
Universe, emerged from two mission concepts that were proposed in response to
the ESA Cosmic Vision 2015-2025 Call for Proposals, issued in March 2007: the
DUNE - Dark Universe Explorer - mission proposed to measure the effects of
weak gravitational lensing; the SPACE - Spectroscopic All Sky Cosmic Explorer -
mission, aimed at measuring the baryonic acoustic oscillations and redshift-space
distortion patterns in the Universe.

In October 2007 the ESA advisory structure selected both proposals to enter the
assessment study phase, considering them as equally relevant to the investigation
of dark energy. ESA then appointed a Concept Advisory Team with the task of
identifying the best possible concept for the dark energy mission to be studied
during this phase. This team recommended a combined mission which could
simultaneously measure weak lensing and baryonic acoustic oscillations (BAOs).
The new mission concept was called Euclid, honouring the Greek mathematician
Euclid of Alexandria ( 300 BC) who is considered as the father of geometry.

The ESA internal pre-assessment phase for Euclid ran from November 2007
until May 2008. The outcome of this study was a preliminary design for the Euclid
mission and its payload which formed the basis for the Invitation to Tender that was
issued to Industry in May 2008. A parallel competitive contract was awarded to
EADS Astrium Friedrichshafen (Germany) and Thales Alenia Space (Italy); these
industrial activities were concluded in September 2009.

Two instrument consortia responded to ESA’s call for Declaration of Interest
for payload studies issued in May 2008. These studies ran from October 2008 until
August 2009.

The report of the assessment study, which includes the Euclid science case
together with a synthesis of the industrial and instrument consortium studies, was
presented to the scientific community in December 2009. In addition, an inde-
pendent technical review of the assessment study was conducted by ESA. The
recommendations of the review board were presented to the scientific community
also in December 2009.

In early 2010 ESA’s Science Programme Committee recommended that Euclid,
along with two other M-class candidate missions (PLATO and Solar Orbiter) proceed
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to the next phase: a more detailed definition phase during which period the cost
and implementation schedule for the mission must be established. This detailed
definition phase was completed in mid 2011.

In October 2011, Euclid was selected by the SPC as one of the first two medium-
class missions of the Cosmic Vision 2015-2025 plan; Solar Orbiter was the other
mission selected at the time.

Euclid received final approval to move into the full construction phase at the
SPC meeting in June 2012. At this meeting, the SPC also formalised an agreement
between ESA and fundings agencies in a number of its Member States to develop
Euclid’s two scientific instruments (a visible-wavelength camera and a near-infrared
camera/spectrometer) and the large distributed processing system needed to analyse
the data they produce. Nearly 1000 scientists from more than 100 institutes form
the Euclid Consortium building the instruments and participating in the scientific
harvest of the mission. The consortium comprises scientists from 13 European
countries: Austria, Denmark, France, Finland, Germany, Italy, the Netherlands,
Norway, Portugal, Romania, Spain, Switzerland and the UK. It also includes a
number of US scientists, including 40 nominated by NASA. The Consortium is led
by Yannick Mellier, Institut d’Astrophysique de Paris, France.

In December 2012, Astrium SAS (Toulouse) has been contracted to design and
build the payload module, which includes the telescope and the accommodation for
the instruments, which are to be delivered by the Euclid Consortium. The Prime
Contractor, the overall responsible for the building of Euclid satellite will be selected
in June 2013.

The Euclid mission has been adopted with launch planned for 2020
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Astronomical Data Mining

“With four parameters I can fit an elephant, and
with five I can make him wiggle his trunk. ”
John von Neumann.

From the previous discussion it is apparent that nowadays, and even more in
the future, the most interesting problems will call for the use of complex, multi-
wavelength, multi-epoch data collected with heterogeneous instruments. But data –
no matter how great – are just incidental to the real task of scientists: knowledge
discovery. Unfortunately, the extraction of useful and relevant knowledge from
such datasets is still a highly non trivial task which requires a new generation of
software tools: automatic, scalable and highly reliable. Traditional methods of
data analysis typically do not scale to the data sets in the Terascale regime, and/or
with a high dimensionality. Thus, the adoption of modern data mining (DM) and
Knowledge Discovery in Databases (KDD) techniques becomes a necessity. Large
data volumes tend to preclude direct human examination of all data, and thus an
automatization of these processes is needed, requiring use of Machine Learning
(ML) techniques. This fact has been recently recognized by the implementation of
a specific Interest Group on Knowledge Discovery in Databases within the IVOA
(Pasian et al., 2011), focusing on recent developments in the field of astronomical
Data Mining (hereafter DM) or “Knowledge Discovery in Databases” (KDD) as it
is also often called. Some reviews of these topics can be found in Djorgovski et al.
(2012d), Djorgovski et al. (2006), Dunham (2002) and Brescia (2012d).

In its widest meaning, Knowledge Discovery in Databases or Data Mining
regards the discovery of “models” for data. There are, however, many different
methods which can be used to discover these underlying models: statistical pattern
recognition, machine learning, summarization, etc. and an extensive review of all
these models would take us far beyond the purposes of this work. In what follows
we shall therefore summarize only the main methodological aspects.
Machine learning, which is sometimes considered to be a branch of artificial in-
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telligence, is a scientific discipline concerned with the design and development of
algorithms that allow computers to evolve behaviors based on empirical data. A
“learner” can take advantage of examples (data) to capture characteristics of interest
of their unknown underlying probability distribution (cf. Bishop 2006). These data
form the so called Knowledge Base (KB): a fairly large set of examples to be used
for training and to test the performances. The difficulty lies in the fact that often, if
not always, the set of all possible behaviors given all possible inputs is too large to be
covered by the KB. Hence the learner must possess some generalization capabilities
in order to be able to produce useful outputs when presented new instances. The use
of a DM application requires a good understanding of the mathematics underlying
the methods, of the computing infrastructures, and of the complex workflows which
need to be implemented.

Strictly speaking, the KDD discipline is about algorithms for inferring knowl-
edge from data and ways of validating the obtained results, as well as about running
them on infrastructures capable to match the computational demands. In practice,
whenever there is too much data or, more generally, a representation in more than
5 dimensions (Odenwald, 1987), there are basically three ways to make learning
feasible. The first one is trivial: applying the training scheme to a decimated
dataset. The second method relies on parallelization techniques, the idea being
to split the problem into smaller parts, then solve each using a separate CPU and
finally combine the results together (Paliouras, 1993). Sometimes this is feasible
due to the intrinsic natural essence of the learning rule (such as genetic algorithms,
Goldberg & Holland 1988). However, even after parallelization, the algorithm’s
asymptotic time complexity cannot be improved. The third and more challenging
way to enable a learning paradigm to deal with Massive Data Sets (MDS) is to
develop new algorithms of lower computational complexity but in many cases this
is simply not feasible.

Astronomical applications of ML are still relatively recent and restricted to
a handful of problems. This is surprising, given the data richness and a variety
of possible applications in the data-driven astronomy. DM can enable multiple
uses of the same data by many different groups for different applications. The
comparison of two pertinent reviews (Tagliaferri et al. 2003a, Ball & Brunner 2010)
shows a relatively slow growth in both the number and the variety of ML and
DM applications in astronomy. Some of this slow growth can be accounted for
by a reluctance to adopt new methods that are still not adequately taught in the
advanced astronomy curriculum, despite their great potential and even necessity.
But sociological challenges aside, there are some technical ones that need to be
addressed.

First, a large family of ML methods (the so called supervised ones) require the
availability of relatively large and well characterized knowledge bases (KB), e.g.,
reliable (“ground truth”) training data sets of examples from which the ML methods
can learn the underlying patterns and trends. Such KBs are relatively rare and are
available only for a few specific problems.
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Second, most ML algorithms used so far by the astronomers cannot deal well
with missing data (i.e., no measurement was obtained for a given attribute) or
with upper limits (a measurement was obtained, but there is no detection at some
level of significance). While in many other fields (e.g., market analysis and many
bioinformatics applications) this is only a minor problem since the data are often
redundant and/or can be cleaned of all records having incomplete or missing infor-
mation, in astronomy this is usually not so, and all data records, including those
with an incomplete information, are potentially scientifically interesting and cannot
be ignored.

Examples of early uses of modern ML tools for analysis of massive astronomical
data sets include automated classification of sources detected in sky surveys as stars
(i.e., unresolved) vs. galaxies (resolved morphology), using Artificial Neural Nets
(ANN) or Decision Trees (DT), e.g., by Weir (1985) or Odewahn et al. (1992, 2004).
Further improvements include (Donalek, 2006), who introduced external a priori
constraints in the classification, and Russo (2008) who used the so-called Bregman
co-clustering (Bregman, 1967) to reduce the weight of missing or incomplete
information. Brescia et al. (2012a) have recently used several ML method for a
different type of resolved/unresolved objects separation, namely the identification
of globular clusters in external galaxies, other details can be found in section 4.2.

Another set of ML applications is in classification or selection of objects of
a given type in some parameter space, e.g., colors (ratios of fluxes measured at
different wavelengths, expressed logarithmically). This is particularly well suited
for the identification of quasars and other active galactic nuclei, which are morpho-
logically indistinguishable from normal stars, but represent vastly different physical
phenomena. A novel approach to this problem includes hybrids of supervised
and unsupervised classifiers (D’Abrusco et al. 2009, 2012). In a complementary
approach, Richards et al. (2009) used Bayesian techniques for a selection of quasars
in an 8-dimensional color parameter space.

Yet another type of interesting scientific applications of that methods is the are
estimate of the so-called photometric redshifts (measures of distances in cosmology),
that are derived from colors (available for most detected sources in the large imaging
surveys) rather than from spectroscopy (much more costly in terms of the observing
time, and thus available for a much smaller subset of sources). ANN have performed
very well in this task (Tagliaferri et al., 2002; Firth et al., 2003; Hildebrandt et al.,
2010; Cavuoti et al., 2012b).
Laurino et al. (2011) implemented a hybrid procedure based on a combination of
unsupervised clustering and several independent classifiers that has improved the
accuracy, for both normal galaxies and quasars.

Below we discuss a new set of ML challenges in the context of automated
classification of transient events found in synoptic sky surveys. A very different
approach to astronomical object classification through crowdsourcing or “citizen
science” is exemplified by the “Galaxy Zoo” project (Lintott et al., 2008), that
harvests human pattern recognition for a visual morphological classification. Such
projects represent an excellent public outreach, and can produce useful scientific
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results. While their utility depends on the exact problem to be addressed and the
specific implementation, we note that this approach does not scale, due to the limited
resources of human time and attention.

For good recent reviews of ML applications in astronomy, see, e.g., Ball &
Brunner (2010), or the volume edited by Way et al. (2012).

In a way, a lot of DM can be seen as algorithmic applications of statistics,
and numerous statistical tools have been used in astronomy since its beginnings.
A useful Astro-Statistics portal is maintained by E. Feigelson and G.J. Babu at
http://astrostatistics.psu.edu; see also Feigelson & Babu (2012ab).

In the VO framework, a web service, VOStat (Graham et al., 2005) offers a
set of accessible statistical tools for data analysis. There are currently two dif-
ferent versions of it, http://astrostatistics.psu.edu:8080/vostat/ and
http://vo.iucaa.ernet.in/$\sim$voi/VOStat.html, developed initially as
collaborative efforts between the groups at PSU, Caltech, and IUCAA. While these
services address a growing need for the use of advanced statistical methods in
astronomical data analysis, their uptake by the community has been relatively slow.
Another useful guide to available tools is at http://wiki.ivoa.net/twiki/
bin/view/IVOA/IvoaKDDguide.

2.1 Data Mining Functionalities

Hereinafter we shall adopt a definition of Data Mining based on the fact that
in most real life applications several different methods (functional domains), need
to be combined in more complex and often hierarchical workflows to produce a
reliable and robust result. The taxonomy of data mining functionalities which will
be adopted through this work is:

• Dimensional reduction;

• Classification;

• Regression;

• Clustering;

• Segmentation;

• Filtering;

Single or groups of such functionalities can be associated with a variety of models
and algorithms (e.g. Neural Networks, Support Vector Machines, Bayesian net-
works, Genetic Algorithms etc.) and specific use cases are therefore defined by a
proper association “functionality-model”.

More in detail:

http://astrostatistics.psu.edu
http://astrostatistics.psu.edu:8080/vostat/
http://vo.iucaa.ernet.in/$\sim $voi/VOStat.html
http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaKDDguide
http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaKDDguide
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• classification is a procedure in which individual items are placed into groups
based on quantitative information (referred to as features, synonym of param-
eters in the problem domain) using the knowledge contained in a training
set of previously labeled items (known also as Knowledge Base or KB). A
classifier is therefore a system that performs a mapping from a feature space
X to a set of labels Y . Classification may be either “crispy” or “probabilistic”.
In the first case, given an input pattern x the classifier returns its computed
label y. In the second, given an input pattern x the classifier returns a vector
y which contains the probability of yi to be the “right” label for x. Both
types of classification can be applied to both “two-class” and “multi-class”
cases. Typical astrophysical problems which have been addressed with this
functionality are the so called “star/galaxy” separation (which would be better
called resolved-unresolved objects separation), morphological classification
of galaxies, classification of stellar spectra, etc.

• Regression is instead generally intended as the supervised search for a map-
ping from a domain in Rn to a domain in Rm, where m < n. Also in this case,
one can distinguish between two different types of regression:

– Data-table statistical correlation: in which the user tries to find a
mapping without any prior assumption on the functional form of the
data distribution;

– function fitting: in which the user tries to validate the hypothesis, sug-
gested by some theoretical framework, that the data distribution follows
a well-defined, and known, function.

The most common astrophysical example of a regression problem is the
evaluation of photometric redshifts of galaxies from a limited but statisti-
cally sufficient KB based on spectroscopic redshift samples. Dimensional
reduction is the process of reducing the number of random variables under
consideration, and can be divided into feature selection and feature extraction.
Feature selection approaches try to find a subset of the original variables (also
called features or attributes), Guyon & Elisseeff (2003). Two strategies are
filter (e.g. information gain) and wrapper (e.g. search guided by the accuracy)
approaches. Feature extraction transforms the data in the high-dimensional
space to a space of fewer dimensions. The data transformation may be linear,
as in Principal Component Analysis (PCA), but many non-linear techniques
also exist (Guyon & Elisseeff, 2006).

• Clustering techniques apply when there is no class to be predicted but rather
when the instances need to be divided into natural groups. From the self-
adaptive computing point of view, clustering models are also referred to as
“unsupervised methods”, since they do not require the use of an extensive KB
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(Jain et al., 1999). In general, there are different ways in which the results
of clustering can be expressed: for instance the identified groups can be
exclusive or overlapping. But they may be also probabilistic, whereby an
instance belongs to each group with a certain probability. Other clustering
algorithms produce a hierarchical structure of clusters, so that at the top level
the instance space divides into just a few clusters, each of which divides into
its own sub-clusters at the next level, and so on. Clustering is often followed
by a stage where a decision tree or “set of rules” is inferred in order to
allocate each instance to the cluster to which it belongs. The choice between
these different models is dictated by the nature of the specific problem to
be tackled. In spite of the enormous potentialities (think for instance to
the identification of unknown types of objects in the parameter space), the
application of clustering methods to astrophysical MDS is still in a very
early stage even though, in many cases they are embedded into complex
DM workflows. Segmentation, synonym of “image processing”, in the DM
with machine learning context is strictly correlated with image clustering
functional domain. More in general, in computer vision, segmentation refers
to the process of partitioning a digital image into multiple segments (sets of
pixels, also known as superpixels). The goal of segmentation is to simplify
and/or change the representation of an image into something that is more
meaningful and easier to analyze (Bishop, 2006). Image segmentation is
typically used to locate objects and boundaries (lines, curves, etc.) in images.
More precisely, image segmentation is the process of assigning a label to
every pixel in an image such that pixels with the same label share certain
visual characteristics. The result of image segmentation is a set of segments
that collectively cover the entire image, or a set of contours extracted from
the image (Lindeberg, 2001). Each of the pixels in a region are similar with
respect to some characteristic or computed property, such as color, intensity,
or texture. Adjacent regions are significantly different with respect to the
same characteristics.

• Finally, data-based model filtering helps to create complex architectures based
on different and multiple mining models that use subsets of data in a filtered
mining structure. A useful way to have a right vision of data-driven model
filtering is: Model filtering operates without altering the underlying model
data. This allows one set of data to be shared among multiple components,
each of which may interpret the data in a different manner. Filters can be
layered, enabling model data to be interpreted through several different filter
objects (Goldstein, 2001). Filtering gives you flexibility when you design
your mining structures and data sources, because you can create a single
mining structure, based on a comprehensive data source view. You can then
create filters to use only a part of that data for training and testing a variety of
models, instead of building a different structure and related model for each
subset of data. For example, it is possible to develop specialized DM models
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on a selected part of the data sets. Next, you define a multiple mining structure
that includes all the features coming out the previous filtered ensemble of
models. Finally, you create a model that is filtered on a particular customer
attribute, such as a specific wavelength band. You can then easily make a
copy of that model, and change just the filter condition to generate a new
model based on a different spectrum region. Some real-life scenarios where
you might benefit from this feature include the following:

– Creating separate models for discrete values such as wavelength, regions,
and so forth;

– Experimenting with models by creating and then testing multiple group-
ings of the same data;

– Specifying complex filters on nested data contents.

Data-based model filtering greatly simplifies the task of managing mining
structures and mining models, because you can easily create multiple models
that are based on the same structure. You can also quickly make copies
of existing mining models and then change only the filter condition. Good
examples of such filtered mining models are the Gated Experts (GE; Weigend
1995).

2.2 Technological requirements for effective Data Mining

As mentioned before computing has started to change how science is done,
enabling new scientific advances through enabling new kinds of experiments. These
experiments are also generating new kinds of data of increasingly exponential
complexity and volume. Achieving the goal of being able to use, exploit and
share these data most effectively is a huge challenge. It is necessary to merge the
capabilities of a file system to store and transmit bulk data from experiments, with
logical organization of files into indexed data collections, allowing efficient query
and analytical operations. It is also necessary to incorporate extensive metadata
describing each experiment and the produced data. Rather than flat files traditionally
used in scientific data processing, the full power of relational databases is needed to
allow effective interactions with the data, and an interface which can be exploited
by the extensive scientific toolkits available, for purposes such as visualization
and plotting. Different disciplines require support for much more diverse types
of tasks than we find in the large, very coherent and stable virtual organizations.
Astronomy, for example, has far more emphasis on the collation of federated
data sets held at disparate sites. There is less massive computation, and large-
scale modeling is generally done on departmental High Performance Computing
(HPC) facilities, where some communities are formed of very small teams insisting
relatively undeveloped computational infrastructure. In other cases, such as life
sciences, the problems are far more related to heterogeneous, dispersed data rather
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than computation. The harder problem for the future is heterogeneity, of platforms,
data and applications, rather than simply the scale of the deployed resources. The
goal should be to allow scientists to explore the data easily, with sufficient processing
power for any desired algorithm to process it.
Our convincement is that most aspects of computing will see exponential growth
in bandwidth, but sub-linear or no improvements at all in latency. Moore’s Law
will continue to deliver exponential increases in memory size but the speed with
which data can be transferred between memory and CPUs will remain more or less
constant and marginal improvements can only be made through advances in caching
technology. Certainly Moore’s law will allow the creation of parallel computing
capabilities on single chips by packing multiple CPU cores onto it, but the clock
speed that determines the speed of computation is constrained to remain limited
by a thermal wall (Sutter, 2005). We will continue to see exponential growth in
disk capacity, but the factors which determine latency of data transfer will grow
sub-linearly at best, or more likely remain constant. Thus computing machines
will not get much faster. But they will have the parallel computing power and
storage capacity that we used to only get from specialist hardware. As a result,
smaller numbers of supercomputers will be built but at even higher cost. From an
application development point of view, this will require a fundamental paradigm
shift from the currently sequential or parallel programming approach in scientific
applications to a mix of parallel and distributed programming that builds programs
that exploit low latency in multi core CPUs. But they are explicitly designed to cope
with high latency whenever the task at hand requires more computational resources
than can be provided by a single machine. Computing machines can be networked
into clouds or grids of clusters and perform tasks that were traditionally restricted to
supercomputers at a fraction of the cost. A consequence of building grids over wide-
area networks and across organizational boundaries is that the currently prevailing
synchronous approach to distributed programming will have to be replaced with
a fundamentally more reliable asynchronous programming approach. A first step
in that direction is Service-Oriented Architectures (SOA) that have emerged and
support reuse of both functionality and data in cross-organizational distributed
computing settings. The paradigm of SOA and the web-service infrastructures
facilitate this roadmap (Shadbolt et al., 2006). Traditionally, scientists have been
good at sharing and reusing each other’s application and infrastructure code. In
order to take advantage of distributed computing resources in a grid, scientists will
increasingly also have to reuse code, interface definitions, data schemas and the
distributed computing middleware required to interact in a cluster or grid. The
fundamental primitive that SOA infrastructures provide is the ability to locate
and invoke a service across machine and organizational boundaries, both in a
synchronous and an asynchronous manner. The implementation of a service can be
achieved by wrapping legacy scientific application code and resource schedulers,
which allows for a viable migration path (Taylor, 2007). Computational scientists
will be able to flexibly orchestrate these services into computational workflows.
The standards available for service design and their implementation support the
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rapid definition and execution of scientific workflows. With the advent of abstract
machines, it is now possible to mix compilation and interpretation as well as
integrate code written in different languages seamlessly into an application or service.
These platforms provide a solid basis for experimenting with and implementing
domain-specific programming languages and we expect specialist languages for
computational science to emerge that offer asynchronous and parallel programming
models while retaining the ability to interface with legacy Fortran, C, C++ and Java
code. Finally, scalability of algorithms can be an issue. Most existing ML methods
scale badly with both increasing number of records and/or of dimensionality (i.e.,
input variables or features): the very richness of our data sets makes them difficult
to analyze. This can be circumvented by extracting subsets of data, performing the
training and validation of the methods on these manageable data subsets, and then
extrapolating the results to the whole data set. This approach obviously does not
use the full informational content of the data sets, and may introduce biases which
are often difficult to control. Typically, a lengthy fine tuning procedure is needed
for such sub-sampling experiments, which may require tens or sometimes hundreds
of experiments to be performed in order to identify the optimal DM method for
the problem in hand, or, a given method, the optimal architecture or combination
of parameters. DAMEWARE (see Brescia et al. 2010b and section 3.1 for more
details) resource was designed by taking all these issues into account.

2.2.1 Data Mining Packages

There are also various free DM/KDD packages commonly used in the academic
community that would be suitable for adoption by the astronomical community,
although their uptake has also been relatively slow. Several of them have been
evaluated in this context by Donalek et al. (2011), including Orange, Rapid Miner,
Weka, VoStat and DAME (see below).

Orange1 is an intuitive data mining desktop application; most standard data
mining techniques have been implemented such as decision trees, kNN, SVM,
random forests, K-means, etc. The “Orange Canvas” UI is quite intuitive. All
tasks are performed as schemas constructed using widgets that can be individually
configured. This interface is quite convenient for people who run at the thought of
programming since it allows a more natural click-and-drag connection flow between
widgets. Widgets can be thought of as black boxes that take in an input connection
from the socket on their left and output their results to the socket on their right.
Workflows can thus be easily constructed between data files, learning algorithms
and evaluation routines. However, although it is quite straightforward to setup
experiments in the UI, their successful execution is not always guaranteed.

Weka2 is a cross-platform DM package, written in Java. Most standard methods
have been implemented. There is also a wide range of more classification algorithms

1http://orange.biolab.si
2http://www.cs.waikato.ac.nz/$\sim$ml/weka

http://orange.biolab.si
http://www.cs.waikato.ac.nz/$\sim $ml/weka
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available as plug-ins to Weka including learning vector quantization, self-organizing
maps, and feed-forward ANNs.

Rapid Miner3 also has most standard DM/KDD methods implemented. There
are plug-ins available to interface with Weka, R and other major DM packages, so
all operations from these can be integrated as well. DAME is described in more
detail below. We note that given the increasing volumes and complexity of data sets
in astronomy, it is inevitable that these modern DM/KDD tools will be increasingly
more used by the community.

Data Mining and Exploration4 (DAME) web application (Brescia et al., 2010b,
2012c), a joint effort between the Astroinformatics groups at University Federico
II, the Italian National Institute of Astrophysics, and the California Institute of
Technology. DAME aims at solving in a practical way some of the DM problems,
by offering a completely transparent architecture, a user-friendly interface, and the
possibility to seamlessly access a distributed computing infrastructure. It adopts VO
standards in order to facilitate interoperability of data; however, at the moment, it is
not yet fully VO compliant. This is partly due to the fact that new standards need to
be defined for data analysis, DM methods and algorithm development. In practice,
this implies a definition of standards in terms of an ontology and a well-defined
taxonomy of functionalities to be applied to the astrophysical use cases.

DAME offers asynchronous access to the infrastructure tools, thus allowing the
running of jobs and processes outside the scope of any particular web application,
and independent of the user connection status. The user, via a simple web browser,
can access application resources and can keep track of his jobs by recovering related
information (partial/complete results) without having to keep open a communication
socket. Furthermore, DAME has been designed to run both on a server and on a
distributed computing infrastructure (e.g., Grid or Cloud).

A detailed technical description of the other components can be found in Brescia
et al. (2010b) and in section 3.1.

In the following sections I shall outline three data mining models which I either
implemented or helped to integrate, in DAMEWARE during my PhD work.

2.3 Model 1: SVM - Support Vector Machines

Support vector machines (SVMs, Boser et al. 1992, also support vector net-
works) are supervised learning models with associated learning algorithms that
analyze data and recognize patterns, used for classification and regression analysis;

3http://rapid-i.com/content/view/181/196
4http://dame.dsf.unina.it/ or http://dame.caltech.edu/
this section is largely extracted from:
• Brescia, M.; Cavuoti, S.; Paolillo, M.; Longo, G.; Puzia, T.; 2012, The detection of Globular Clusters in galaxies as a data mining problem,

MNRAS, Volume 421, Issue 2, pp. 1155-1165, available at arXiv:1110.2144v1.

• Cavuoti, S.; Brescia, M.; D’Abrusco, R.; Longo, G.; Photometric AGN Classification in the SDSS with Machine Learning Methods to be
Submitted to MNRAS

http://rapid-i.com/content/view/181/196
http://dame. dsf.unina.it/
http://dame.caltech.edu/
http://arxiv.org/abs/1110.2144v1
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Figure 2.1: Three possible hyperplanes, H1 does not separate the classes. H2 does,
but only with a small margin. H3 separates them with the maximum margin.

I applied SVM in two classification cases described in sections: 4.3 and 4.2; SVM
were also ported into DAMEWARE.

The basic SVM takes a set of input data and predicts, for each given input, which
of two possible classes forms the output, making it a non-probabilistic binary linear
classifier. Given a set of training examples, each marked as belonging to one of two
categories, a SVM training algorithm builds a model that assigns new examples
into one category or the other. A SVM model is a representation of the examples as
points in space, mapped so that the examples of the separate categories are divided
by a clear gap that is as wide as possible. New examples are then mapped into
that same space and predicted to belong to a category based on which side of the
gap they fall on. SVM models were originally defined for the classification of two
classes of objects linearly separable by identifying the hyperplane with the best
margin, in figure 2.1 we can see what we mean with best.

Obviously SVM can be used also to separate classes that are not separable by a
linear classifier, otherwise their application in real cases will be not feasible.

In addition to performing linear classification, SVMs can efficiently perform
non-linear classification using what is called the kernel trick, implicitly mapping
their inputs into high-dimensional feature spaces, see figure 2.3.
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Figure 2.2: In a plane three points are always linearly separable, four are not ever
separable, credit of Ivanciuc O. (2007).

Figure 2.3: Original points are mapped in the feature space via a feature function
where the solution is found.
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More formally, a support vector machine constructs a hyperplane or set of
hyperplanes in a high- or infinite-dimensional space, which can be used for clas-
sification, regression, or other tasks. Intuitively, a good separation is achieved by
the hyperplane that has the largest distance to the nearest training data point of any
class (so-called functional margin), since in general the larger the margin the lower
the generalization error of the classifier.

Given a training set of instance-label pairs (xi, yi), i = 1...l where xi ∈ Rn and
yi ∈ {1,−1}l, , the support vector machines require the solution of the following
optimization problem:

min
w,b,ξ

1
2

wT w + C
l∑

i=1

ξi (2.1)

subjet to the following conditon:

yi(wTφ(xi) + b) ≥ 1 − ξi (2.2)

ξ ≥ 0 (2.3)

Here training vectors xi are mapped into a higher (maybe infinite) dimensional
space by the function φ. Then SVM finds a linear separating hyperplane, represented
by its support vectors, with the maximal margin in this higher dimensional space.
C > 0 is the penalty parameter of the error term. Furthermore, K(xi; x j) ≡ φ(xi)T (x j)
is called the kernel function. The usual four basic kernels are:

• linear: K(xi, x j) = xT
i x j

• polynomial: K(xi, x j) = (γxT
i x j + r)d, γ > 0

• radial basis function (RBF): K(xi, x j) = exp(−γ ‖ xi − x j ‖
2), γ > 0

• sigmoid: K(xi, x j) = tanh(γxT
i x j + r)

Here, γ, r, and d are kernel parameters. The RBF kernel nonlinearly maps
samples into a higher dimensional space, so it, unlike the linear kernel, can handle
the case when the relation between class labels and attributes is nonlinear. Fur-
thermore, the linear kernel is a special case of RBF as Keerthi and Lin (Keerthi
& C.J. Lin, 2003) shows that the linear kernel with a penalty parameter C has the
same performance as the RBF kernel with some parameters (C, γ). In addition, the
sigmoid kernel behaves like RBF for certain parameters.

2.3.1 SVM parameter determination strategy

There are two parameters while using RBF kernels with the C-SVC model: C
(from the model) and γ (from the kernel). It is not known in principle which C and γ
are the best for one problem; consequently some kind of model selection (parameter
search) must be done. The goal is to identify good values of the parameters (C; γ)
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so that the classifier can accurately predict unknown data (i.e., testing data). Note
that it may not be useful to achieve high training accuracy (i.e., classifiers accurately
predict training data whose class labels are indeed known). Therefore a common
way is to split the training samples into two groups, respectively, the training set,
used to train the model, and the test set, used a posteriori to validate the trained
model performances. Then the prediction accuracy on this set can more precisely
respect the performance on classifying unknown data. An improved version of this
procedure is a technique known as cross validation. In v-fold cross-validation, we
first divide the training set into v subsets of equal size. Sequentially one subset is
tested using the classifier trained on the remaining v-1 folder. Thus, each instance
of the whole training set is predicted once so the cross-validation accuracy is the
percentage of data which are correctly classified. The cross-validation procedure
can prevent the overfitting problem. The experiments that we are going to present
are made with five folders. C, γ ∈ <+ need to bee evalutated by finding the
maximum on a grid of values wich is usually defined by letting C and γ vary as:
C = 2−5, 2−3, ...215, γ = 2−15, 2−13...23. A practical application will be discussed
in section 4.3.

2.4 Model 21: MLPQNA - Multi Layer Perceptron trained
with Quasi Newton Algorithm

From a technical point of view, the MLPQNA method, is a Multi Layer Per-
ceptron (MLP; Bishop 2006) implemented with a learning rule based on the Quasi
Newton Algorithm (QNA); in other words and as it is synthesized in the acronym,
MLPQNA differs from more traditional MLPs implementations in the way the
optimal solution of the regression problem is found.
The algorithm was involved in several experiments on astronomical datasets, both
in regression (photometric redshift on galaxies, sec 5.1, and quasar, sec 5.2) and
classification (active galactic nuclei, section 4.3, globular clusters, section 4.2, and
transients, section 6) with remarkable results.
According to Bishop (2006), feed forward neural networks (in their various im-
plementations) provide a general framework for representing non linear functional
mappings between a set of input variables (also called features) and a set of output
variables (the targets).
The MLP architecture is one of the most typical feed-forward neural network model.
The term feed-forward is used to identify basic behavior of such neural models, in
which the impulse is propagated always in the same direction, e.g. from neuron

this section is largely extracted from:
• Brescia, M.; Cavuoti, S.; D’Abrusco, R.; Longo, G.; Mercurio, A.; 2013, Photo-z prediction on WISE - GALEX - UKIDSS - SDSS Quasar

Catalogue, based on the MLPQNA model, Submitted to ApJ

• Cavuoti, S.; Brescia, M.; Longo, G.; Mercurio, A.; 2012, Photometric Redshifts with Quasi Newton Algorithm (MLPQNA). Results in the
PHAT1 Contest, A&A, Vol. 546, A13, pp. 1-8

• Brescia, M.; Cavuoti, S.; Paolillo, M.; Longo, G.; Puzia, T.; 2012, The detection of Globular Clusters in galaxies as a data mining problem,
MNRAS, Volume 421, Issue 2, pp. 1155-1165, available at arXiv:1110.2144v1.

http://arxiv.org/abs/1110.2144v1
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input layer towards output layer, through one or more hidden layers (the network
brain), by combining weighted sum of weights associated to all neurons (except
the input layer). As easy to understand, the neurons are organized in layers, with
proper own role. The input signal, simply propagated throughout the neurons of
the input layer, is used to stimulate next hidden and output neuron layers. The
output of each neuron is obtained by means of an activation function, applied to
the weighted sum of its inputs. Different shape of this activation function can be
applied, from the simplest linear one up to sigmoid. The number of hidden layers
represents the degree of the complexity achieved for the energy solution space in
which the network output moves looking for the best solution. As an example, in a
typical classification problem, the number of hidden layers indicates the number
of hyper-planes used to split the parameter space (i.e. number of possible classes)
in order to classify each input pattern. What is different in such a neural network
architecture is typically the learning algorithm used to train the network. It exists a
dichotomy between supervised and unsupervised learning methods.

In the first case, the network must be firstly trained (training phase), in which the
input patterns are submitted to the network as couples (input, desired known output).
The feed-forward algorithm is then achieved and at the end of the input submission,
the network output is compared with the corresponding desired output in order to
quantify the learning quote. It is possible to perform the comparison in a batch
way (after an entire input pattern set submission) or incremental (the comparison is
done after each input pattern submission) and also the metric used for the distance
measure between desired and obtained outputs, can be chosen accordingly problem
specific requirements (in the MLP-BP the MSE, Mean Square Error, is used). After
each comparison and until a desired error distance is unreached (typically the error
tolerance is a precalculated value or a constant imposed by the user), the weights of
hidden layers must be changed accordingly to a particular law or learning technique.
After the training phase is finished (or arbitrarily stopped), the network should be
able not only to recognize correct output for each input already used as training set,
but also to achieve a certain degree of generalization, i.e. to give correct output for
those inputs never used before to train it. The degree of generalization varies, as
obvious, depending on how good has been the learning phase. This important feature
is realized because the network does not associates a single input to the output, but
it discovers the relationship present behind their association. After training, such
a neural network can be seen as a black box able to perform a particular function
(input-output correlation) whose analytical shape is a priori not known. In order
to gain the best training, it must be as much homogeneous as possible and able
to describe a great variety of samples. Bigger the training set, higher will be the
network generalization capability. Despite of these considerations, it should been
always taken into account that neural networks application field should be usually
referred to problems where it is needed high flexibility (quantitative result) more
than high precision (qualitative results). Concerning the hidden layer choice, there
is the possibility to define zero hidden layers (SLP, Single Layer Perceptron, able to
solve only linear separation of the parameter space), 1 or 2 hidden layers, depending
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Figure 2.4: Scheme of a Multi Layer Perceptron general architecture for two input
variables and one output value.

on the complexity the user wants to introduce in the not linear problem solving
experiment.

Second learning type (unsupervised) is basically referred to neural models
able to classify/cluster patterns onto several categories, based on their common
features, by submitting training inputs without related desired outputs. This is not
the learning case approached with the MLP architecture, so it is not important to
add more information in this document.

The training of a neural network can be in fact seen as the search for the function
which minimizes the errors of the predicted values with respect to the true values
available for a small but significant subsample of objects in the same data set. This
subset is also called training set or knowledge base. The final performances of
a specific Neural Network (NN) depend on many factors, such as topology, the
way the minimum of the error function is searched and found, the way errors are
computed, as well as the intrinsic quality of training data.
The formal description of a feed-forward neural network with two computational
layers is given in the Eq. 2.4:

yk =

M∑
j=0

w(2)
k j g

 d∑
i=0

w(1)
ji xi

 (2.4)

Equation 2.4 can be better understood by using a graph like the one which is
shown in Figure 2.4. The input layer (xi) is made of a number of neurons (also
known as perceptrons) equal to the number of input variables (d); the output layer,
on the other hand, will have as many neurons as the output variables (k). In the
general case, the network may have an arbitrary number of hidden layers (in the
depicted case there is just one hidden layer as in most real implementations) each
of one can be formed by an arbitrary number of neurons (M). In a fully connected
feed-forward network each node of a layer is connected to all the nodes in the
adjacent layers. Each connection is represented by an adaptive weight

(
wl

k j

)
which

can be regarded as the the strength of the synaptic connection between neurons
k and j, while the response of each perceptron to the inputs is represented by a
non-linear function g, referred to as the activation function.

Eq. 2.4 assumes a linear activation function for the neurons in the output layer.
All the above characteristics, the topology of the network and the weight matrix
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of its connections, define a specific implementation and are usually called model.
The model, however, is only part of the story. In fact, in order to find the model that
best fits the data in a specific problem, one has to provide the network with a set
of examples, id est of objects for which the final output is known by independent
means. These data form the so called training set or Knowledge Base (KB) and
through a learning rule are used by the network to find the optimal model.
In our implementation we choose as learning rule the Quasi Newton Algorithm
(QNA), which differs from the Newton Algorithm in how the Hessian of the error
function is computed. Newtonian models are variable metric methods used to find
local maxima and minima of functions (Davidon, 1968) and, in the case of MLPs,
they can be used to find the stationary (i.e. the zero gradient) point of the learning
function. The complete mathematical description of the MLP with QNA model is
reported in the section 2.4.2.
The model is publicly made available through the DAMEWARE (DAta Mining &
Exploration Web Application REsource5; Cavuoti et al. 2012c).

2.4.1 The implementation of MLPQNA

In this work we use our implementation of the QNA based on the limited-
memory BFGS (L-BFGS; Byrd et al. 1994), where BFGS is the acronym composed
of the names of the four inventors (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970).

Summarising, the algorithm for MLP with QNA is the following:
Let us consider a generic MLP with w(t) being the weight vector at time (t).

1. Initialize all weights w(0) with small random values (typically normalized in
[−1, 1]), set constant ε and t = 0;

2. present to the network all training set and calculate E(w(t)) as the error
function for the current weight configuration;

3. if t = 0 then d(t) = −∇E(t)

4. else d(t) = −∇E(t−1) + Ap + Bν, where p = w(t+1) − w(t) and ν = g(t+1) − g(t);

5. calculate w(t+1) = w(t) − αd(t), where α is obtained by line search equation
(see Eq. 2.10 in the Appendix);

6. calculate A and B for the next iteration, as reported in Eq. 2.23;

7. if E(w(t+1)) > ε then t = t + 1 and goto (ii), else STOP.

5http://dame.dsf.unina.it/beta info.html
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As it is known, all line search methods, being based on techniques which search
for the minimum error by exploring the error function surface, are likely to get
stuck in a local minimum and many solutions have been proposed (Floudas &
Jongen , 2005). In order to accelerate the convergence of Gradient Descent Analysis
(GDA, see Appendix), Newton’s method uses the information on the second-order
derivatives. QNA is able to better optimize the convergence time by approximating
second-order information with first-order terms (Shanno , 1990).

By having information on the second derivatives, QNA is able to avoid local
minima of the error function and to be more precise in the error function trend
follow-up, thus revealing a natural capability to find the absolute minimum error of
the optimization problem.

In the L-BFGS version of the algorithm, in the case of high dimensionality
(i.e. input data with many parameters), the amount of memory required to store the
Hessian is too big, along with the machine time required to process it. Therefore,
instead of using a complete number of gradient values to generate the Hessian, we
can use a smaller number of values.

On the one hand, the convergence slows down, performances could even in-
crease. A statement which only a first sight might seem paradoxical but, while the
convergence is measured by the number of iterations, the performance depends on
the number of processor’s time units spent to calculate the result.

Related to the computational cost there is also the strategy adopted in terms of
stopping criteria for the method. As it is known, the process of adjusting the weights
based on the gradients is repeated until a minimum is reached. In practice, one has
to decide the stopping condition of the algorithm. Among the possible criteria, the
algorithm could be terminated when: (i) the gradient becomes sufficiently small
(by definition the gradient will be zero at a minimum); (ii) based on the error to be
minimized, in terms of a fixed threshold; (iii) based on the cross validation.
The cross validation can be used to monitor generalization performance during train-
ing and to terminate the algorithm when there is no more improvement. Statistically
significant results come out by trying multiple independent data partitions and then
averaging the performances. There are several variants of cross validation methods
(Sylvain & Celisse, 2010). We, in particular, have chosen the k-fold cross validation,
particularly suited in presence of a scarcity of known data samples (Geisser, 1975).
The mechanism, also known as leave-one-out, is quite simple, since it consists in
dividing the training set of N samples into k subsets (k > 1). The model is then
trained on N − 1 subsets and validated by testing it on the left out subset. This
procedure is then iterated leaving out each time a different subset for validation and
its squared error is averaged on all cycles.

2.4.2 The Quasi Newton learning rule

Most Newton methods use the Hessian of the function to find the stationary point
of a quadratic form. It needs to be stressed, however, that the Hessian of a function
is not always available and in many cases it is far too complex to be computed in
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an analytical way. More often it is easier to compute the function gradient which
can be used to approximate the Hessian via N consequent gradient calculations. In
order to better understand why QNA are so powerful, it is convenient to start from
the classical and quite common Gradient Descent Algorithm (GDA) used for Back
Propagation (Bishop, 2006). In GDA, the direction of each updating step for the
MLP weights is derived from the error descent gradient, while the length of the
step is determined from the learning rate. This method is inaccurate and ineffective
and therefore may get stuck in local minima. A more effective approach is to move
towards the negative direction of the gradient (line search direction) not by a fixed
step, but by moving towards the minimum of the function along that direction. This
can be achieved by first deriving the descent gradient and then by analyzing it with
the variation of the learning rate (Brescia, 2012d). Let us suppose that at step t, the
current weight vector is w(t), and let us consider a search direction d(t) = −∇E(t).
If we select the parameter λ in order to minimize E(λ) = E(w(t) + λd(t)), the new
weight vector can be expressed as:

w(t+1) = w(t) + λd(t) (2.5)

and the problem of line search becomes a 1-dimensional minimization problem
which can be solved in many different ways. Simple variants are: i) to move E(λ) by
varying λ by small intervals, then evaluate the error function at each new position,
and stop when the error begins to increase, or ii) to use the parabolic search for a
minimum and compute the parabolic curve crossing pre-defined learning rate points.
The minimum d of the parabolic curve is a good approximation of the minimum of
E(λ) and it can be derived by means of the parabolic curve which crosses the fixed
points with the lowest error values.

Another approach makes instead use of trust region based strategies which
minimize the error function, by iteratively growing or contracting the region of the
function by adjusting a quadratic model function which best approximates the error
function. In this sense this technique can be considered as a dual to line search, since
it tries to find the best size of the region by fixing the step size (while the line search
strategy always chooses the step direction before selecting the step size), (Celis et
al. , 1985). All these approaches, however, rely on the assumption that the optimal
search direction is given at each step by the negative gradient: an assumption which
not only is not always true, but can also lead to serious wrong convergence. In fact,
if the minimization is done along the negative gradient direction, the subsequent
search direction (the new gradient) will be orthogonal to the previous one: in fact,
note that when the line search founds the minimum, it is:

∂E
∂λ

(w(t) + λd(t)) = 0 (2.6)

and hence,
g(t+1)T d(t) = 0 (2.7)
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where g ≡ ∇E. The iteration of the process therefore leads to oscillations of the
error function which slow down the convergence process.

The method implemented here relies on selecting other directions so that the
gradient component, parallel to the previous search direction, would remain un-
changed at each step. Suppose that you have already minimized with respect to the
direction d(t) starting from the point w(t) and reaching the point w(t+1), where Eq.
2.7 becomes:

g(w(t+1))T d(t) = 0 (2.8)

by choosing d(t+1) so to preserve the gradient component parallel to d(t) equal to
zero, it is possible to build a sequence of directions d in such a way that each
direction is conjugated to the previous one on the dimension |w| of the search space
(this is known as conjugate gradients method; Golub & Ye 1999).

In presence of a squared error function, the update weights algorithm is:

w(t+1) = w(t) + α(t)d(t) (2.9)

with:

α(t) = −
d(t)T g(t)

d(t)T Hd(t) (2.10)

Furthermore, d can be obtained for the first time via the negative gradient and
in the subsequent iterations, as a linear combination of the current gradient and of
the previous search directions:

d(t+1) = −g(t+1) + β(t)d(t) (2.11)

with:

β(t) =
g(t+1)T Hd(t)

d(t)T Hd(t) (2.12)

This algorithm finds the minimum of a square error function at most in |w|
steps but at the price of a high computational cost, since in order to determine
the values of α and β, it makes use of that hessian matrix H which, as we already
mentioned, is very demanding in terms of computing time. A fact which puts
serious constraints on the application of this family of methods to medium/large
data sets. Excellent approximations for the coefficients α and β can, however, be
obtained from analytical expressions that do not use the Hessian matrix explicitly.
For instance, β can be calculated through any one of the following expressions
(respectively Hestenes & Stiefel 1952; Fletcher & Reeves 1964; Polak & Ribiere
1969):

Hestenes − S ite f el : β(t) =
g(t+1)T (g(t+1) − g(t))
d(t)T (g(t+1) − g(t))

(2.13)

Fletcher − Reeves : β(t) =
g(t+1)T g(t+1)

g(t)T g(t) (2.14)
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Polak − Ribiere : β(t) =
g(t+1)T (g(t+1) − g(t))

g(t)T g(t) (2.15)

These expressions are all equivalent if the error function is square-typed, otherwise
they assume different values. Typically the Polak-Ribiere equation obtains better
results because, if the algorithm is slow and subsequent gradients are quite alike
between them, its equation produces values of β such that the search direction tends
to assume the negative gradient direction (Vetterling & Flannery , 1992).

Concerning the parameter α, its value can be obtained by using the line search
method directly. The method of conjugate gradients reduces the number of steps
to minimize the error up to a maximum of |w| because there could be almost |w|
conjugate directions in a |w|-dimensional space. In practice however, the algorithm
is slower because, during the learning process, the property conjugate of the search
directions tends to deteriorate. It is useful, to avoid the deterioration, to restart the
algorithm after |w| steps, by resetting the search direction with the negative gradient
direction.

By using a local square approximation of the error function, we can obtain an
expression for the minimum position. The gradient in every point w is in fact given
by:

∇E = H × (w − w∗) (2.16)

where w∗ corresponds to the minimum of the error function, which satisfies the
condition:

w∗ = w − H−1 × ∇E (2.17)

The vector −H−1 × ∇E is known as Newton direction and it is the base for a
variety of optimization strategies, such as for instance the QNA, which instead of
calculating the H matrix and then its inverse, uses a series of intermediate steps of
lower computational cost to generate a sequence of matrices which are more and
more accurate approximations of H−1.

From the Newton formula (Eq. 2.17) we note that the weight vectors on steps t
and t + 1 are correlated to the correspondent gradients by the formula:

w(t+1) − w(t) = −H(−1)(g(t+1) − g(t)) (2.18)

which is known as Quasi Newton Condition. The approximation G is therefore built
in order to satisfy this condition. The formula for G is:

G(t+1) = G(t) +
ppT

pTν
−

(G(t)ν)νTG(t)

νTG(t)ν
+ (νTG(t)ν)uuT (2.19)

where the vectors are:

p = w(t+1) − w(t); ν = g(t+1) − g(t); u =
p

pTν
−

G(t)ν

νTG(t)ν
(2.20)

Using the identity matrix to initialize the procedure is equivalent to consider,
step by step, the direction of the negative gradient while, at each next step, the
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direction −Gg is for sure a descent direction. The above expression could carry the
search out of the interval of validity for the squared approximation. The solution
is hence to use the line search to found the minimum of function along the search
direction. By using such system, the weight updating expression (Eq. 2.9) can be
formulated as follows:

w(t+1) = w(t) + α(t)G(T )g(t) (2.21)

where α is obtained by the line search.
One of the main advantage of QNA, compared with conjugate gradients, is that

the line search does not require the calculation of α with a high precision, because it
is not a critical parameter. Unfortunately, however, again, it requires a large amount
of memory to calculate the matrix G (|w| × |w|), for large |w|. One way to reduce the
required memory is to replace at each step the matrix G with a unitary matrix. With
such replacement and after multiplying by g (the current gradient), we obtain:

d(t+1) = −g(t) + Ap + Bν (2.22)

Note that if the line search returns exact values, then the above equation produces
mutually conjugate directions. A and B are scalar values defined as:

A = −(1 + νT ν
pT ν

) pT g(t+1)

pT ν
+

νT g(t+1)

pT ν

B =
pT g(t+1)

pT ν

(2.23)

2.5 Model 3: GAME - Genetic Algorithm Model Experi-
ment

For what scalability is concerned, there are good reasons to believe that in the
near future most aspects of computing will see exponential growth in bandwidth, but
sub-linear or no improvements at all in latency. Moore’s Law (Moore, 1965) will
continue to deliver exponential increases in memory size but the speed with which
data can be transferred between memory and Central Processing Units (CPUs) will
remain more or less constant and marginal improvements can only be made through
advances in caching technology (Akhter & Roberts, 2006). Certainly Moore’s law
still leaves room for the creation of parallel computing capabilities on single chips
by packing multiple CPU cores onto it, but the clock speed that determines the
speed of computation is constrained to remain limited by a thermal wall (Sutter,
2005). Thus it has to be expected that individual CPUs will not become much
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faster in the near future, even though they will have the parallel computing power
and storage capacity that today can be provided only via specialized hardware.
From the application development point of view, to build programs capable to
exploit low latency in multi core CPUs will require a fundamental shift from the
currently sequential or parallel programming, to a mixture of parallel and distributed
programming. In recent years a few groups have began to test the possibility to solve
some of the above problems by means of General Purpose Graphical Processing
Unit (known as GPGPU; NVIDIA Corp. 2012) parallel technologies. Among
the most known parallel programming models, we quote the OpenCL6 (Open
Computing Language), which is a foundation layer of platform-independent tools;
CUDA7 (Compute Unified Device Architecture): a general purpose architecture
that leverages the parallel compute engine within GPUs to solve many complex
computational problems in a more efficient way than on a single CPU and, finally,
OpenACC8, a set of compiling directives allowing programmers to create high-
level CPU+GPU applications without the need to explicitly manage the parallel
architecture configuration and its communication with the CPU host. In astronomy,
pioneering attempts to use the Graphical Processing Unit (GPU) technology have
been made in an handful of applications. GPUs were attempted mainly to speed up
numerical simulations (e.g. Nakasato 2011; Valdez-Balderas et al. 2012) of various
types from traditional N-body to fluid dynamics; but also to perform complex
repetitive numerical tasks such as computation of correlation functions (Ponce et
al., 2012), real time processing of data streams (Barsdell et al., 2012), and complex
visualization (Hassan et al., 2012), to quote just a few.
In this section I present the implementation on GPUs of the multi-purpose Genetic
Algorithm Model Experiment (GAME), capable to deal with both regression and
classification problems. The serial version of this algorithm was implemented by
our groups to be deployed on the DAME hybrid distributed infrastructure and made
available to the community through the DAMEWARE (DAME Web Application
REsource; Brescia et al. 2010b; Djorgovski et al. 2012d) web application. The
present paragraph is structured as follows: Sec. 2.5.1 presents the design and serial
implementation of the GAME model; describes the knowledge base (astrophysical
dataset), used for the experiments; Sec. 2.5.1 is dedicated to the overview of the
GPU technology in the astrophysical context, Sec 2.5.2 present the parallelization
strategy while the experiments and results are described in Sec. 2.5.3, just before
our conclusions.

2.5.1 GAME

Genetic algorithms (Mitchell, 1998) are derived from Darwin’s evolution law
(Darwin, 1859) and are intrinsically parallel in their learning evolution rule and
processing data patterns. This implies that the parallel computing paradigm can

6http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/
7https://developer.nvidia.com/what-cuda
8http://www.openacc-standard.org/

http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/
https://developer.nvidia.com/what-cuda
http://www.openacc-standard.org/
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lead to a strong optimization in terms of processing performances. Genetic and
evolutionary algorithms are an important family of supervised Machine Learning
models which tries to emulate the evolutionary laws that allow living organisms to
adapt their life style to the outdoor environment and survive.
In the optimization problems which can be effectively tackled with genetic / evolu-
tionary models, a key concept is the evaluation function (or fitness in evolutionary
jargon), used to determine which possible solutions get passed on to multiply and
mutate into the next generation of solutions. This is usually done by analyzing
the genes, which refer to some useful information about a particular solution to
the problem under investigation. The fitness function looks at the genes, performs
some qualitative assessment and then returns the fitness value for that solution.
The remaining parts of the genetic algorithm discard all solutions having a poor
fitness value, and accept only those with a good fitness value. Frequently, the fitness
function has not a closed mathematical expression and, for instance, in some cases
it may be given under the form of the simulation of a real physical system.
GAME is a pure genetic algorithm specially designed to solve supervised optimiza-
tion problems related with regression and classification functionalities. It is scalable
to efficiently manage massive datasets and is based on the usual genetic evolution
methods which will be shortly outlined in what follows.
As a supervised machine learning technique, GAME requires to select and create
the data parameter space, i.e. to create the data input patterns to be evaluated. It is
important in this phase to build homogeneous patterns, i.e. with each pattern having
the same type and number of parameters (or features), as well as to prepare the
datasets which are needed for the different experiment steps: training, validation
and test sets, by splitting the parameter space into variable subsets to be submitted
at each phase. The dataset must include also target values for each input pattern, i.e.
the desired output values, coming from any available knowledge source.
From an analytic point of view, in the data mining domain, a pattern is a single
sample of a real problem, composed by a problem-dependent number of features
(sometimes called attributes), which is characterized by a certain S/N (Signal-
to-Noise) ratio. In other words, such pattern contains an unspecified amount of
information, hidden among its correlated features, that an unknown analytical rela-
tion is able to transform into the correct output. Usually, in real cases (such as the
astronomical ones), the S/N ratio is low, which means that feature correlation of a
pattern is masked by a considerable amount of noise (intrinsic to the phenomenon
and/or due to the acquisition system); but the unknown correlation function can ever
be approximated with a polynomial expansion.

The generic function of a polynomial sequence is based on these simple consid-
erations:
Given a generic dataset with N features and a target t, let pat be a generic input
pattern of the dataset, pat = ( f1, ..., fN , t) and g(x) a generic real function. The rep-
resentation of a generic feature fi of a generic pattern, with a polynomial sequence
of degree d is:
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G( fi) � a0 + a1g( fi) + ... + adgd( fi) (2.24)

Hence, the k-th pattern (patk) with N features may be written as:

Out(patk) �
N∑

i=1

G( fi) � a0 +

N∑
i=1

d∑
j=1

a jg j( fi) (2.25)

and the target tk, related to pattern patk, can be used to evaluate the approxima-
tion error (the fitness) of the input pattern to the expected value:

Ek = (tk − Out(patk))2 (2.26)

If we generalize eq. 2.25 to an entire dataset, with NP number of patterns
(k = 1, ...,NP), the forward phase of the GA (Genetic Algorithm) consists of the
calculation of NP expressions of the eq. 2.25, which represent the polynomial
approximation of the dataset.
In order to evaluate the fitness of the NP patterns as extension of eq. 2.26, the Mean
Square Error (MSE) or Root Mean Square Error (RMSE) may be used:

MS E =

NP∑
k=1

(tk − Out(patk))2

NP
(2.27)

RMS E =

√√√√√ NP∑
k=1

(tk − Out(patk))2

NP
(2.28)

On the basis of the above, we obtain a GA with the following characteristics:

• The expression in eq. 2.25 is the fitness function;
• The array (a0, ..., aM) defines M genes of the generic chromosome (initially

they are generated random and normalized between -1 and +1);
• All the chromosomes have the same size (constrain from a classic GA);
• The expression in eq. 2.26 gives the standard error to evaluate the fitness level

of the chromosomes;
• The population (genome) is composed by a number of chromosomes imposed

from the choice of the function g(x) of the polynomial sequence.

The number of chromosomes is determined by the following expression:

NUMchromosomes = (B · N) + 1 (2.29)

where N is the number of features of the patterns and B is a multiplicative factor
that depends on the g(x) function, which in the simplest case is just 1, but can be
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even 3 or 4 in more complex cases. The parameter B also influences the dimension
of each chromosome (number of genes):

NUMgenes = (B · d) + 1 (2.30)

where d is the degree of the polynomial. In more general terms, the polynomial
expansion within the fitness function, defined in eq. 2.25, could be arbitrarily chosen
and we conceived the implementation code accordingly. In the specific context of
this work we decided to adopt the trigonometric polynomial expansion, given by
the following expression (hereinafter polytrigo):

g(x) = a0 +

d∑
m=1

am cos(mx)+
d∑

m=1

bm sin(mx) (2.31)

In order to have NP patterns composed by N features, the expression using
eq. 2.25 with degree d, is:

Out(patk=1...NP) �
N∑

i=1

G( fi) � a0 +

+

N∑
i=1

d∑
j=1

a j cos( j fi) +

N∑
i=1

d∑
j=1

b j sin( j fi) (2.32)

In the last expression we have two groups of coefficients (sine and cosine), so B
will assume the value 2. Hence, the generic genome (i.e. the population at a generic
evolution stage), will be composed by 2N + 1 chromosomes, given by eq. 2.29,
each one with 2d + 1 genes [a0, a1, ..., ad, b1, b2, ..., bd], given by eq. 2.30, with
each single gene (coefficient of the polynomial) in the range [−1,+1] and initially
randomly generated.

By evaluating the goodness of a solution through the MSE or RMSE metrics, it
may happen that a better solution in terms of MSE corresponds to a worse solution
for the model, for example when we have a simple crispy (jargon for classification
with sharp boundaries between adjacent classes) classification problem with two
patterns (class types 0 and 1).
As an example, if the solutions are, respectively, 0.49 for the class 0 and 0.51 for the
class 1, the efficiency (i.e. the percentage of objects correctly classified) is 100%,
with a MS E = 0.24. But a solution of 0 for the class 0 and 0.49 for the class 1
(efficiency of 50%), gives back a MS E = 0.13 and consequently the model will
prefer the second solution, although with a lower efficiency.

In order to circumvent this problem, we decided to implement in GAME what
we could call a convergence tube or Threshold MSE (TMSE):
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{
i f (tk − Out(patk))2 > R⇒ Ek = (tk − Out(patk))2

i f (tk − Out(patk))2 ≤ R⇒ Ek = 0
(2.33)

where R is a user defined numerical threshold in the ]0, 1[ range.
In the previous example, by using R = 0.5 in eq. 2.33, we obtain a T MS E = 0 and
T MS E = 0.13, respectively in the first and second cases, thus indicating that the
first solution is better than the second one, as expected.
Through several cycles, the population of chromosomes, originally started as a
random generation (typically following a normal distribution), is replaced at each
step by a new one which, by having higher fitness value, represents a step forward
towards the best population (i.e. the optimal solution). Typical representations
used are the binary code or the real values in [-1, 1] for each element (gene) of a
chromosome.

As it is typical for the supervised machine learning models, the classification
experiment with GAME is organized in a sequence of functional use cases:

• train: the first mandatory case, consisting into submitting training datasets in
order to build and store the best GA population, where best is in terms of its
problem solving capability;

• test: case to be used in order to verify and validate the learning performance
of the trained GA;

• run: the normal execution mode after training and validation;
• full: a workflow case, including train and test cases in sequence.

The training phase is the most important use case, and is based on a user defined
loop of iterations (schematically shown in Fig. 2.5), whose main goal is to find the
population of chromosomes (i.e. the solutions to the classification problem), having
the maximum fitness.
Three types of random generation criteria can be adopted:

• pseudo-random values from [-1, +1];
• random values from the normal distribution in [-1, +1];
• pseudo-random values from [0, 1].

At each training step there are the following options, which can be chosen by
the user during the configuration phase:

• error function type: MSE, TMSE or RMSE;
• selecting criterion: the genetic selection function to evolve the population of

chromosomes at each training iteration. It is possible to choose between the
classical ranking and roulette types (Mitchell, 1998);
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Figure 2.5: The flow-chart of the CPU-based GAME model implementation.



2.5. MODEL 3: GAME 45

• Elitism, which is a further mechanism to evolve the population. The
user has to choose the number of copies of the winner chromosome, to be
maintained unchanged in the next generation. Main role of elitism is indeed
to preserve the best fitness along evolution (Mitchell, 1998).

In the present work, the idea was to build a GA able to solve supervised
crispy classification and regression problems, typically related to a high-complexity
parameter space where the background analytic function is not known, except for a
limited number of couples of input-target values, representing a sample of known
solutions for a physical category of phenomena (also indicated as the Knowledge
Base, or KB). The goal is indeed to find the best chromosomes so that the related
polynomial expansion is able to approximate the correct classification of the input
patterns. Therefore in our case the fitness function is evaluated in terms of the
training error, obtained as the absolute difference between the target value and the
polynomial expansion output for all patterns.

The training phase is the most important use case, and is based on a user defined
loop of iterations (schematically shown in Fig. 2.5), whose main goal is to find
the population of chromosomes (i.e. the solutions to the classification problem),
having the maximum fitness. At each iteration, the polynomial expansion (whose
coefficients are the genes of each chromosome in the current population), is applied
to all input patterns (forward phase). Then the error between the output of the
polynomial expansions and the pattern targets is evaluated by comparing it with the
user defined threshold. Until the derived error remains higher than the threshold,
a further evolution of the genetic population is achieved and each chromosome is
updated by means of the application of classical genetic operators, i.e. crossover
and mutation (backward phase) (Mitchell, 1998).
At the end of each iteration, the new (evolved) genetic population is ready to be
used in the next loop.

GPU

As mentioned before whenever there is a large quantity of data, there are
two approaches to making learning feasible. The first one is trivial, consisting of
applying the training scheme to a decimated data set. Obviously, in this case, the
information may be easily lost and there is no guarantee that this loss is negligible
in terms of correlation discovery. This approach, however, may turn very useful
in the lengthy optimization procedure that is required by many machine learning
methods (such as neural networks or genetic algorithms). The second method
relies in splitting the problem in smaller parts (parallelization) sending them to
different CPUs (Central Processing Units) and finally combine the results together.
However, implementation of parallelized versions of learning algorithms is not
always easy (Rajaraman & Ullmann, 2010), and this approach should be followed
only when the learning rule, such as in the case of genetic algorithms (Meng &
Fan, 2009), is intrinsically parallel. GPGPU is an acronym standing for General
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Purpose Computing on Graphics Processing Units. It was invented by Mark Harris
in 2002 (Harris, 2003) by recognizing the trend to employ GPU technology for not
graphic applications. In general the graphic chips, due to their intrinsic nature of
multi-core processors (many-core) and being based on hundreds of floating-point
specialized processing units, make many algorithms able to obtain higher (one or
two orders of magnitude) performances than usual CPUs. They are also cheaper,
due to the relatively low price of graphic chip components. Particularly useful
for super-computing applications, often requiring several execution days on large
computing clusters, the GPGPU paradigm may drastically decrease execution times,
by promoting research in a large variety of scientific and social fields (such as, for
instance, astrophysics, biology, chemistry, physics, finance, video encoding and so
on). The critical points for traditional multi-core CPU architecture come out in case
of serial programs. In this case, in the absence of the parallel approach, the processes
are scheduled in such a way that the full load on the CPU is balanced, by distributing
them over the less busy cores each time. However many software products are not
designed to fully exploit the multi-core features, so far the micro-processors are
designed to optimize the execution speed on sequential programs. The choice of
graphic device manufacturers, like NVIDIA Corp., was the many-core technology
(usually many-core is intended for multi-core systems over 32 cores). The many-
core paradigm is based on the growth of execution speed for parallel applications.
Began with tens of cores smaller than CPU ones, such kind of architectures reached
hundreds of core per chip in a few years. Since 2009 the throughput peak ratio
between GPU (many-core) and CPU (multi-core) was about 10:1. It must be issued
that such values are referred mainly to the theoretical speed supported by such
chips, i.e. 1 TeraFLOPS against 100 GFLOPS. Such a large difference has pushed
many developers to shift more computing-expensive parts of their programs on the
GPUs. Therefore, astronomers should perform a cost-benefit analysis and some
initial development to investigate whether their code could benefit from running on
a GPU. Used in the right way and on the right applications, GPUs will be a powerful
tool for astronomers processing huge volumes of data. In a recent paper, Barsdell,
Barnes and Fluke (Barsdell et al., 2010) have analyzed astronomy algorithms to
understand which algorithms can be best engineered to run on GPUs. The authors
used algorithm analysis to understand how algorithms can be optimized to run in
parallel in a GPU environment (as opposed to implementation optimization).

Broadly speaking, the following are features for high efficiency parallelized
algorithms:

• Repetitive operations can be parallelized into many fine-grained elements;

• Standardized mechanisms to access locations in memory;

• Minimize processing threads which execute different instructions;

• Parallelize high intensity arithmetic operations;

• Minimize memory transfers between GPU and host CPU.
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Figure 2.6: The APOD parallel programming cyclic design mechanism.

However, before 2006, GPUs were rather difficult to use, mainly because in
order to access the graphic devices, programmers were conditioned to use specific
APIs (Application Programming Interfaces), based on methods available through
libraries like OpenGL9 and Direct3D10. The limits and poor documentation of these
APIs were strongly undermining the design and development of applications.
In order to better address the GPU-based design, starting from the CPU-based serial
implementation of the GAME model, we chose the ad hoc software development
methodology APOD (Assess, Parallelize, Optimize, and Deploy), see NVIDIA
Corp. (2012). The APOD design mechanism consists first in quickly identifying
the portions of code that can easily exploit and benefit from GPU acceleration, then
in exploiting the optimization task as fast as possible, see Fig. 2.6. The APOD is a
cyclical process: initial speedups can be achieved, tested, and deployed quickly, so
that the cycle can start over to identify further optimization opportunities. At each
APOD cycle the identification of the parts of the code responsible for most of the
execution time is done by investigating the parallelized GPU accelerations. An upper
limit to performance improvement can be derived considering requirements and
constraints, and by applying the Amdahl (Amdahl, 1967) and Gustafson (Gustafson,
1988) laws.

By exposing the parallelism to improve performance and simply maintaining
the code of sequential applications, we are able to ensure also the maximum parallel
throughput on GPU platform. This could be as simple as adding a few preprocessor
directives, such as OpenMP and OpenACC, or it can be done by calling an existing
GPU-optimized library such as cuBLAS, cuFFT, or Thrust. Specifically, Thrust
(Bell & Hoberock, 2011) is a parallel C++ template library resembling the C++ STL
(Standard Template Library), described in Stepanov & Lee (1995), which provides
a rich collection of data parallel primitives such as scan, sort, and reduce, that can
be composed together to implement complex algorithms with concise, readable
source code. After the parallelization step is complete, we can optimize the code to
improve the performance. This phase is based on (i) maximizing parallel execution,

9http://www.opengl.org
10http://msdn.microsoft.com

http://www.opengl.org
http://msdn.microsoft.com
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identifying the most computationally expensive parts of the code, (ii) optimizing
memory usage and (iii) minimizing low bandwidth host-to-device data transfers.

In this context we designed and developed a multi-purpose genetic algorithm
(see section 2.5) implemented with GPGPU/CUDA parallel computing technology.
The model derives from the paradigm of supervised machine learning, addressing
both the problems of classification and regression applied on massive data sets
(Cavuoti et al., 2012a). Since GAs are embarrassing parallel, the GPU computing
paradigm has provided an exploit of the internal training features of the model,
permitting a strong optimization in terms of processing performances. The use
of CUDA translated into a 75x average speedup, by successfully eliminating the
largest bottleneck in the multi-core CPU code. Although a speedup of up to 200X
over a modern CPU is impressive, it ignores the larger picture of use a Genetic
Algorithm as a whole. In any real-world the dataset can be very large (those we
have previously called Massive Data Sets) and this requires greater attention to
GPU memory management, in terms of scheduling and data transfers host-to-device
and vice versa. Moreover, the identical results for classification and regression
functional cases demonstrated the consistency of the implementation, enhancing
the scalability of the proposed GAME model when approaching massive data sets
problems.

2.5.2 The parallelization of GAME

In all execution modes (use cases), GAME exploits the polytrigo function
defined by eq. 2.31, consisting in a polynomial expansion in terms of sum of sines
and cosines.

In particular, this calculation involves the following operations:

1. randomly generate the initial population of chromosomes;

2. calculate the fitness functions to find and sort the best chromosomes in the
population;

3. evaluate the stop criteria (error threshold or maximum number of iterations);

4. stop or use the genetic operators to evolve the population and go to 2.

Specifically in the training use case, the polytrigo is used at each iteration to
evaluate the fitness for all chromosomes of the population. It is indeed one of the
critical aspects to be investigated in the parallelization process.

The main concern in designing the software architecture for the GPUs is to
analyse the partition of work: i.e. which part of the work should be done on the CPU
rather than on the GPU. As shown in Fig. 2.7, coherently with the APOD process
we have analyzed and identified the time consuming critical parts to be parallelized
by executing them on the GPU. They are the generation of random chromosomes
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and the calculation of the fitness function of chromosomes. The key principle is that
we need to perform the same instruction simultaneously on as much data as possible.
By adding the number of chromosomes to be randomly generated in the initial
population as well as during each generation, the total number of involved elements
is never extremely large but it may occur with a high frequency. This is because
also during the population evolution loop a variable number of chromosomes are
randomly generated to replace older individuals. To overcome this problem we
may generate a large number of chromosomes randomly una tantum, by using them
whenever required. On the contrary, the evaluation of fitness functions involves
all the input data, which is assumed to be massive datasets, so it already has an
intrinsic data-parallelism. The function polytrigo takes about ∼ 75% of the total
execution time of the application, while the total including child functions amounts
to about ∼ 87.5% of total time execution. This indeed has been our first candidate
for parallelization.

In order to give a practical example, for the interested reader, we report the
source code portions related to the different implementation of the polytrigo function,
of the serial and parallelized cases.

C++ serial code for polytrigo function (eq. 2.31):
for (int i = 0; i < num_features; i++) {
for (int j = 1; j <= poly_degree; j++) {
ret += v[j] * cos(j * input[i]) + v[j + poly_degree] *

* sin(j * input[i]); } }

CUDA C (Thrust) parallelized code for polytrigo function (eq. 2.31):
struct sinFunctor { __host__ __device__
double operator()(tuple <double, double> t) {
return sin(get < 0 > (t) * get < 1 > (t)); }};

struct cosFunctor { __host__ __device__
double operator()(tuple <double, double> t) {
return cos(get < 0 > (t) * get < 1 > (t)); }};

thrust::transform(thrust::make_zip_iterator(
thrust::make_tuple(j.begin(), input.begin())),
thrust::make_zip_iterator(
thrust::make_tuple(j.end(), input.end())),
ret.begin(), sinFunctor(), cosFunctor());

In the serial code the vector v[] is continuously updated in the inner loop by
means of the polynomial degree, while the vector input[] (i.e. the elements of
the input dataset) is used in each calculation but never altered. Therefore, in the
parallelized version we rewrite the function by calculating in advance the sums of
sines and cosines, storing the results in two vectors that are used in the function
polytrigo at each iteration. This brings huge benefits because we calculate the
time consuming trigonometric functions only once rather than at every iteration, so
exploiting the parallelism on large amount of data.
From the time complexity point of view, by assuming to have as many GPU cores
as population chromosomes, the above CUDA C code portion would take a constant
time, rather than the polynomial time required by the corresponding C++ serial
code.
The part of the code which remains serialized runs on the host unless an excessive
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host-to-device transfer slows down the process, in which case also the serial part of
the code runs on the device. Having analyzed the application profile, we apply either
Amdahl or Gustafson law to estimate an upper limit of the achievable speedup. Once
we have located a hotspot in our application’s profile assessment, we used Thrust
library to expose the parallelism in that portion of our code as a call to an external
function. We then executed this external function onto the GPU and retrieved the
results without requiring major changes to the rest of the application.
We adopted the Thrust code optimization in order to gain, at the cost of lower
speedup, a rapid development and a better code readability. There are three high-
level optimization techniques that we employed to yield significant performance
speedups when using Thrust:

1. Fusion: In computations with low arithmetic intensity, the ratio of calculations
per memory access are constrained by the available memory bandwidth and
do not fully exploits the GPU. One technique for increasing the computational
intensity of an algorithm is to fuse multiple pipeline stages together into a
single one. In Thrust a better approach is to fuse the functions into a single
operation g( f (x)) and halve the number of memory transactions. Unless f and
g are computationally expensive operations, the fused implementation will run
approximately twice as fast as the first approach. Fusing a transformation with
other algorithms is a worthwhile optimization. Thrust provides a transform
iterator which allows transformations to be fused with any algorithm;

2. Structure of Arrays (SoA): An alternative way to improve memory efficiency
is to ensure that all memory accesses benefit from coalescing, since coalesced
memory access patterns are considerably faster than non-coalesced transactions.
The most common violation of the memory coalescing rules arises when using
an Array of Structures (AoS) data layout. An alternative to the AoS layout is the
SoA approach, where the components of each structure are stored in separate
arrays. The advantage of the SoA method is that regular access to its components
of a given vector is fusible;

3. Implicit Sequences: the use of implicit ranges, i.e. those ranges whose values are
defined programmatically and not stored anywhere in memory. Thrust provides
a counting iterator, which acts like an explicit range of values, but does not carry
any overhead. Specifically, when counting iterator is de-referenced it generates
the appropriate value on the fly and yields that value to the caller.

2.5.3 The Experiment

The dataset used will be described in section 4.2 and consists of 2100 rows
(input patterns) and 12 columns (features), 11 as input and the latter class target
(class labels, respectively, 0 for not GC and 1 for GC objects). The performance
was evaluated on several hardware platforms. We compared our production GPU
code with a CPU implementation of the same algorithm. The benchmarks were
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run on a 2.0 GHz Intel Core i7 2630QM quad core CPU running 64-bit Windows
7 Home Premium SP1. The CPU code was compiled using the Microsoft C/C++

Optimizing Compiler version 16.00 and GPU benchmarks were performed using
the NVIDIA CUDA programming toolkit version 4.1 running on a NVIDIA GPUs
GeForce GT540M device.

As execution parameters were chosen combinations of:

• Max number of iterations: 1000, 2000, 4000, 10000, 20000 and 40000;
• Order (max degree) of polynomial expansion: 1, 2, 4 and 8;

The other parameters remain unchanged for all tests:

• Random mode for initial population: normal distribution in [-1, +1];
• Type of error function (fitness): Threshold Mean Square Error (TMSE);
• TMSE threshold: 0.49;
• Selection criterion: both ranking and roulette;
• Training error threshold: 0.001, used as a stopping criteria;
• Crossover application probability rate: 0.9;
• Mutation application probability rate: 0.2;
• Number of tournament chromosomes at each selection stage: 4;
• Elitism chromosomes at each evolution: 2.

The experiments were done by using three implementations of the GAME
model:

• serial: the CPU-based original implementation (serial code);
• Opt: an intermediate version, obtained during the APOD process application

(optimized serial code);
• GPU: the parallelized version, as obtained at the end of an entire APOD

process application.

For the scope of the present experiment, we have preliminarily verified the
perfect correspondence between CPU- and GPU-based implementations in terms of
classification performance. In fact, the scientific results for the serial version have
been already evaluated and documented in a recent paper (Brescia et al., 2012a),
where the serial version of GAME was originally included in a set of machine
learning models, provided within our team and compared with the traditional
analytical methods.
Referring to the best results for the three versions of GAME implementation, we
obtained the percentages shown in Tab. 2.1.

The results were evaluated by means of three statistical figures of merit, for
instance completeness, contamination and accuracy. However, these terms are
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type of experiment missing features figure of merit serial Opt GPU
complete patterns – class.accuracy 82.1 82.2 81.9

completeness 73.3 73.0 72.9
contamination 18.7 18.5 18.8

without feat. 11 11 class.accuracy 81.9 82.1 81.7
completeness 79.3 79.1 78.9

contamination 19.6 19.5 19.8
only optical 8, 9, 10, 11 class.accuracy 86.4 86.3 86.0

completeness 78.9 78.6 78.4
contamination 13.9 13.7 14.1

mixed 5, 8, 9, 10, 11 class.accuracy 86.7 86.9 86.5
completeness 81.5 81.4 81.2

contamination 16.6 16.2 16.7

Table 2.1: Summary of the performances (in percentage) of the three versions of the
GAME classifier. There are reported results for the four main dataset feature pruning
experiments, respectively with all 11 features, without the last structural parameter
(tidal radius), with optical features only and the last one without 5 features (mixed
between optical and structural types).

differently defined by astronomers and data miners. In this case, for classification
accuracy we intend the fraction of patterns (objects) which are correctly classified
(either GCs or non-GCs) with respect to the total number of objects in the sample;
the completeness is the fraction of GCs which are correctly classified as such and
finally, the contamination is the fraction of non-GC objects which are erroneously
classified as GCs. In terms of accuracy and completeness, by using all available
features but the number 11 (the tidal radius), we obtain marginally better results, as
can be expected given the high noise present in this last parameter, which is affected
by the large background due to the host galaxy light. In terms of contamination,
better results are obtained by removing structural parameters, demonstrating the
relevance of information carried by optical features in the observed objects (in
particular, the isophotal and aperture magnitudes and the FWHM of the image were
recognized as the most relevant by all pruning tests). Moreover, these experiments
have also the advantage to reduce the number of features within patterns, without
affecting the classification performance. The less numerous are the patterns, the
shorter the execution time of the training phase, thus providing a benefit to the
overall computational cost of the experiments.
Finally, it is worth pointing out that the performance results quoted in Tab. 2.1 are
all referred to the test samples (without considering the training results), and do not
include possible biases affecting the KB itself. Hence they rely on the assumption
that the KB is a fair and complete representation the real population that we want to
identify.
From the computational point of view, as expected, for all the three versions of
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GAME, we obtained consistent results, slightly varying in terms of less significant
digits, trivially motivated by the intrinsic randomness of the genetic algorithms and
also by the precision imposed by different processing units. We recall in fact, that
the GPU devices used for experiments are optimized for single precision and they
may reveal a little lack of performance in the case of double precision calculations.
GPU devices, certified for double precision would be made available for testing in
the first quarter of 2013, when optimized Kepler GPU class type devices will be
commercially distributed.
After having verified the computing consistency among the three implementations,
we investigated the analysis of performance in terms of execution speed.
We performed a series of tests on the parallelized version of the model in order to
evaluate the scalability performance with respect to the data volume. These tests
make use of the dataset used for the scientific experiments (see Sec. 4.2), extended
by simply replicating its rows several times, thus obtaining a uniform group of
datasets with incremental size.
By considering a GPU device with 96 cores, 2GB of dedicated global memory
and a theoretical throughput of about 14GB/sec on the PCI-E bus, connecting the
CPU (hereinafter Host) and GPU (hereinafter Device), we compared the execution
of a complete training phase, by varying the degree of the polynomial expansion
(function polytrigo) and the size of the input dataset.
Tab. 2.2 reports the results, where the training cycles have been fixed to 4000
iterations for simplicity. The derived quantities are the following:

• HtoD (Host to Device): time elapsed during the data transfer from Host to
Device;

• DtoH (Device to Host): the opposite of HtoD;

• DtoD (Device to Device): time elapsed during the data transfers internally to
the device global memory;

• DP (Device Processing): processing time on the GPU side;

• HP (Host Processing): processing time on the CPU side;

• P (Processing): total duration of the training processing phase (excluding data
transfer time);

• T (Transfer): total duration of various data transfers between Host and Device;

• TOT (Total): Total time duration of a training execution;

The relationships among these terms are the following:

P = DP + HP (2.34)

T = HtoD + DtoH + DtoD (2.35)
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TOT = P + T (2.36)

The total execution time of a training phase, given by Eq. 2.36, can be obtained
by adding the processing time (on both Host and Device), given by Eq. 2.34, to
the data transfer time (Eq. 2.35). However, in principle, in Eq. 2.35 it would be
necessary to calculate also the time elapsed during data transfers through the shared
memory of the Device, i.e. the data flow among all threads of the GPU blocks. In
our case this mechanism is automatically optimized by Thrust itself, which takes
care of the flow, thus hiding the thread communication setup to the programmer.
By comparing the time spent to transfer data between Host and Device (sum of
columns HtoD and DtoH) with the processing time (column P), it appears an
expected not negligible contribution of transfer time, well known as one of the
most significant bottlenecks for the current type of GPUs (i.e. before the Kepler
technology). In this case, a particular effort is required in the code design to
minimize as much as possible this data flow. In our case, as the data size increases,
such contribution remains almost constant (approximately 9%), thus confirming the
correctness of our approach in keeping this mechanism under control.
In terms of work distribution between Host and Device, by comparing the processing
time between Host and Device (respectively, columns HP and DP), for all data size
the percentage of GPU calculation time remains almost the same (approximately
70% of the whole processing time, given in column P). Furthermore, by evaluating
the average time needed to process one MB of data at different polynomial degrees,
when the size grows from 0.15 to 512 MB, we obtain on average ∼ 0.058 MB/sec
with degree = 1, ∼ 0.055 MB/sec with degree = 2, ∼ 0.046 MB/sec with degree = 4,
and ∼ 0.036 MB/sec with degree = 8. Of course, as it was expected, the increase in
the polynomial degree affects the average time to process a single MB of data, but
of an amount which is small in respect of the growing size of data.
In conclusions, by considering both scientific and computing performances of the
GPU based model, we can conclude that a polynomial expansion of degree 8 is a
good compromise between the approximation of the desired training error and the
processing time needed to reach it, still maintaining good performances also in the
case of large volumes of training data.

The three versions of GAME, respectively the serial one, the serial optimized
and the parallel, have been tested under the same setup conditions. As expected,
while the two CPU-based versions, serial and Opt, appear comparable, there is an
evident difference with the GPU version. The diagrams shown in Fig. 2.8 report
the direct comparisons among the three GAME versions, by setting an incremented
degree of the polynomial expansion which represents the evaluation function for
chromosomes.

The trends show that the execution time increases always in a linear way with the
number of iterations, once fixed the polynomial degree. This is what we expected
because the algorithm repeats the same operations at each iteration. The GPU
version speed is always at least one order of magnitude less than the other two
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degree data size DP HP HtoD DtoH DtoD P T TOT
1

0.15MB 9.59 5.16 0.11 0.11 0.03 14.75 0.25 15.00
16MB 152.12 65.20 10.00 10.00 2.68 217.32 22.68 240.00

128MB 1191.26 510.54 82.00 81.20 5.50 1701.80 168.70 1870.50
512MB 4919.60 2108.40 322.00 322.00 8.00 7028.00 652.00 7680.00

2
0.15MB 10.38 5.35 0.12 0.12 0.04 15.73 0.27 16.00

16MB 161.74 69.32 11.00 11.00 2.95 231.05 24.95 256.00
128MB 1265.59 542.39 90.20 89.32 6.05 1807.98 185.57 1993.55
512MB 5232.36 2242.44 354.20 354.20 8.80 7474.80 717.20 8192.00

4
0.15MB 12.72 5.98 0.13 0.13 0.04 18.70 0.30 19.00

16MB 193.59 82.97 12.10 12.10 3.24 276.56 27.44 304.00
128MB 1517.58 650.39 99.22 98.25 6.66 2167.98 204.13 2372.11
512MB 6257.36 2681.72 389.62 389.62 9.68 8939.08 788.92 9728.00

8
0.15MB 16.33 7.34 0.14 0.14 0.04 23.67 0.33 24.00

16MB 247.67 106.14 13.31 13.31 3.57 353.81 30.19 384.00
128MB 1947.10 834.47 109.14 108.08 7.32 2781.58 224.54 3006.12
512MB 7994.13 3426.06 428.58 428.58 10.65 11420.19 867.81 12288.00

Table 2.2: Summary of the time performances of the GPU version of the GAME
classifier. The figures were obtained by varying the degree of the polynomial
function polytrigo (first column) and the size of input dataset (second column).
The training cycles have been fixed to 4000 iterations. For each degree value, the
first row (with datasize = 0.15MB) is referred to the original size of the dataset
used for scientific experiments. The other rows are referred to the same dataset but
artificially extended by replicating its rows a number of times. All other columns
3-10 are time values expressed in seconds. Their meaning is defined as follows: DP
(Device Processing) is the processing time on the GPU side; HP (Host Processing)
is the processing time on the CPU side; HtoD (Host to Device) is the time elapsed
during the data transfer from Host to Device; DtoH (Device to Host) is the opposite
of HtoD; DtoD (Device to Device) is the time elapsed during the data transfers
internally to the device global memory; P is the sum of columns DP and HP; T is
the sum of columns HtoD, DtoH and DtoD and finally the last column TOT is the
sum of columns P and T .
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(a)

(b)

(c)

(d)

Figure 2.8: Comparison among the three GAME implementations with the polyno-
mial degree 1 (a), 2 (b), 4 (c) and 8 (d). The squares represent the serial version;
rhombi represent the Opt version, while triangles are used for the GPU version.
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Figure 2.9: Speedup comparison among GAME CPU implementations (serial and
Opt) against the GPU version.

implementations. We remark also that the classification performance of the GAME
model increases by growing the polynomial degree, starting to reach good results
from a value equal to 4. Exactly when the difference between CPU and GPU
versions starts to be 2 orders of magnitude.

In the diagram of Fig. 2.9, the GPU version is compared against the CPU imple-
mentations. As shown, the speedup increases proportionally with the increasing of
the polynomial degree. The diagram shows that for the average speed in a range
of iterations from 1000 to 40000, the GPU algorithm exploits the data parallelism
as much data are simultaneously processed. As previously mentioned, an increase
of maximum degree in the polynomial expansion leads to an increase in the num-
ber of genes and consequently to a larger population matrix. The GPU algorithm
outperforms the CPU performance by a factor ranging from 8× to 200× against the
serial version and in a range from 6× to 125× against the Opt version, enabling an
intensive and highly scalable use of the algorithm that were previously impossible
to be achieved with a CPU.

2.5.4 Discussion

A multi-purpose genetic algorithm implemented with GPGPU/CUDA parallel
computing technology has been designed and developed. The model comes from
the paradigm of supervised machine learning, addressing both the problems of
classification and regression applied on medium/massive datasets.
The GPU version of the model is foreseen to be deployed on the DAMEWARE
web application, presented in Brescia et al. (2010b) and Brescia et al. (2011a). The
model has been successfully tested and validated on astrophysical problems (Brescia
et al., 2012a).
Since genetic algorithms are inherently parallel, the parallel computing paradigm
provided an exploit of the internal training features of the model, permitting a
strong optimization in terms of processing performance. In practice, the usage
of CUDA translated into a 75× average speedup, by successfully eliminating the
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largest bottleneck in the multi-core CPU code. Although a speedup of up to 200×
over a modern CPU is impressive, it ignores the larger picture of using a Genetic
Algorithm as a whole.

Real datasets can be very large (those we have previously called Massive
datasets) and this requires greater attention to GPU memory management, in terms
of scheduling and data transfers host-to-device and vice versa.

We wish also to remark that the fact that the three different implementations
(serial, serial optimized and GPU) of the GAME method lead to identical scien-
tific results, implies that the three versions are fully consistent. Furthermore, by
considering the good results of a deep analysis of the processing time profile, as
expected, the GPU version largely improves the scalability of the method in respect
of massive data sets.
Finally, the very encouraging results suggest to investigate further optimizations,
like: (i) moving the formation of the population matrix and its evolution in place
on the GPU. This approach has the potential to significantly reduce the number of
operations in the core computation, but at the cost of higher memory usage; (ii)
exploring more improvements by mixing Thrust and CUDA C code, that should
allow a modest speedup justifying development efforts at a lower level; (iii) use
of new features now available on NVIDIA Kepler architecture, such as OpenACC
directives, able to achieve faster atomics and more robust thread synchronization
and multi GPUs capability.
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Chapter 3

Scientific Gateways and web 2.0

“Technology is an inherent democratizer. Because
of the evolution of hardware and software, you’re
able to scale up almost anything. It means that
in our lifetime everyone may have tools of equal
power.”
Sergey Brin.

A Science Gateway is, in general, a community-developed set of tools, applica-
tions or data that are integrated via a web portal or a suite of applications, usually
(but not always) under a graphical user interface that is further customized to meet
the needs of a specific community. The aim of Gateways is to enable entire commu-
nities to use common resources through an interface that is configured for optimal
use, so that researchers can focus on their scientific goals and less on assembling the
cyber-infrastructure they require. The cyber-infrastructure and all the technological
requirements become for the researcher just a powerful and simple black box. In
this chapter I present three different gateways which I contributed to develop during
my PhD: DAME, STraDiWA and the Euclid Data Quality.

3.1 DAME - DAta Mining & Exploration

As already mentioned in the previous chapter, many scientific areas share the

this section is largely extracted from:
• Brescia, M.; Cavuoti, S.; Garofalo, M.; Guglielmo, M.; Longo, G.; Nocella, A.; Riccardi, S.; Vellucci, C.; Djorgovski, G.S.; Donalek, C.;

Mahabal, A. Data Mining in Astronomy with DAME. to be Submitted to PASP

• Cavuoti, S.; Brescia, M.; Longo, G., 2012, Data mining and Knowledge Discovery Resources for Astronomy in the Web 2.0 Age, Pro-
ceedings of SPIE Astronomical Telescopes and Instrumentation 2012, Software and Cyberinfrastructure for Astronomy II, Ed.(s): N. M.
Radziwill and G. Chiozzi, Volume 8451, RAI Amsterdam, Netherlands, July 1-4 refereed proceeding

• Cavuoti, S.; Brescia, M.; Longo, G.; Garofalo, M.; Nocella, A.; 2012, DAME: A Web Oriented Infrastructure for Scientific Data Mining
and Exploration, Science - Image in Action. Edited by Bertrand Zavidovique (Universite’ Paris-Sud XI, France) and Giosue’ Lo Bosco
(University of Palermo, Italy) . Published by World Scientific Publishing Co. Pte. Ltd., 2012. ISBN 9789814383295, pp. 241-247

• Djorgovski, S. G.; Longo, G., Brescia, M., Donalek, C., Cavuoti, S., Paolillo, M., D’Abrusco, R., Laurino, O., Mahabal, A., Graham,
M., “DAta Mining and Exploration (DAME): New Tools for Knowledge Discovery in Astronomy”. American Astronomical Society, AAS
Meeting #219, #145.12, Tucson, USA, January 08-12
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same need to deal with massive and distributed datasets and to perform on them
complex knowledge extraction tasks. DAME (DAta Mining & Exploration) is
an innovative, general purpose, Web-based, VObs compliant, and distributed data
mining infrastructure specialized in Massive Data Sets exploration with machine
learning methods.
Initially fine-tuned to deal with astronomical data only, DAME has evolved in a
general purpose platform able to find applications also in other domains of human
endeavor. The present section is focused on the e-science context and on the DAME
products description. I feel obliged to add that my specific contribution to the
development of DAME were the following: I developed the first prototype of
DAME, I was and still am the person in charge for the DMM (Data Mining Models)
package design and implementation. Moreover I supervised, checked and tested
each released plugin, finally, I was involved in the ideation, implementation and
test of several models, such as GAME (described in section 2.5) MLPQNA (see
section 2.4) and SVM (see section 2.3) and in the new plugin procedure (described
in section 3.1.2) and in the “Hydra Lernaen” idea (see section 3.1.4).

3.1.1 Generalities

The main feature of DAME is its usability and scalability which address the
well-known fact that Knowledge Discovery in Databases is a complex process.
In most cases, in fact, the optimal results can be found only on a trial and error
base by comparing the outputs of different methods and different experiments with
the same method. This implies that, for a specific problem, data mining requires
a lengthy fine tuning phase which is often not easily justifiable to the eyes of a
non-experienced user. Such complexity is one of the main explanations for the gap
still existing between the new outcoming methodologies and the huge community
of potential users which fail to adopt them. In order to be effective, in fact, KDD
requires a good understanding of the mathematics underlying the methods, of
the computing infrastructures and of the complex workflows which need to be
implemented, and most users (even in the scientific community) are usually not
willing to make the effort to understand the process and prefer to recur to traditional
approaches which are far less powerful but much more user friendly (Hey et al.,
2009). DAME (Data Mining & Exploration) copes with the afore mentioned data-
deluge by implementing the KDD models under an hybrid distributed computing

• Brescia M., Cavuoti, S., Djorgovski, G.S., ,Donalek, C., Longo, G., Paolillo, M., 2011, Extracting knowledge from massive astronomical
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[invited review].

• Brescia, M.; Cavuoti, S.; D’Abrusco, R.; Laurino, O.; Longo, G.; 2010, DAME: A Distributed Data Mining & Exploration Framework
within the Virtual Observatory, INGRID 2010 Workshop on Instrumenting the GRID, Poznan, Poland, in Remote Instrumentation for
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infrastructure, also exploiting the the S.Co.P.E. grid facility (Merola, 2008; Brescia
et al., 2009; Deniskina et al., 2009) and, by taking into account that background
knowledge, it can reduce the amount of data needed to be processed by adopting a
learning rule based on the fact that most of the attributes (e.g. domain parameters)
often turn out to be irrelevant when background knowledge is considered (Paliouras,
1993).

DAME, by making use of the web application and service paradigm, of extensive
and user friendly documentation, and of a sample of documented real use cases,
represents a first attempt to bring the KDD models to the user hiding most of
their complexity behind a well-designed infrastructure. The DAME program is
based on a platform which allows the scientific community to perform data mining
and exploratory experiments on massive data sets, by using a simple web browser.
It offers several tools, by means of the state of the art Web 2.0 technologies (for
instance web applications and services), which can be seen as working environments
where to choose data analysis functionalities such as clustering, classification,
regression, feature extraction etc., together with models and algorithms. The latter
being derived by machine learning paradigms.
The user is indeed able to setup, configure and execute experiments on his own
data on top of a virtualized computing infrastructure, without the need to install any
software on his local machine. Furthermore, the DAME infrastructure offers the
possibility to extend the original library of available tools, by allowing end users to
plug-in and execute his own code in a simple way, by uploading his program, without
any restriction about the native programming language, into our infrastructure and
automatically installing it through a simple guided interactive procedure. Moreover,
DAME platform offers a variety of computing facilities, organized as a cloud of
versatile architectures, from the single multi-core processor to a grid (sub-network
of S.Co.P.E. project) farm, automatically assigned at runtime to the user task,
depending on the specific problem computing and storage requirements In particular
we refer to the beta release of the DAMEWARE (DAME Web Application Resource)
web application, nowadays publicly available1 , which addresses many of the above
issues and aims at providing the scientific community with a user friendly and
powerful data mining platform.

3.1.2 DAMEWARE design and architecture

The early design stage of the DAMEWARE resource had as main goal to provide
a web application for data mining on MDS. For the computational infrastructure
two main requirements emerged: a-synchronous access and scalability. Most
available web based data mining services run synchronously. This means that they
execute jobs during a single HTTP transaction. This might be considered useful
and simple, but it does not scale well when it is applied to long-run tasks. With
synchronous operations, all the entities in the chain of command (client, workflow

1http://dame.dsf.unina.it

http://dame.dsf.unina.it
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engine, broker, processing services) must remain up for the duration of the activity.
If any component stops, the context of the activity is lost. DAME was conceived
to provide the scientific community with an extensible, integrated environment for
data mining and exploration. In order to do so, DAME had to:

• Support the VObs standards and formats, especially for data interoperability;

• To abstract the application deployment and execution, so to provide the VObs
with a general purpose computing platform exploiting modern technologies.

With web applications, a remote user does not require to install program clients
on his desktop, and has the possibility to collect, retrieve, visualize and organize
data, configure and execute mining applications through the web browser and in
an asynchronous way. An added value of such approach being the fact that the
user does not need to directly access large computing and storage facilities. He can
transparently make his experiments by exploiting computing networks and archives
located worldwide, requiring only a local laptop (or a smartphone) with a network
connection. For what the DAMEWARE functionalities are concerned, we need to
distinguish between supervised and unsupervised algorithms. In the first case, we
have a set of data points or observations, for which we know the desired output,
class, target variable, or outcome. The outcome may take one of many values called
“classes” or “labels”. The target variable provides some level of supervision in that it
is used by the learning algorithm to adjust parameters or make decisions that allow
it to predict labels for new data. Finally, when the algorithm is predicting labels to
observations, we call it a classifier. Some classifiers are also capable of providing
a probability for a data point to belong to a given class and are often referred to
as probabilistic models or regression, not to be confused with statistical regression
models (cf. Duda et al. 2001).

In the unsupervised case, instead of trying to predict a set of known classes, we
are trying to identify the patterns inherent to the data, without outcomes or labels. In
other words, unsupervised methods try to create clusters of data that are inherently
similar. In the DAME data mining infrastructure, the choice of any machine learning
model is always accompanied by the functionality domain. To be more precise:
several machine learning models can be used in the same functionality domain,
since it represents the experiment domain context in which the exploration of data
is performed. In what follows we shall therefore adopt the following terminology:

• Data mining model: any of the data mining models integrated in the DAME
suite. It can be either a supervised machine learning algorithm or an unsu-
pervised one, depending on the available Knowledge Base (KB), i.e. the
set of training or template cases available, and the scientific target of the
experiment;

• Functionality: one of the already discussed functional domains, in which
the user wants to explore the available data (like for example, regression,
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Model Category Functionality
MLPBP Supervised Classification, regression

MLPQNA Supervised Classification, regression
MLP Supervised Classification, regression
SVM Supervised Classification, regression

SOFM Unsupervised Clustering
K-Means Unsupervised Clustering

PPS unsupervised Dimensional Reduction
GAME supervised Classification, regression

Table 3.1: The available data mining models and functionalities in the DAMEWARE
web application, MLPBP stands for: Multi Layer Perceptron (MLP) trained by Back
Propagation learning rule; MLPQNA stands MLP for trained by Quasi Newton
learning rule; MLPGA stands for MLP trained by Genetic Algorithm; SVM stands
for Support Vector Machines; SOFM stands for Self Organizing Features Maps; PPS
stands for Probabilistic Principal Surfaces; GAME stands for Genetic Algorithm
Model Experiment.

classification or clustering). The choice of the functionality target can limit
the choice of the data mining model;

• Experiment: it is the scientific workflow (including optional pre-processing
or preparation of data) and includes the choice of a combination of, a data
mining model and a functionality;

• Use Case: for each data mining model, different running cases are exposed to
the user . These can be executed singularly or in a prefixed sequence. Being
the models derived from the machine learning paradigm, each may have
training, test, validation and run use cases, in order to, respectively, perform
learning, verification, validation and execution phases. In most models there
is also the “full” use case that automatically executes all listed cases as a
sequence.

The functionalities and models currently available in DAMEWARE, beta re-
lease, are listed in Table 3.1. Depending on the specific experiment and on the
execution environment, the use of any of the above models can take place with
a more or less advanced degree of parallelization. All the models require some
parameters that cannot be defined a priori, thus causing the necessity of iterated
experiment interactive sessions in order to find the best tuning. For this reason
not all the models can be developed under the MPI (Message Passing Interface)
paradigm (Chu et al., 2007). But the possibility to execute more jobs at once (spe-
cific grid case) intrinsically exploits the multi-processor architecture. As for all data
mining models integrated in the DAME framework, there is instanced a specialized
plugin (called DMPlugin) for each couple model-functionality, that includes the
specific parameter configuration. In this way, it is also possible to easily replace
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Figure 3.1: The general Software Architecture of DAMEWARE.

and/or upgrade models and functionalities without any change or modification to
the DAME software components (Brescia et al., 2010b).
The plugin extension facility represents also a practical baseline prototype for a
more reliable and performing approach to handling massive datasets, by truly over-
coming the data transfer bandwidth limitations.
In order to deal with MDS, DAMEWARE offers asynchronous access to the infras-
tructure tools, thus allowing the running of activity jobs and processes outside the
scope of any particular web-service operation and without depending on the user
connection status. The user, via a simple web browser, can access the application
resources and has the possibility to keep track of his jobs by recovering related
information (partial/complete results) without having the need to maintain open
the communication socket. Furthermore DAMEWARE has been designed to run
both on a server and on a hybrid distributed computing infrastructure. From the
technological point of view, DAME consists of five main components: Front End
(FE), Framework (FW), Registry and Data Base (REDB), Driver (DR) and Data
Mining Models (DMM).

The scheme in Fig. 3.1 shows the component diagram of the entire suite with
their main interface / information exchange layout. While details on the DAME
infrastructure can be found in (Brescia et al., 2010b) and the documentation available
on the DAME web site, here we shall just outline a few relevant features. The
DAME design architecture is implemented following the standard LAR (Layered
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Application Architecture) strategy, which leads to a software system based on a
layered logical structure, where different layers communicate with each other via
simple and well-defined rules:

• Data Access Layer (DAL): the persistent data management layer, responsible
of the data archiving system, including consistency and reliability mainte-
nance.

• Business Logic Layer (BLL): the core of the system, responsible of the
management of all services and applications implemented in the infrastructure,
including information flow control and supervision.

• User Interface (UI): responsible of the interaction mechanisms between the
BLL and the users, including data and command I/O and views rendering.

A direct implication of the LAR strategy adopted in DAME is the Rich Internet
Application (RIA; Bozzon et al. 2010), consisting in applications having traditional
interaction and interface features of computer programs but usable via simple
web browsers, i.e. not needing any installation on user local desktop. RIAs are
particularly efficient in terms of interaction and execution speed. By keeping
this in mind, the main concepts behind the distributed data mining applications
implemented in the DAME Suite are based on three issues:

• Virtual organization of data: this is the extension of the already remarked
basic feature of the VObs;

• Hardware resource-oriented: this is obtained by using computing infrastruc-
tures, like grid, which enable parallel processing of tasks, using idle capacity.
The paradigm in this case is to obtain large numbers of instances running for
short periods of time;

• Software service-oriented: this is the base of usual cloud computing paradigm
(Shende, 2010). The data mining applications implemented runs on top of
virtual machines seen at the user level as services (specifically web services),
standardized in terms of data management and working flow.

The complete Hardware infrastructure of the DAME Program is shown in Fig.
3.2, where the grid sub-architecture provided by the S.Co.P.E. supercomputing
facility (Merola, 2008; Brescia et al., 2010b) is incorporated into the more general
cloud scheme, including a network of multi-processor and multi-HDD PCs and
workstations, each of them dedicated to a specific function.

There are two sub-networks addressable from an unique access point, the web-
site, which provides an embedded access to the user to all DAME web applications
and services. The integrity of the system, including the grid public access, is guar-
anteed by a registration procedure, which gives the possibility to access all facilities
from just one account. In particular, a robot certificate is automatically handled
by the DAME system to provide transparent access to the S.Co.P.E. grid resources
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Figure 3.2: The general Hardware Architecture of DAME applications

(Deniskina et al., 2009). Depending on the computing and storage power requested
by the job and by the processing load currently running on the network, an internal
mechanism redirects the jobs to a job-queue in a pre-emptive scheduling scheme.
The interaction with the infrastructure is completely asynchronous and a specialized
software component (DR, DRiver) has the responsibility to store off-line job results
in the user storage workspaces, that can be retrieved and downloaded in subsequent
accesses.
This hybrid architecture, renders it possible to execute simultaneous experiments
that gathered all together, bring the best results.
Even if the individual job is not parallelized, we obtain a running time improve-
ment by reaching the limit value N of the Amdahl’s law (Amdahl, 1967), shown in
equation 3.1:

1
(1 + P) + P

N

(3.1)

where P is the fraction of a program that can be made parallel (i.e. which can
benefit from parallelization), and (1 − P) is the fraction that cannot be parallelized
(remains serial), then the resulting maximum speed-up that can be achieved by
using N processors is obtained by the law expressed above. For instance, in the
case of the AGN (Active Galactic Nucleus) classification experiment (Cavuoti et al.,
2008; Brescia et al., 2009), which used SVM (Support Vector Machines) each of
the 110 jobs runs for about a week on a single processor. By exploiting the GRID
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S.Co.P.E.2, the experiment running time was reduced to about one week instead
of more than 2 years. From the software point of view, the baselines behind the
engineering design of DAME Suite were:

• Modularity: software components with standard interfacing, easy to be re-
placed;

• Standardization: basically, in terms of information I/O between user and
infrastructure as well as between software components (in this case based on
XML-schema);

• Hardware virtualization: i. e. independent from the hardware deployment
platform (single or multi processor, grid etc.);

• Interoperability: by following VO requirements;

• Expandability: many parts of the infrastructure require to be increased and
updated along its lifetime. This is particularly true concerning computing
architecture, framework capabilities, GUI (Graphical User Interface) features,
data mining functionalities and models (this also includes the integration
within the system of end user proprietary algorithms);

• Asynchronous interaction: the end user and the client-server mechanisms
do not require a synchronous interaction. In other words, the user is not
constrained to remain connected after launching an experiment in order to
wait for the end of execution. Moreover, by using the Ajax (Asynchronous
Javascript and XML described in Garrett 2005) mechanism, the web applica-
tions can retrieve data from the server asynchronously in background without
interfering with the display and behavior of the existing page.

• Language-independent Programming: this basically concerns the API (Ap-
plication Programming Interface) forming the data mining model libraries
and packages. Although most of the available models and algorithms were
internally implemented, this is not considered as mandatory (it is possible
to re-use existing tools and libraries, integration of end user tools etc.). So
far, the Suite provided a Java based standard wrapping system to achieve the
standard interface with multi-language APIs;

2S.Co.P.E. is a general purpose GRID infrastructure of the University Federico II in Naples funded
through the Italian National Plan (PON) by the Italian Government to support both fundamental
research and small/medium size companies. The infrastructure has been conceived as a metropolitan
GRID, embedding different (and in some cases pre-existing) and heterogeneous computing centers
each with its specific vocation: high energy physics, astrophysics, bioinformatics, chemistry and
material sciences, electric engineering, social sciences. Its intrinsically multi-disciplinary nature
renders the S.Co.P.E. an ideal test bed for innovative middleware solutions and for interoperable tools
and applications finely tuned on the needs of a distributed computing environment (Brescia et al.,
2009).
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• Distributed computing: the components can be deployed on the same machine
as well as on different networked computers;

• Pluggable: with the new plugin procedure users can extend the data mining
model library integrated into the web app, by simply download and run a Java
applications, which through a driven procedure generate source code to be
integrated into the web app software infrastructure. This procedures are the
first prototype of our proposal (IVOA Interoperabilty Workshop 2011, Naples)
of a new vision of the KDD App approach: shared apps that can move on
demand to the various datacenter plugged in each other, that could be extended
to every VO App, in order to obtain a new generation of instruments, based
on the minimization of data transfer and maximization of interoperability in
the VO community.

3.1.3 Dame Scalability

For what scalability is concerned, whenever there is too much data, there are
three approaches at making learning feasible. The first one is trivial and consists
in applying the training scheme to a decimated dataset. Obviously, in this case,
the information may be easily lost and this loss needs to be negligible in terms of
correlation discovery. This approach, however, may turn very useful in the lengthy
optimization procedure which is required by many machine learning methods (such
as neural networks or genetic algorithms). The second method relies in splitting
the problem in smaller parts (parallelization), by sending them to different CPUs
and finally combining the results together. However, to implement parallelized
versions of learning algorithms is not always easy, and this approach should be
followed only when the learning rule (such as in the case of genetic algorithms,
(Mitchell, 1998) or Support Vector Machines (Chang & Lin, 2011) is intrinsically
parallel. The parallelization could be intended not only in terms of the use of
parallel programming paradigm for a single algorithm, but also by considering a
resource oriented platform (such as a Grid computing farm), on which to process in
parallel more instances of a serial algorithm applied on ad hoc selected subsets of
input data. However, even after parallelization, the asymptotic time complexity of
the algorithms cannot be improved. A third and more challenging way to enable
a learning paradigm to deal with MDS is to develop new algorithms of lower
computational complexity but in many cases this is simply not feasible.
Also background knowledge can make possible to reduce the amount of data that
needs to be processed by adopting a learning rule since in many cases most of the
attributes turn out to be irrelevant when background knowledge is taken into account.
In many exploration cases, however, such background knowledge simply does not
exists, or it may introduce biased knowledge in the discovery process The concept
of distributed archives is familiar to most scientists. In the astronomical domain, the
leap forward was the possibility to organize through the Virtual Observatory (VObs)
the data repositories to allow efficient, transparent and uniform access (Genova
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et al., 2002). In other words, the VObs have been intended to be a paradigm to
use multiple archives of astronomical data in an interoperating, integrated and
logically centralized way, so to be able to “observe” and analyze a virtual sky by
position, wavelength and time. In spite of some underscoping, the VObs can still be
considered as an extension of the classical computational grid, in the sense that it fits
the data grid concept, being based on storage and processing systems, together with
metadata and communications management services. The link between data mining
applications and the VObs data repositories is currently still under discussion since
it requires (among the other things) the harmonization of many recent achievements
in the fields of VObs, grid, cloud, HPC (High Performance Computing), and
Knowledge Discovery in Databases. Our first attempt to tackle the problem of
scalability of massive datasets was done with the GRID via the e-token, but with
the technological evolution we are approaching the GPU solution with massive
parallelization.

3.1.4 Evolution and further developments

One of the key aspects of our strategy is to achieve the exploration of massive
data sets (MDS) coming out from ground segments of large telescopes or space
mission facilities, in such a way that it is not required to physically move huge
data over the network from their original repositories. First of all because there
should be any restrictive policy to prevent such action. Second, because it can
be simply impossible, due to the huge amount of data to be moved respect of the
available network channel bandwidth. In these cases, the problem is indeed to be
able to move data mining toolsets directly to the locations hosting data centers.
Current solution strategies, under investigation in some communities, such as the
VO in the astronomical context where it is under design a web based protocol
for application interoperability (named Web Samp Connector), result only partial,
because they always require to exchange data over the web between application sites.
In other words, any of such interoperability scenarios, based on data communication
between all possible combinations of desktop and web applications, results not able
to process MDS in a realistic and affordable way.
Our approach is completely different. We do not move data between sites. The
strategy is based on the concept of creating a standardized web application repository
cloud, named as “Hydra Lernaen” as described in sec. 3.1.4 from the name of the
ancient nameless serpent-like a water beast, with reptilian traits that possessed many
independent but equal heads.

Other foreseen improving features are:

• Parallelization: Introduction of MPI (Message Passing interface) technology
in the Framework and DBMS components of DAME, by investigating its
deployment on a multi-core platform, based on GPU+CUDA computing
technique (Maier, 2009). This could improve computing efficiency in data
mining models, such as Genetic Algorithms, naturally implementable in a
parallel way.
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Figure 3.3: According to the Nielsen’s Law Network bandwidth double every 21
month; instead data in astrophysics are growing exponentially, with a doubling time
of 1.5 years (courtesy G. S. Djorgovski).

• Scripting and workflows: A workflow is a sequence of “nuclear” tasks, that
could include “loops”, “case of” and so on. At the moment this can be done
executing all the task manually using the GUI, as soon as possible it will be
feasible to write a script using our API.

• Statistical and Visualization tools: our models already produce some graphics,
but at the moment they cannot be produced by the user independently from the
execution of a job: We are working to implement statistical and visualization
tools that can be performed as single task.

• More editing tools: we want to enlarge the set of dataset editing tools for pre
and post processing.

Lernaean Hydra

There are at least two reasons for not moving data over the network from their
original repositories to the user’s computing infrastructures. First of all the fact
that the transfer could be impossible due to the available network bandwidth and,
second, because there could be restrictive policies to data access.

In these cases, the problem is to move the data mining toolsets to the data centers.
Current strategies, under investigation in some communities such as the VObs,
are based on implementing web based protocols for application interoperability
(Derrierre & Boch 2010 and Goodman et al. 2012). Possible interoperability
scenarios could be:

1. DA1⇔ DA2 (data + application bi-directional flow)
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(a) Full interoperability between DA (Desktop Applications);

(b) Local user desktop fully involved (requires computing power);

2. DA⇔WA (data + application bi-directional flow)

(a) Full WA⇒ DA interoperability;

(b) Partial DA⇒WA (Web Applications) interoperability (such as remote
file storing);

(c) MDS must be moved between local and remote apps;

(d) user desktop partially involved (requires minor computing and storage
power);

3. WA⇔WA (data + application bi-directional flow)

(a) Except from URI exchange, no interoperability and different accounting
policy;

(b) MDS must be moved between remote apps (but larger bandwidth);

(c) No local computing power required;

All of these mechanisms are only a partial solution since they still require to
exchange data over the web between application sites. Since the International
Virtual Observatory Alliance (IVOA) Interop Meeting, held in Naples in 2011,
we proposed a different approach3 :

4. WA⇔WA (plugin bi-directional exchange)

(a) All DAs must become Was;

(b) Unique accounting policy (google/Microsoft like);

(c) To overcome MDS flow, applications must be plug & play (e.g. any
WAx feature should be pluggable in WAy on demand);

The plugin exchange mechanism foresees a standardized web application repos-
itory cloud named “Lernaean Hydra” (from the name of the ancient snake-like
monster with many independent but equal heads). A HEAD (Hosting Environment
Application Dock) cloud is in practice a bunch of software containers of data min-
ing model and tool packages, to be installed and deployed in a pre-existing data
warehouse. In such cloud, the HEADs can be in principle different in terms of
number and type of available models, originally provided at the installation time.
This is essentially because any hosting data center could require specific kinds of
data mining and analysis tools, strictly related with specific data and knowledge
search types. But all such HEAD would be practically the same in terms of internal
structure and I/O interfaces, being based on a pre-designed set of standards, which

3http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2011KDD

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2011KDD
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completely describe their interaction with external environment and application
plugin and execution procedures. If two generic data warehouses host a HEAD on
their site, they are able to engage the mining application interoperability mechanism
by exchanging algorithms and tool packages on demand. On a specific request
the mechanism could indeed start a very simple automatic procedure which moves
applications, organized under the form of small packages (some MB in the worst
case), through the Web from a HEAD source to a HEAD destination, install them
and makes the receiving HEAD able to execute the imported model on local data.
Further refinements of the above mechanism could be introduced at the design
phase, such as for instance to expose, by each HEAD, a public list of available
models, in order to inform other sites about services which could be imported. Of
course, such strategy requires a well-defined design approach, in order to provide a
suitable set of standards and common rules to build and codify the internal structure
of HEADs and data mining applications (for example any kind of rules like PMML,
Predictive Model Markup Language). These standards can be in principle designed
to maintain and preserve the compliance with data representation rules and protocols
already defined and currently operative in a particular scientific community (such
as VO in Astronomy). Considering also that HPC (High Performance Computing)
resources started to be no more prohibitive and more easily approachable by data
warehouses, our scenario seems to be really feasible. Any data Center can provide
a suitable computing infrastructure hosting a HEAD and become a sort of mirror
site of data mining application repository. The first step towards the realization of a
prototype of such strategy is the currently available resource, named DMPlugin. It
consists of an SW package useful to import any third-party routine/program into
the DAMEWARE platform, according to the standard definition of plugin in the
Web terminology. By following graphical wizard steps, the user is indeed able to
configure and define all the I/O requirements to wrap his own package, ready to be
automatically embedded into the Web App REsource.

It consists in Web Application Repositories (WAR) of data mining model and
tool packages, to be installed and deployed in a generic data warehouse. Different
WARs may differ in terms of available models since any hosting data center might
require specific kinds of data mining and analysis tools. If the WARs are structured
around a pre-designed set of standards which completely describe their interaction
with the external environment and application plugin and execution procedures, two
generic data warehouses can exchange algorithms and tool packages on demand.
On a specific request the mechanism starts a very simple automatic procedure which
moves applications, organized under the form of small packages (some MB in the
worst case), through the Web from a WAR source to a WAR destination, install
them and makes the receiving WAR able to execute the imported model on local
data. More refinements of the above mechanism can be introduced at the design
phase, such as for instance to expose, by each WAR, a public list of available
models, in order to inform other sites about services which could be imported. Such
strategy requires a standardized design approach, in order to provide a suitable set
of standards and common rules to build and codify the internal structure of WARs
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Figure 3.4: The main steps of the application plugins exchange mechanism among
data mining web warehouses.

and of the data mining applications themselves, such as, for example, any kind
of rules like Predictive Model Markup Language (PMML Guazzelli et al. 2009).
These standards should be designed to maintain and preserve the compliance with
data representation rules and protocols already defined and currently operative in
a particular scientific community (such as the VObs in Astronomy). In case of
scheme 4, no local computing power is required. Also smartphones can run DM
applications. Then it descends the following series of requirements:

• Standard accounting system;

• No more MDS moving on the web, but just moving applications, structured
as plugin repositories and execution environments;

• standard modeling of WA and components to obtain the maximum level of
granularity;

• Evolution of existing architectures to extend web interoperability (in particular
for the migration of the plugins);

After a certain number of such iterations the scenario will become:

• No different WAs, but simply one WA with several sites (eventually with
different GUIs and computing environments);

• All WA sites can become a mirror site of all the others;

• The synchronization of plugin releases between WAs is performed at request
time;

• Minimization of data exchange flow (just few plugins in case of synchroniza-
tion between mirrors).

Any data center could implement a suitable computing infrastructure hosting the
WAR and thus become a sort of mirror site of a world-wide cross-sharing network
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Figure 3.5: The scenario after several cycles of the application plugins exchange
mechanism. At the end, all web repositories are equivalent mirrors, able to perform
data mining experiments on local massive data archives.

of data mining application repository in which it could be engaged a virtuous
mechanism of a distributed multi-disciplinary data mining infrastructure, able to
deal with heterogeneous or specialized exploration of MDS. Such approach seems
the only effective way to preserve data ownership and privacy policy, to enhance the
e-science community interoperability and to overcome the problems posed by the
present and future tsunami of data. By following this approach, the DAMEWARE
web application, described in the previous chapters, represents a first prototype
towards a WAR mechanism.

3.1.5 Present Status

So far DAME has been an evolving platform and new modules and specific
workflows as well as additional features have been continuously added. The modular
architecture of DAME can also be exploited to build applications, finely tuned to
specific needs. Examples available so far and accessible through the DAME website,
being VOGCLUSTERS (Virtual Observatory Globular Clusters)4 , a VObs web
application aimed at collecting and make available all existing data on galactic
globular clusters for data and text mining purposes, and NExt-II (Neural Extractor)
for the segmentation of wide field astronomical images. All models reported in
Tab. 1 have already been tested and validated on scientific cases. They have been
made available with the official β release, of May 20115. In may 2013, due to the
continuous technological evolution the, by now, six years old DAME project will be
considered officially closed and the work to prepare a new DM platform will begin.

4http://dame.dsf.unina.it/vogclusters.html
5http://dame.dsf.unina.it/beta_info.html

http://dame.dsf.unina.it/vogclusters.html
http://dame.dsf.unina.it/beta_info.html
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This new platform will exploit both the new possibilities offered by ICT and the
experience gained through the DAME framework.

For what concerns the “Hydra Lernaen” approach, its harmonization process into
the data centers can indeed be part of a world-wide cross-sharing network, in which
it could be engaged a virtuous mechanism of a distributed multi-disciplinary data
mining infrastructure, able to deal with heterogeneous or specialized exploration
of MDS. It can result at the same time able to preserve data ownership and privacy
policy, to enhance the e-science community interoperability and to overcome (not
circumventing) the problem to explore present and future tsunami of outcoming
data.

3.2 STraDiWA: a simulation environment for transient dis-
covery

As mentioned in the introduction in the last five years new problems have arisen
from the analysis of data-streams, i.e. from the time domain astronomy; while the
scientific background will be descrived in chapter 6, here we describe the technical
aspects of the DAME web application used as a simulation environment for variable
objects and transients: STraDiWA.
The time domain approach makes use of theoretical or empirical models to deter-
mine the class of an astrophysical source. An example of this type of classification
is the light curve fitting. For each new object we can fit empirical light curves to
the data and the fits determine whether or not the object belong to a given class.
This technique can be used by restricting to a limited number of cases. For example,
assuming that a source is a certain type of supernova, a well sampled group of
observed light curves can be used to to classify a new one.
Another type of classification is based on features, that is information derived from
time series images and contextual data. The set of features represents a multidimen-
sional space, id est an ideal working environment for machine learning algorithms.
Features can be arbitrarily simple or complex. They can belong to time domain or
be contextual information. The most common time domain features are based on
the distribution of detected fluxes and can be derived from the light curves of the
sources, such as flux ratios, amplitude, skewness or significant frequencies (in case
of periodic light curves). Contextual information are instead characteristics of the
source which do not change with time, like object coordinates, distance from the
nearest detected galaxy and the parameters available for that galaxy, etc. Contextual
information are often difficult to include in the classification process, due to the
heterogeneity of the data. However, they are useful to discriminate different types
of objects (e.g. an event which can be a cataclysmic variable or a supernova is
more likely a supernova if it is close to a galaxy). Classification methods based on
features can be either supervised or unsupervised depending on whether or not we
have a training sample of labeled data. The former ones aim to assign to a given
source its class (or class probabilities), while the latter instead try to recognize
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clusters in the features space.

There are many supervised methods which can be used for classification of astro-
physical variables.
One of the most suitable methods to deal with a sparsely populated knowledge base
are Bayesian classifiers. These networks can be used to compute the the probabili-
ties of the object belonging to different classes of transients. Then, by making use of
objective criteria, the we can determine whether or not the probability for the class
of interest is high enough and if the object needs follow-up observations. In order to
use the Bayesian approach we have to generate a library of prior distributions. Each
distribution has to take into account several factors such as brightness changes in a
certain filter over a certain time interval. These distributions need to be estimated
for each type of variable astrophysical phenomenon that we want to classify.
Another method for the classification of variable sources is to use Support Vector
Machines (SVMs). These algorithms try to find in the features space the hyperplane
which best separate the components of each pair of classes. If the two classes
are not linearly separable, the SVMs make use of different kernel functions which
map points of the input space into a higher dimension space in which the classes
become linearly separable. SVMs have been used in recent works for variable stars
classification (Willemsen & Eyer 2007, Richards et al. 2011).
Other popular algorithms for supervised classification are the Artificial Neural Net-
works (ANNs). ANNs are, in their simplest form, non-linear regression algorithms
in which the classification is the result of a non linear combination of the input
features. These algorithms have been used in particular to separate real transient
sources from a variety of data artifacts, with a classification rate of ∼ 90% (Donalek
et al. 2008).
A new method developed by the CRTS team is based on decision trees (Graham et
al. 2012c). The use a set of 60 features extracted from the light curve of the object to
build a set of decision trees which are able to discriminate between different classes
of variable object. When we do not have a set of labeled data the only classification
method we can apply is an unsupervised algorithm. The most famous unsupervised
algorithms in time domain astronomy are the Gaussian Mixture Modeling (GMM)
algorithm and the Self Organizing Map (SOM). In case of GMM each cluster is
represented by a parametric gaussian distribution and then the entire data set is
modeled by a mixture of these distributions. A SOM is an unsupervised type of
ANN which aim to map the feature space into a space usually two-dimensional or
three dimensional, without loosing the topology of the input space.
From this simple review of the methods above it is clear that the classification of
variable objects poses many problems: how to characterize them (using light curves
or statistical indicators), in case of supervised method which type of knowledge
base use ( built on the data themselves or on simulated ones), how to solve the
computational challenge, how to find the unknown, throwing away all the known or
clustering.
The strategy of our project is to use a hierarchical approach to classification. Dif-
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Figure 3.6: Classification Scheme.

ferent types of classifiers perform better for some event classes than for the others,
so we propose to testing different data mining algorithms for variable objects clas-
sification in order to find the one optimized for each type of variable object. Our
approach has the typical decision tree structure and aims at a classification which
becomes finer and finer as we to higher level of branching.
In our opinion, the best way to test these classifiers is through simulated data since
they allow to better control the various sources of systematics. Real data are not
always suitable because they are often incomplete. A transient, in fact, detected
by an increase in brightness is often missing in archival sky surveys and may have
just a couple of relatively closely spaced observations in a couple of epochs to
go by. A similar approach has been undertaken by the LSST Image Simulation
Group. They have implemented a simulation pipeline which is very useful to test
detection algorithms. In their first simulations transients were in fact generated
randomly, loosing comprehensive theoretical treatment. Our proposal, instead, is
produce template images in which variable objects are added according to specific
data models.

3.2.1 Simulation Pipeline

To test the classifiers we developed a simulation pipeline which allows us to
build a time series of image and from each image extracts a catalog of sources and
their properties. The objects detected for each epoch, then, have to be merged in a
single catalog which contains the information for all the epochs. The flowchart of our
simulation pipeline is shown in 3.7. The pipeline makes use of three astronomical
software Stuff, SkyMaker, and SExtractor developed by E. Bertı̀n and available at



80 CHAPTER 3. SCIENTIFIC GATEWAYS AND WEB 2.0

http://www.astromatic.net/software. Stuff is responsible for the creation of a catalog
of background galaxies, SkyMaker produces an image starting from a catalog of
galaxies produced by STUFF, adding a random stellar field, while SExtractor is the
software chosen for the catalog extraction. The reasons why we chose SExtractor
instead of other similar astronomical software are explained in section 4.1.

3.2.2 Setup Phase

In the setup phase we have to set all the information needed to reproduce realis-
tically an astronomical image. These factors are related to the objects distribution
and properties, to the survey strategy, to the instrumental setup, and to the observing
conditions.
The setup can be set through a configuration file, named STraDiWA.config. For
reasons of comprehensibility in the STraDiWA configuration file we integrated
and assembled all the common parameters to Stuff and SkyMaker and SExtractor.
Beside these common parameters the user has also to set the configuration file
needed for Stuff and SkyMaker in which there are the parameters specific for each
software.
In the setup phase the user must choose mainly the survey strategy and the observ-
ing conditions. The survey strategy is determined by the number of the filter in
which we want to produce the images (PASSBAND OBS), the limiting in magnitude
of these filters (MAG LIMITS) and the sampling rate (SAMPLING). When simulating
(or observing) a time series of images, the sampling rate can be:

• Uniform. In this case the user can choose the number of days for which the
same region of the sky is observed, how often in a night and must specify the
length of the night in hours.

• Uneven. In this case the user must provide a time series (in hours).

The observing conditions are ruled by the seeing full with half maximum (SEEING
FWHM). During several observations spaced in more days the seeing vary following
two possible options:

• The SEEING FWHM can assume each day a different value between a series
specified by the user, where each value can be repeated during the simulation.
A special case is that of constant seeing, which is however unrealistic.

• The SEEING FWHM varies randomly each day between a given minimum and
maximum.

Last but not least, the user has also to choose the type and distribution of vari-
able objects (VARIABLE). The user can either choose to define for each object its
parameters, or can choose to assign them randomly between their range of variation.

http://www.astromatic.net/software
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Figure 3.7: Flowchart of the proposed simulation pipeline.
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3.2.3 Stuff: creation of the static sky

Stuff is a software that combines spectra, luminosity functions and physical
parameters to generate artificial catalogs of the deep extragalactic sky in a standard
universe driven by (ΩM,ΩΛ). The program distributes galaxies in redshift space
that is subdivided into bins. For every bin the number of galaxies for the Hubble
types E, S0, Sab, Sbc, Scd and Sdm/Irr is determined from a Poisson distribution
assuming a non-evolving Schechter luminosity function. The different galaxy types
are simulated by linearly adding exponential (disk component) and de Vaucouleurs
profiles (bulge components) in different ratios. To each galaxy are assigned a ran-
dom disk inclination angle and a position angle which define the intrinsic ellipticity
of the object. The output of the program is a catalog of galaxy positions, apparent
magnitudes, semi-minor and major axes, position angles for disks and bulges, de
Vaucouleurs type and redshift.
The key input parameters that have to be modified by the user, according to his own
purposes, are the image dimensions (IMAGE SIZE), the pixel size (PIXEL SIZE),
the allowed range of apparent magnitudes (MAG LIMITS), the detector gain (GAIN),
and the required filters (PASSBAND OBS). There are 120 filters available, covering
a wavelength range from 0.29 to 87.74831 µm.The others input keys are mainly
related to the cosmological model taken into account, like the value of the Hubble
constant, or to the Schechter’s functions.

3.2.4 SkyMaker: Instrumental simulation and image production

SkyMaker started out as a testing tool for the SExtractor source extraction
software developed by the same author. It works by taking as input files a list of
sources, which can be produced by Stuff, and a setup file. To produce an image
this software first build a Point Spread Function model (PSF), that is distribution
of the light from a point source, then reads the input catalog and renders sources
at the specified pixel coordinates in the frame. Finally SkyMaker provide to add a
uniform sky background, with surface brightness provided by the user through the
input BACK MAG parameter, and applies to the image Poissonian photon white noise
and Gaussian read-out noise of the detector.

PSF Modeling

The PSF used by SkyMaker can be internally generated or loaded through
an external fits file. The PSF internal generator has to be able to represent with
decent accuracy the PSF of typical astronomical instruments. This means that has
to take into account the atmospheric blurring, telescope motion blurring, instrument
diffraction and aberrations, optical diffusion effects and intra-pixel response. The
produced PSF is a convolution between these components.
We want to focus only on these components that the user can control by modifying
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the configuration file: the instrument diffraction and aberrations and the optical
diffusion. The instrumental PSF become dominated by diffusion beyond a few
FWHMs from the center. This effect produces a so called ‘aureole” that has to
be taken into account when simulating deep and wide galaxy fields, as it repro-
duces the background variations found on real images around bright stars. The
SkyMaker PSF simulator reproduces the effects of diffraction and aberrations in the
Frauhofer regime of Fourier optics by manipulating a virtual entrance pupil function
p(ρ, θ). The amplitude part of p is mainly determined by the characteristic of the
primary mirror M1, by the effects caused by the presence of spider arms, and by the
obscuration of the secondary mirror on the primary.

Optical aberrations may be added by introducing changes of phase φ(ρ, θ) of
the complex pupil function. SkyMaker can simulate a wide range of aberrations:

- defocus: φdefocus ∝ ρ
2,

- astigmatism: φasti ∝ ρ
2cos2(θ − θasti),

- coma: φcoma ∝ ρ
3cos(θ − θcoma),

- spherical: φspher ∝ ρ
4,

- tri-coma: φtri ∝ ρ
3cos3(θ − θtri), and

- quad-ast: φquad ∝ ρ
4cos4(θ − θquad).

Phase terms are individually normalized following the ESO d80 convention: phase
coefficients represent the diameter of a circle enclosing 80% of the total flux of an
aberrated spot on the focal plane.
A set of input parameters, like the diameters of M1 and the central obscuration,
the number, position angle and thickness of the spider arms, makes it possible to
simulate with reasonable accuracy the diffraction pattern of most common telescope
configurations.

Source Modeling

After build the PSF, SkyMaker deals with the source modeling. So far SkyMaker
can model only galaxies and stellar objects. The galaxies are modeled as a sum of a
bulge profile and an exponential disk. The bulge follows a de Vaucouleurs profile:

µB(r) = m − 2.5log(B/T ) + 8.3268
( r
re f f

)1/4
. (3.2)

where µB is expressed in mag/arcsec2, m is the apparent magnitude, B/T the appar-
ent bulge-to-total ratio and re f f the effective radius of the spheroid in arcseconds.
The disk component is given as exponential profile:

µD(r) = m − 2.5log(1 − B/T ) + 1.0857
( r
rh

)
+ 5logrh + 1.9955, (3.3)
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where rh is is the disk scalelength in arcseconds. The parameters m, B/T , re f f , rh

as well as independent aspect ratios and position angles for both components must
be read from the input list.
There are many parameters to be set in the SkyMaker configuration file. The most
important are related to i) pupil features, e.g. the size of the mirrors and the aber-
ration coefficients, ii) the detector characteristics, e.g. gain, saturation level and
image size, iii) PSF model, e.g radius and surface brightness of the aureole and iv
observing condition, full width half maximum of the seeing and exposure time.
We wish to stress that the simulations obtained with the combination of Stuff and
SkyMaker do not include any artefact such as bad pixels, ghosts or bad columns or
other effects which.

3.2.5 Rules for variable objects

An important aspect of the project was to identify relevant group of variable
objects and derive sets of rules for their definition. The models developed for each
variable object must be seen as particular instances of a general template. A variable
object must be defined by a series of parameters. he number and type of parameters
can vary for each class of variable object, for example for a periodic variable we
can specify the amplitude, the period, etc., while for a cataclysmic variable can be
important to specify the time of the explosion. Furthermore, each class has to take
into account the different behavior of the objects at various wavelength. The mod-
ules so far implemented are the Classical Cepheids and the type Ia Supernovae. We
choose to start implementing the Cepheids because they are the classical example
of periodic objects and are rather simple to model. Type Ia Supernovae were the
following choice according to the classification scheme proposed in Figure 3.6.
Furthermore we have implemented also a module for random objects. These objects
in fact were verify the simulation setup fixed at the beginning of the project. Their
magnitude vary randomly in the magnitude limits set in Stuff and SkyMaker in an
unrelated way in each band.

3.2.6 Classical Cepheids

Classical Cepheids are pulsating stars whose magnitude vary periodically. Their
light curves is generally approximates as a sinusoid with a constant phase term. The
amplitude of their variation ranges from 0.2 to 2 mag, as estimated by American
Association of Variable Star (AAVSO)6. We begin to simulate Classical Cepheids
in our Galaxy. In order to model this class the steps are:

• assign the Period;

• use P-L relation in order to find the mean absolute magnitude;
6http://www.aavso.org/

http://www.aavso.org/
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• assign the phase;

• assign the amplitude;

• assume a sinusoidal law and evaluate the temporal evolution of the absolute
magnitudes;

• estimate correction for stellar extinction, using the values of absorption coef-
ficients given by Tammann et al. (2003) and extracting randomly the color
excess.

Using different calibrations of PL relationships, we can model different types of
Classical Cepheid, for example discriminating between pulsation mode or take into
account their metallicity. So far, we used the coefficients for the mean PL relation
calibrated in Bono et al. , 2010 and reference therein valid for Galactic Cepheids.
The number of bands for which we have a calibration for PL relation limits the
number of band in which we can model our objects. So far this relation has been
calibrated mainly in Johnson bands BVRIJHK.
For a classical Cepheid we have four free parameters: the initial apparent magnitude
mi, the period P, the phase φ, and the amplitude variation A . These can by defined
by the user or extracted randomly in the appropriate ranges. These are:

• [0, 2π] for the phase;

• [0, 2] mag for the amplitude;

• [0, 70] days for the period;

• magnitude limits of Stuff and SkyMaker for the initial magnitude.

Coordinates of the objects are extracted randomly within the image.
Actually simulations of Classical Cepheid have been made in Johnson B, V and I
band using coefficients for period-luminosity relation calibrated in Tammann et al.
(2003).

3.2.7 Type Ia Supernovae

Contardo et al. 2000 used an empirical model to fit the light curve of a sample
of type Ia Supernovae in the UBVRI Johnson filter. They found an analytical form
of the light curves consisting of a Gaussian (for the peak phase) atop a linear decay
(late-time decline), a second Gaussian (to model the secondary maximum in the V, R,
and I band light curves), and an exponentially rising function (for the pre-maximum
segment):

m(t) =
f0 + γ(t − t0) + g0e

(t−t0)2

2σ2
0 + g1e

(t−t1)2

2σ2
1

(1 − e
τ−t
θ )

. (3.4)

We decided to use this expression to model type Ia Supernovae. As we can see in
Eq. 3.4 we have to set eight parameters ( f0, γ, t0, g0, σ0, g1, t1,
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Parameter B Band V Band R band I Band
f0 (mag) [14, 20] [13, 19] [12, 18] [9, 18]
γ (mag/days) [0.01, 0.025] [0.02, 0.03] [0.025, 0.04] [0.015, 0.06]
g0 (mag) [-3.5, -2] [-2.5, -1] [-1.5, -0.5] [-3, -0.5 ]
σ0 (days) [10, 18] [5, 30] [5, 10] [5, 15]
g1 (mag) [-0.5, -0.1] [-0.6, -0.2] [-0.8, -0.5]
σ1 (days) [4, 10] [4, 10] [5, 15]
θ (days) [1, 10] [1, 10] [1, 10] [1, 10]

Table 3.2: Ranges of variation chosen for the parameters f0, γ, g0, σ0, g1, σ1, θ of
Eq. 3.4.

σ1, τ, θ) for each band. Actually, some of these parameters are related to each other.
To obtain realistic groups of values for the simulations we searched for the range
within which those parameters vary in the Contardo PhD Thesis. Analyzing the
data we found the variation ranges reported in Tab. 3.2. We excluded the U band
because of the lack of information.

There are not variation ranges for g1 and σ1 in the B band since in this band the
light curve of a Supernova Ia does not show the secondary maximum. Temporal
parameters, t0 t1 and τ are not reported in Table 3.2. Instead, we choose to study
the correlation between those parameters, focusing in particular on the relation
between t0 in B band and t0 t1 and τ in other bands and between t0 and τ0 in B band.
Relations between temporal parameters result to be linear. Fig. 3.8 - 3.10 show
t0, t1 τ in each band as function of t0 in B band. Fig. 3.11 shows t0 in function of τ
in B band. In the caption of each figure is reported the result of the linear regression.
All temporal values are measured in Julian Dates.
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Figure 3.8: On the x-axis: t0 in B band. On the y-axis t0 in V band (panel a) , t1 in
V band (panel b), τ in V band (panel c). The equation of the best fits are:
t0V = 1.003 ∗ t0B − 28.80. The r-square of the fit is: 0.99981.
t1V = 1.007 ∗ t0B − 42.09.The r-square of the fit is: 0.99981.
τV = 1.012 ∗ t0B − 139.69. The r-square of the fit is: 0.99970.
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Figure 3.9: On the x-axis: t0 in B band. On the y-axis t0 in R band (panel a) , t1 in
R band (panel b), τ in R band (panel c). The equation of the best fits are:
t0R = 1.003 ∗ t0B − 28.23. The r-square of the fit is: 0.99996.
t1R = 1.001 ∗ t0B + 15.80.The r-square of the fit is: 0.99989.
τR = 0.999 ∗ t0B − 17.25. The r-square of the fit is: 0.99862.
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Figure 3.10: On the x-axis: t0 in B band. On the y-axis t0 in I band (panel a) , t1 in I
band (panel b), τ in I band (panel c). The equation of the best fits are:
t0I = 1.000 ∗ t0B − 1.024. The r-square of the fit is: 0.99985.
t1I = 0.999 ∗ t0B + 43.54. The r-square of the fit is: 0.9986.
τI = 1.005 ∗ t0B − 75.22. The r-square of the fit is: 0.99948.
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Figure 3.11: On the x-axis: τ in B band, on the y-axis: t0 in I band.
The equation of the best fit line is: τB = 1.007 ∗ t0B − 49.06. The r-square of the fit
is: 0.99951.

These relations seem to represent temporal shifts, and in fact all the fits have slopes
almost equal to one.
Handling the data, we also found that there seems to be a relationship between f0 in
B and in the other bands and, in first approximation, we can suppose that it is linear.
Fig. 3.12 shows f0 in V, R and I band against f0 in B band. In the caption of each
figure is reported the result of the linear regression.
In practice, in order to to simulate a type Ia Supernova we used the Contardo model
with γ, g0, σ0, g1, σ1, θ extracted randomly from the ranges in Tab. 3.2, fixating
τB in order to derive other temporal parameters using the relations shown above. At
the user is given the possibility to choose how many days the Supernova is before or
after the maximum. Furthermore the user can set the value of f0B, while f0V , f0R and
f0I result from the previous relations. Once modeled, the Supernova is associated to
a galaxy having an integrated magnitude comparable with the maximum luminosity
of the SN in the B band.

3.2.8 Catalog extraction

At the bottom of the simulation flowchart there is the extraction, from each
image of a catalog of sources, containing as much information as possible on their
properties. As we said before this task is achieved by SExtractor. The reasons
behind this choice are explained in details in section 4.1.
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Figure 3.12: On the x-axis: f0 in B band. On the y-axis f0 in the other bands. Green
points show f0 in V band. The equation of the best fit line is: f0V = 0.872∗ f0B+0.595.
The r-square of the fit is: 0.922.
Orange points show f0 in R band. The equation of the best fit line is: f0R =

0.828 ∗ f0B + 0.849. The r-square of the fit is: 0.872.
Red points show f0 in I band. The equation of the best fit line is: f0I = 1.10 ∗ f0B −

4.46. The r-square of the fit is: 0.755.
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3.2.9 Simulation example

As one of the first simulations, we produced 50 images, as observed by the VST7

(VLT Survey Telescope) telescope and the OmegaCAM camera8. The Field of
View (FoV) of OmegaCAM@VST is 1 square degree with a pixel scale of 0.213
arcsec/pixel. Therefore the size of the images was set to 16kx16k. The aberration
coefficients, the tracking errors, the positions of the spiders were set properly
according to the VST technical specifications. The observations are spaced within
90 days, with an uneven sampling rate and with the FWHM of the seeing varying
between 0.6 and 1.0 arcsec, according to the ESO statistics at Cerro ParAnal. The
magnitude range was set to 14-26 mag and the exposure time of each image to 1500
s.
The total number of simulated objects is around 10000. This include non variable
stars and galaxy, a sample of classical Cepheid, a sample of type Ia Supernovae
with their host galaxy and a sample of randomly variable objects.
Fig. 3.13 and Fig. 3.14 show a section of the B-band image produced at t=0d. The
stamps below each image show the evolution of the variable object in the green box
( a type Ia Supernova in Fig. 3.13 and a Classical Cepheid in Fig. 3.14 ).
The B-band light curves of the objects selected in Fig. 3.13 and Fig.3.14 are shown
in Fig. 3.15 and Fig. 3.16. The magnitude of the objects are the Kron magnitudes
obtained by running SExtractor on each image.

Some application are discussed in section marianna:4.

3.3 Euclid Data Quality

I participated in the definition of proposal to implement a data quality environ-
ment for the Euclid Mission

Scope of this following description is to introduce the concepts of Data quality
(DQ) and Data Quality Mining (DQM) and to outline how the EUCLID mission
can benefit from them.

Given the present status of definition of the project it is impossible to enter into
the details of the possible technical solutions but whereas possible I shall provide
general examples which can help the reader to understand how DQM could fit into
the proposed Euclid SGS (Science Ground Segment) operations.

In the Euclid Science Management Plan is declared that: “The Euclid Science
Ground Segment will provide the resources necessary to analyse the Euclid Data
and derive science data products. The Euclid Science Ground Segment is in charge
of the production of the science ready calibrated images and source catalogues,
and all relevant quality control and meta-data that are necessary for the scientific
exploitation of the Euclid mission. This includes the data from the Euclid VIS and
NISP channels, as well as all complementary External data from ground based wide

7http://www.eso.org/public/teles-instr/surveytelescopes/vst/surveys.html
8http://www.astro-wise.org/˜omegacam/index.shtml

http://www.eso.org/public/teles-instr/surveytelescopes/vst/surveys.html
http://www.astro-wise.org/~omegacam/index.shtml


3.3. EUCLID DATA QUALITY 93

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

Fi
gu

re
3.

13
:S

ta
m

p
of

th
e

im
ag

e:
th

e
gr

ee
n

bo
x

in
3.

13
is

a
ty

pe
Ia

Su
pe

rn
ov

a
at

-9
.3

4
da

ys
fr

om
its

m
ax

im
um

lig
ht

w
ith

in
its

ho
st

ga
la

xy
.

Fi
gs

.3
.1

3b
-3

.1
3g

sh
ow

a
cl

os
e

up
im

ag
e

of
th

e
Su

pe
rn

ov
a

at
th

e
be

gi
nn

in
g

of
th

e
ob

se
rv

at
io

n
(t=

0
da

ys
),

t=
7

da
ys

,t
=

18
da

ys
,t

=
34

da
ys

,
t=

59
da

ys
,a

nd
t=

89
da

ys
re

sp
ec

tiv
el

y.



94 CHAPTER 3. SCIENTIFIC GATEWAYS AND WEB 2.0

(a)

(b)
(c)

(d)
(e)

(f)
(g)

Figure
3.14:Stam

p
ofthe

im
age:the

green
box

in
3.14a

is
a

C
lassicalC

epheid
w

ith
a

period
of25.39

days.Figs.3.14b-3.14g
show

a
close

up
im

age
ofthe

C
epheid

atthe
beginning

ofthe
observation

(t=
0

days),t=
7

days,t=
22

days,t=
34

days,t=
45

days,and
t=

89
days

respectively.



3.3. EUCLID DATA QUALITY 95

0 10 20 30 40 50 60
t (days)

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

22.5

23.0

B
 m

a
g
n
it

u
d
e
 (

m
a
g
)

Type Ia Supernova

Figure 3.15: Light curve of the type Ia Supernova in Fig. 3.13c
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Figure 3.16: Light curve of the Classical Cepheid in Fig. 3.14c
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field surveys..[...]...A complete Euclid data release is estimated to have a size of
2400T B of Euclid data +100T B of Euclid catalogues +8200T B of non-Euclid data,
which sums up to ≈ 11PB. If we now add a 20% margin, that reaches 13PB.”

Always in the Euclid Science Management Plan, the Science Ground Segment
(SGS) processing is subdivided in five levels:

1. Level S: pre-mission data (catalogues, satellite and mission modelling data,
etc.) used before and during the mission for calibration and modelling pur-
poses mainly. The data for this processing level are prepared before the
mission (and refined/updated during the in-flight commissioning and initial
calibration phase) and are used as appropriate, before and during the mission.

2. Level E: external data (images, catalogues, all relevant calibration and meta-
data, observational data in science-usable format) derived from other missions
and/or external survey projects, reformatted to be handled homogeneously
with Euclid data. This data is required to allow the EC to provide its final data
products at the expected level of accuracy. The data at this level is delivered
by the EC.

3. Level 1: is composed of three separate processing levels, namely Level 1a,
Level 1b and Level 1c.

a. Level 1a refers to telemetry checking and handling, including real-time
assessment (RTA) on housekeeping;

b. Level 1b comprises quick-look analysis (QLA) on science telemetry, pro-
duction of daily reports, trend analysis on instruments performance and
production of weekly reports. The data for this processing level come
from the satellite via MOC and are used to perform quality control.

c. Level 1c refers to the high-quality removal of instruments signatures which
provides data that will used to process Level 2 data.

4. Level 2: instrumental data processing, including the calibration of the data as
well as the removal of instrumental features in the data. The data processing at
this level is under the responsibility of the SDCs in charge of the instruments
monitoring.

5. Level 3: data processing pipelines for the production of science-ready data.
The Level 3 data are also produced by SDCs

It goes without saying that the most valuable asset of Euclid are the data and,
due to the huge data volume, the quality control becomes a crucial aspect of all
five items listed above and over the entire lifetime of the experiment: not only
scientific data available at all various intermediate stages of the acquiring and
processing workflows and pipelines, as it is foreseen during normal operations, but
also telemetry, diagnostic, control, monitoring, calibration information coming in
the ground segment from the instrument.
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We refer hereinafter as EDW (Euclid Data Warehouse) to the total amount of
Euclid SGS data to be treated in order to ensure its quality.

But what has to be intended with term “quality”? Well, strictly connected
with data quality there would be general questions like: Does the inventory data
accurate represent what exists in the warehouse? When dealing with data from
any data intensive project, such as Euclid, anomalies and/or useless redundancies
(duplications) may arise that often, if introduced into the warehouse framework,
could mislead the interpretation or obstruct the normal data flow affecting the steady
flow bandwidth. The consequences being poor scientific performance, increased
risk and even project failure. To deal with these critical issues, the concept of DQ
needs to be included in the project data warehouse organization as a crucial item.

Generally speaking, DQ is the process of rejecting or, better, transforming data
that is incomplete, inaccurate, non-conforming or redundant into data that makes
the project scientific solutions more successful. As the project builds its global data
management strategy, DQ brings re-use and portability, making it more accessible
by scientific communities, partners and data governance teams. In other words, DQ
entails more than helping instrument data governance and scientists to get correct
data into their information systems; it also means identifying and dealing with
corrupted, wrong or duplicate data.

In particular, clean data is a key element when integrating information across
different systems, because misinformation can quickly proliferate. With intercon-
nected information systems, as foreseen in Euclid, poor quality data spread the same
way viruses are spread by travellers: erroneous information can spread quickly to
other applications. The cost of compromised data is incalculable, including lost
information, wrong instrument calibration, wasted scientific knowledge, loss of
reputation or goodwill, and missed science target opportunities.

According to a study9 published by The Data Warehousing Institute (TDWI)
entitled Taking Data Quality to the Enterprise through Data Governance, some issues
are primarily technical in nature, such as the extra time required for reconciling
data (85%) or delays in deploying new systems (52%). Other problems originally
coming from the business community but easily exportable to the scientific one, are
the customer dissatisfaction (69%), compliance problems (39%) and revenue loss
(35%). Poor-quality data can also cause problems with costs (67%) and credibility
(77%).

Data quality affects all data-related projects and refers to the state of complete-
ness, validity, consistency, timeliness and accuracy that makes data appropriate for
a specific use. This means that in any kind of project related to data being them
images, tables, text, etc. - one has to ensure the best possible quality by checking
the right syntax of metadata and columns, detecting missing values, optimizing
relationships, and correcting any other inconsistencies.

9http://www.information-management.com/issues/20060801/1060128-1.html

http://www.information-management.com/issues/20060801/1060128-1.html
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3.3.1 Data Quality General Requirements and Targets

In order to ensure the long term reliability of an intensive data warehouse it is
needed to pay attention to input transactions in the archives and to avoid unqualified
data. In order to achieve this goal, there should be evaluated the quality of every
transaction that inters some data to the archive, as well as poor quality rollbacks
transactions.

For the purposes of the present project we adopt the standard vision of DQ
as a comprehensive data quality management solution, including data profiling,
correcting, matching and interfacing concepts:

• Data Profiling identifies the problems. It should provide snap-shots of a
project data quality and measures its incremental evolution over time;

• Data Cleansing corrects incomplete or inconsistent data by crosschecking
against other databases and reference data (in Euclid this could be the case
of used external data [AD1]). It also enriches data by providing value-add
information that actually improves the quality and usefulness of existing data;

• Data Matching consisting of specific matching algorithms that could be
provided in the form of fully featured yet easy-to-use components, that help
to find and repair duplicates and near duplicates in data volumes. Unlike
other DQ solutions, matching is configured in a discrete set of components
allowing for identification of duplicate records across multiple sources using
confidence weights and probability, to help group or direct records into a
pipeline process, for example.

• Data Enrichment filling in the missing pieces in data volumes in order to
reach scientific analytical goals. The variety of this information is limitless,
i.e. it can include incorporating a variety of information to help plan delivery
routes, or collecting data to targets or other categories.

• Data Interfacing includes user tools able to offer advanced reporting and
analysis features.

• In what follows we shall also specify how the above topics fit into the Euclid
scenario.

3.3.2 Technical Aspects of Data Quality

More technically speaking, in a warehouse based on intensive and diversified
engineering and scientific data governance, like Euclid, some errors and inconsis-
tencies could arise (in raw images and data, metadata, processed data) in terms
of:

• Blank, NaN and Null values;

• Hidden relations, missed or bad (in terms of its ontology) foreign keys;
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• Wrong or out-of-range values and constants;

• Unknown values (symbols);

• Misleading instrument signature parameters and/or metadata;

• Duplicate fields, parameters, matrix rows and columns, values;

Such quality bugs are very general but represent a good starting point to clarify
the concept of general DQ in a data warehouse. Of course, they can be extended and
well defined over both different data types (images, telemetry data, metadata, etc.)
project definition time (especially according to the Euclidisation process). Samples
of requirements/targets of a first stage of DQ framework are the following:

• Quickly Browsing Data Structures: the goal is to understand metadata for
columns (size, comment) and table keys, including mechanisms to detect and
identify missing or erroneously documented data;

• Getting an Overview of Database Content: the goal is to get statistics re-
garding data volumes. This feature familiarizes the user with a database,
regardless of complexity, with no need of a guide. It also lets him detect some
modeling errors, such the absence of keys.

• Do Columns Contain Null or Blank Values?: Detect and clean null and
empty values from the data. It can help to check the presence of null and
empty values in the data volume.

• About Redundant Values in a Column: to verify that we have one and only
one record for each value in the loaded column.

• Is a Max/Min Value for a Column Expected?: Quickly detect data anoma-
lies. It should also offer functionalities to Set data thresholds for controlling
max/min values.

• What is the best data sample?: given a user customized function (mathe-
matical, statistical, empirical, etc.), it is possible to locate the winner datum
in the volume.

• Using Statistics: options to get a quick, global view of the frequency of the
data and identify potential errors or misleading information inside. It can also
get frequency statistics which let user to identify most present values in data
or to check advanced statistics indicators for a complex analysis.

• Analyzing Intervals in Numeric Data: to get a frequency table with a
specified aggregation of interval values. It can also create frequency tables
for numerical columns specifying the number of desired bins.
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• Targeting Intervals: to understand customer distribution to better target
advertising. It enables to show the distribution of any numerical variable, by
also detecting min and max, and also the most frequent data intervals.

• Identifying and Correcting Bad Data: of course there should be present
any kind of prerequisite, such as any understanding of pattern usage and its
standardization (Euclidisation, VO like or whatever).

• Getting a Column Pattern: the goal is to identify a data column structure
and/or pattern. After having defined a pattern frequency indicator, column
values can be grouped in intervals.

• Detecting Keys in Tables: to discover all candidate keys in a table. This
could be used as information to optimize data distribution.

• Are There Duplicate Records in Data?: the goal is to detect and clean data
from duplicate records, possibly starting from prerequisites based upon a
default/custom correlation analysis. This is in principle a crucial function due
to huge amount of data to be collected inside Euclid data centres.

• Column Comparison Analysis: the goal is to check that no redundancy
exists in columns and optimize space reserved for data. For example to
ensure that values used in a table are present in related dimension tables, or
to discover new foreign keys.

• Recursive Relationships: this is a functionality connected with the explo-
ration inside data about possible relations that recursively can be occur at
different levels of data processing system.

• Creating a Report: the DQ system should be able to summarize any created
and performed analysis, by specifying also the desired level of details. Of
course its prerequisites are the creation of a DQ database (TBD).

• Monitoring: Monitoring helps supervise and control data quality over time.
It also allows monitoring the duration of an analysis and to identify those that
are taking longer than normal. The monitoring can include:

– Reporting on Data Quality: monitor how the data quality indicators
evolve over time. It has as prerequisites the scheduled reports foreseen
to be executed regularly on the data warehouse. With a report on
changes in data quality, it is easier to detect any change in data without
performing the entire analyses one after the other.

– Tracking Data: Track development and revise old data. This feature lets
users control data quality in time.

– Alert: DQ should generate alerts when certain values are outside of
a range defined by custom rules or thresholds. This feature can be
automated and closed by generating a report.
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• Mining Rules for Data Quality procedures: the goal is to provide data
exploration, analysis and mining rules in order to control and/or to test the
accuracy of the data and to help decision making. These rules can be in
principle based on deterministic, statistical or machine learning methods, able
to find correlations.

The last element of the above list was intentionally left as the last item, because
it represents the more complex but at the same time interesting and powerful
functionality for the data quality control in a PB project such as Euclid. It directly
connects flexibility of potential customized data quality analysis with powerful
methods usually employed in Data Mining (DM), or equivalently in Knowledge
Discovery in Databases (KDD). Their inclusion into the data quality domain permits
to overcome or at least to optimize the usual DQ analysis rules, based on:

• Image (science & calibration) analysis

– Detection of abnormal patterns

– Anomalous Instrumental signature

• Column analysis

– Simple analysis

– Simple statistics evolution

– Frequency statistics

– Pattern matching

• Overview analysis

– Connection analysis

– Catalogue analysis

– Scheme analysis

• Redundancy analysis

• Duplication analysis

Here we would like to mention technical data requirements, as arisen from the
SRS document of the mission, that we intend to take strongly under consideration
throughout the DQ analysis and design.

Concerning the general data processing and archiving system specifications,
there are important issues to be verified and validated by DQ systems, directly
coming from the requirements:

• All information stored into official catalogue database should be accessible
through standard SQL (or equivalent) queries;
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• SQL queries could be able to search and retrieve all Euclid stacked images
and/or individual exposures;

• The pipelined data should always be composed by catalogs of objects (selected
by photometry, weak lensing, spectroscopy in wide or deep surveys) within
a standard queryable database. For instance, for the cluster catalogues, the
database should always include consistent information, like sky coordinates
(RA/Dec), best estimate of redshift (either spectroscopic or photometric),
richness, S/N ratio, number of objects, velocity dispersion, magnitude in
different bands and morphology;

• The data analysis should include source detection and photometry extraction
for time-series data, including DQ flags used for validation;

• The results of any data analysis should be provided in a queryable database
providing master variable source catalogues as well as all relevant metadata.

• The database should include verification and validation tools to check the pres-
ence and consistency of periodogram spectral densities for periodic variables,
flags indicating object variability and other particular features;

3.3.3 Scientific Aspects of Data Quality

From the scientific data point of view, the mission is subject to different layers
of goals and requirements, organized into a hierarchical structure:

• Payload and Mission Requirements;

• Survey Requirements;

• External Data Requirements;

• Data Processing Requirements;

Between this layered structure, what is directly involving DQ, it is basically the
last layer (data processing), in which all specifications, in terms of data integrity
and science expectations that must be checked and validated by the DQ systems,
are included. The first two layers, in fact, are mainly focused on, respectively,
observing instrument design and procurements (payload and mission) and science
involved group requirements (survey). A special mention is needed for the third
layer (external data), where several external packages and tools should aim at
improve the general qualitative requirements for primary science (such as visible
photometry and spectroscopy follow-ups and samples). At this layer, the data quality
requirements should be intrinsically ensured by the providers of such systems. So
far, for what it concerns the last relevant layer for DQ constraint and architecture
design, the following is a preliminary list of mandatory specifications about the data
processing requirements. There are also other further details that are voluntarily
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omitted here, waiting for a confirmation coming from a next system trade-off and
scientific analysis. DQ specifications (both quality requirements and consistent
information) for data processing assessment includes:

• VIS standard image products should be validated in terms of their quality,
availability and completeness (presence of artifacts, individual and stacked
exposures, flat fields, bias and sky subtractions, for each field, star masks,
weight and noise maps, astrometric exposure solutions). Standard products
should also involve catalogues of objects to the limiting magnitude, with
star/galaxy classification with a contamination less than 1%;

• The whole PSF (including telescope and optical plane instrument) should be
provided matching the exposure time, position in the FOV and wavelength
(especially in terms of ellipticity and size stability for all galaxy type objects)
and verified in terms of intrinsic fidelity and possible undersampling in some
points (eventually using also available simulations);

• Any additional colour information available from visible bands should be
correctly present (i.e. number of filters);

• For galaxy type object, an estimation of the redshift (spectroscopic or photo-
metric) should be present, together with the information about tools/technique
used and their quality performance (external data and NISP/VIS information).
In addition, there always should be present the related calculation error, the
matching with the sky coordinates (RA/Dec) and the magnitudes in all bands;

• Simulations should be end-to-end and include all known relevant astrophys-
ical, instrumental and data processing effects. In particular they should be
used to calibrate any effect that cannot be directly verified with the shear
catalogue or the PSF;

• Concerning the shear catalogue for extended (wide field) un-masked objects,
its algorithm should be checked by proper simulations and verified in terms
of variance between simulated and measured power spectrum. Moreover the
shear should be uncorrelated with a variety of indicator quantities that are not
be affected by the cosmological shear signal (such as stellar ellypticities and
other optical or instrumental quantities);

• A variety of power spectra are required (such as tomographic cosmic shear,
galaxy-shear, two-point galaxy-galaxy) as functions of different parameters
(such as redshift). In all cases the power spectrum should be verified and vali-
dated in terms of minimization of overlap in the mutual redshift distribution,
of consistency with mask effects, survey window, cosmological statistical
effects, astrophysical and non-astrophysical sources, intrinsic alignment etc.);
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• For the power spectra, their covariance matrix should be present and validated
in terms of their source (simulations/observations), potential cosmological
dependence and shape of the masks;

• Regarding the spectroscopic data, all patterns should be verified and vali-
dated in terms of cleaning of instrumental signatures, according to standard
processing procedures;

• Sub-spectra extraction should be consistent with the preservation of the
available information, shape and single-wavelength calibration, galaxy flux
preservation, calibration and measures of energy flux and equivalent width;

• For any of the angular position on the sky, data must include regular in-
formation details about observations, like sky coordinates, exposure time,
dithers number, wavelength covered by spectroscopy, dispersion direction etc.
Moreover, in the case of survey at a chosen redshift, processing data should
provide the expected density for a sample of objects matching the spatial
sampling;

• For all observed and catalogued objects there should be verified, if available,
the consistency with the same objects in external data (simulations and/or
ground-based observations);

• There should be verified the possibility in the SGS (Science Ground Segment)
to perform “non-standard” spectral analysis to increase the efficiency of
redshift measurements for special classes of objects;

3.3.4 Data Quality enhancement with Data Mining

In the traditional DQ methodology, briefly touched in the previous section, the
statistical approach is usually employed for measuring the quality of data, in many
common cases with good results (for example financial, enterprise, medical ware-
houses). But dealing with much more complex cases, especially in data warehouses
designated as repositories of high precision scientific experiment results (like in the
Euclid case), the traditional approach appears to be quite insufficient.

The major limit of statistical methods, when applied directly on data quality
control, is the fact that traditionally DQ modifies the data themselves while for sci-
entific data this needs to be avoided. Data Mining, on the contrary, is a methodology
for measuring the quality of data, preserving their intrinsic nature. DM algorithms
extract some knowledge, that can be used to measure the quality of data, with
particular reference to the quality of input transactions and then, eventually flag the
data of poor quality. A typical procedure to measure DQ of data transactions should
be based on three steps:

1. Extract all association rules, which depend on input transactions;

2. Select compatible association rules;
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3. Add confidence factor of compatible rules as criteria of data quality of trans-
action.

There are two important challenging issues. First, the extraction of all associa-
tion rules needs a lot of time and next, in most cases there is no exact mathematical
formula for measuring data quality.

So far, a more effective DM approach to DQ should be alternative to find exact
deterministic or statistical formulas. Therefore, for us, the answer is in employing
methodologies derived from Machine Learning (ML) paradigms, such as (a) active
on-line learning, which addresses the issue of optimizing the combination and
trade-o of losses incurred during data acquisition; (b) associative reinforcement
learning, connected with the predictive quality of the nal hypothesis. Moreover, one
of the guidelines of our proposed approach is to conjugate these machine learning
paradigms with features coming from biological adaptive systems.

The key principles are to process information systems using a connectionist
approach to computation, in order to emulate the powerful correlation ability at the
base of the cognitive learning engine of human brain, together with the optimization
process at the base of biological evolution (Darwin’s law)

Our experience in such methodology has produced the DAME Program, which
includes several projects, mostly connected with Astrophysics, although spread
into various of its scientific branches and sub-domains. Data Mining is usually
conceived as an application (deterministic/stochastic algorithm) to extract unknown
information from noisy data. This is basically true but in some way it is too much
reductive with respect to the wide range covered by mining concept domains. More
precisely, in DAME, data mining is intended as techniques of exploration on data,
based on the combination between parameter space filtering, machine learning,
soft computing techniques associated to a functional domain. In the data mining
scenario, the machine learning model choice should always be accompanied by the
functionality domain. To be more precise, some machine learning models can be
used in a same functionality domain, because it represents the functional context in
which it is performed the exploration of data.

Examples of such domains are: Dimensional reduction, classification, regres-
sion, clustering, segmentation, statistical data analysis, forecasting, data Mining
model filtering.

From the technological point of view, the employment of state of the art web
2.0 technology, allows the end user (i.e. the data centres) to be in the best condition
to interact with the DQ process by making use of a simple web browser.

The approach outlined above has three immediate advantages:

• DQ controls can be approached by remote, through homogeneous and inter-
operable interfaces, federated whereas possible under VO standards.

• Different DQ models and algorithms available by remote web applications can
be tested by the end user (SDC) in a standard and intuitive way. In other words,
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the SDC does not need to be particularly skilled with DM methodologies to
create and configure workflows on data;

• DM applications could be executed by remote cloud/grid frameworks, em-
bedding all the complex management issues of the distributed computing
infrastructure.

However, another indirect positive issue for our approach arises by considering
that, in a massive data centric project like EDW, one of the unavoidable constraints
is to minimize data flow traffic and down/up-load operations from remote sites. DQ
tools should therefore be installed and maintained at the SDC.

It is worth to stress that this approach fits perfectly within the recently emerging
area of interest named DQM (Data Quality Mining). DQ uses information attributes
as a tool for assessing quality of data products. The goal of DQM is to employ data
mining methods in order to detect, quantify, explain and correct DQ deficiencies in
very large databases. For this reason there is a reciprocal advantage between the
two application fields (DQ is crucial for many applications of KDD, which on the
other side can improve DQ results).

3.3.5 DQ, DQM and scalability issues

DQ and DQM are computing intensive and their computational cost grows
quickly with the size and complexity of the data to be analyzed. In what follows we
shortly describe how Graphic Processing Units (GPUs) could offer an effective and
inexpensive way to deal with such problem even in the framework of a mission as
complex as Euclid is.

In Euclid SGS warehouse the scientific quality control is particularly referred
with data and metadata related to both images and spectra. Most of the KDD
techniques based on machine learning that could directly be employed on such kind
of data can be considered naturally parallel in terms of their analysis computation.

As an example let us consider the Multi Objective Genetic Algorithm (MOGA),
based on the linkage between feature selections and association rules, that is one of
the key concepts in the DQ methodology. The main motivation for using GA in the
discovery of high-level prediction rules is that they perform a global search and cope
better with attribute interaction, often used in DM problems. Therefore a parallel GA
further promotes the performance of computing, particularly required on massive
data warehouse quality control. A traditional parallel computing environment is
very difficult and expensive to set up. This can be circumvented by recurring to
graphics hardware, inexpensive, more powerful, and perfectly comparable with other
more complex HPC mainframes in terms of computing power (many frameworks
based on GPU architecture are already included in the top 500 HPC worldwide
supercomputer ranking).

The DAME Program (see section 3.1) has already started the investigation
on the design and implementation of a hierarchical parallel genetic algorithm,
implemented on new technology based on multi-core Graphics Processing Unit
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(GPU) provided by NVIDIA Company, by using the Compute Unified Device
Architecture (CUDA) parallel programming SDK. CUDA is a platform for massively
parallel high-performance computing on the company’s powerful GPUs. At its cores
are three key abstractions: (a) a hierarchy of thread groups, (b) shared memories,
and (c) barrier synchronization, that are simply exposed to the programmer as a
minimal set of language extensions. These abstractions provide fine-grained data
parallelism and thread parallelism, nested within coarse grained data parallelism
and task parallelism.

According to the above concepts, we intend to contribute to DQ control of
SGS data warehouse by introducing and manage a specific Work Package (WP)
devoted to quality control of incoming data to the SGS. This could be achieved
by providing a DQM framework able to support data quality management within
each system team connected with data handling (both in terms of storage, retrieval
and maintaining). In order to do so, we can provide both software and specific
hardware infrastructures, located into official EC SDCs, in order to minimize data
flow requirements, available to end users via web interfaces.

The DQ WG should interact closely with many other WGs since it needs input
from many different teams. A detailed WBS for DQ and DQM management will be
provided in the next future and will be progressively adjusted to match the evolution
of the project organization structure.



108 CHAPTER 3. SCIENTIFIC GATEWAYS AND WEB 2.0



Chapter 4

Classification Problems

“Oh Be A Fine Girl Kiss Me (Right Now Sweetheart)”
Henry Norris Russell.

In this chapter I present present three different encountered problems that I
tackled during my PhD which are gathered together because they were approached
with the same data mining functionality: Classification (see sec. 2.1). Classification
problems are among the most relevant and commonly problems in astronomy.

A typical, and crucial, example is the extraction of scientifically useful infor-
mation from wide field astronomical images (both photographic plates and CCD
frames) and the recognition of the objects against a noisy background (a prob-
lem which in image processing is also known as image segmentation) and their
classification in unresolved (starlike) and resolved (galaxy).

This chapter is structured as follow:
In section 4.1 I show how the use of neural networks for object classification plus the
novel SPREAD MODEL parameter push down to the limiting magnitude the possibility
to perform a reliable star/galaxy separation. In section 4.2 I present an application o
to the identification of candidate Globular Clusters in deep, wide-field, single band
HST images on a small dataset while in section 4.3 I show an application to the
detection of Active Galactic Nuclei on a medium dataset.

4.1 Comparison of source extraction software

In order to obtain a better understanding of the data, part of my work was to
compare the catalog extraction performances obtained using the new combination
of SExtractor with PSFEx, against the more traditional and diffuse application of

this section is largely extracted from:
• Annunziatella, M.; Mercurio, A.; Brescia, M.; Cavuoti, S.; Longo, G.; 2013, Inside catalogs: a comparison of source extraction software,

PASP, 125, 68
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DAOPHOT with ALLSTAR; therefore, the present section may provide a guide
for the selection of the most suitable catalog extraction software. Both software
packages were tested on two kinds of simulated images having, respectively, a
uniform spatial distribution of sources and an overdensity in the center. In both
cases, SExtractor is able to generate a deeper catalog than DAOPHOT. Moreover,
the use of neural networks for object classification plus the novel SPREAD MODEL
parameter push down to the limiting magnitude the possibility of star/galaxy sep-
aration. DAOPHOT and ALLSTAR provide an optimal solution for point-source
photometry in stellar fields and very accurate and reliable PSF photometry, with ro-
bust star-galaxy separation. However, they are not useful for galaxy characterization,
and do not generate catalogs that are very complete for faint sources. On the other
hand, SExtractor, along with the new capability to derive PSF photometry, turns to
be competitive and returns accurate photometry also for galaxies. We can assess that
the new version of SExtractor, used in conjunction with PSFEx, represents a very
powerful software package for source extraction with performances comparable
to those of DAOPHOT. Finally, by comparing the results obtained in the case of
a uniform and of an overdense spatial distribution of stars, we notice, for both
software packages, a decline for the latter case in the quality of the results produced
in terms of magnitudes and centroids.

When extracting a catalog of objects from an astronomical image the main
aspects to take into account are: to detect as many sources as possible; to minimize
the contribution of spurious objects; to correctly separate sources in their classes
(e.g. star/galaxy classification); to produce accurate measurements of photometric
quantities; and, finally, to obtain accurate estimates of the positions of the centroids
of the sources.
Among the main source extraction software packages used by the astronomical com-
munity, there are SExtractor (Bertı̀n & Arnouts, 1996) and DAOPHOT II (Stetson,
1987), and the latter is often used in combination with its companion tool ALLSTAR
(Stetson, 1994). SExtractor is commonly used in extragalactic astronomy and has
been designed to extract a list of measured properties from images, for both stars
and galaxies. DAOPHOT and ALLSTAR were designed to perform mainly stellar
photometry. So far, only DAOPHOT II, used together with ALLSTAR, has been
able to produce more accurate photometry for stellar objects using the Point Spread
Function (PSF) fitting technique, while the PSF fitting photometry in SExtractor
has, instead, become possible only in the recent years. The first attempt was in
the late 90s, when the PSFEx (PSF Extractor) software package became available
within the TERAPIX “consortium”. This tool extracts precise models of the PSF
from images processed by SExtractor. Only after 2010, through the public release
of PSFEx (Bertı̀n, 2011)1, and with the recent evolution of computing power, has
PSF fitting photometry become fully available in SExtractor.
The scope of this section is to compare the results obtained using the combination of

1Available at http://www.astromatic.net/software/psfex.

http://www.astromatic.net/software/psfex
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SExtractor with PSFEx, and DAOPHOT with ALLSTAR, by focusing, in particular,
on the completeness and reliability of the extracted catalogs, on the accuracy of pho-
tometry, and on the determination of centroids, both with aperture and PSF-fitting
photometry. A previous comparison among extraction software tools was performed
by Becker et al. (2007). They, in pursuit of LSST science requirements, performed
a comparison among DAOPHOT, two versions of SExtractor (respectively 2.3.2
and 2.4.4), and DoPhot (Mateo & Schechter, 1989). However, differently from
the present work where simulations are used, they evaluated as “true” values the
measurements obtained with the SDSS imaging pipeline photo (Lupton et al., 2001).
Furthermore, we wish to stress that their results were biased by the fact that in 2007
the PSF fitting feature had not yet been implemented in SExtractor.
The present work performs, for the first time, a comparison between DAOPHOT
and SExtractor PSF photometry, providing a guide for the selection of the most
suitable catalog extraction software packages.
The simulations used for the comparison are described in Sect. 4.1.1. In Sect. 4.1.2,
the main input parameters of the software packages are overviewed and the adopted
values are specified in Sect. 4.1.3. In Sect. 4.1.4, the obtained results are shown. In
order to better evaluate the performances of both software packages on crowded
fields, we describe: in Sect. 4.1.5, a test performed on an image showing an over-
density in the center. Finally, the results are summarized in Sect. 4.1.6, together
with our conclusions.

4.1.1 Image Simulations

Image simulations are suitable in testing performances of various software
packages. Simulations, in fact, allow us to know exactly the percentage and the type
of input sources and their photometric properties.
In the present work, simulations have been obtained by using two software pack-
ages: Stuff2 (described in section 3.2.3) and SkyMaker3 (described in section 3.2.4)
, developed by E. Bertı̀n. With these tools, it is possible to reproduce the real
outcome of a CCD observation, once the characteristics of the telescope and the
camera are known. In practice, Stuff can be used to produce a realistic simulated
galaxy catalog, while SkyMaker uses this catalog to produce an optical image under
realistic observing conditions, allowing also to add a stellar field.
The galaxy catalog simulated by Stuff can be produced so to be consistent with
the assumed cosmological model and with the statistical distributions of stars and
galaxies in terms of redshift, luminosity and color. In a binned redshift space, Stuff

produces galaxies of different Hubble types E, S0, Sab, Sbc, Scd and Sdm/Irr. The
number of galaxies in each bin is determined from a Poisson distribution, by assum-
ing a non-evolving Schechter luminosity function (Schechter, 1976). Cosmological
parameters, luminosity function, as well as instrumental parameters are specified

2Available at http://www.astromatic.net/software/stuff.
3Available at http://www.astromatic.net/software/skymaker.

http://www.astromatic.net/software/stuff
http://www.astromatic.net/software/skymaker
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by the user in the input configuration file. In particular, the size of the image, the
pixel scale, the detector gain, and the observed passbands must be provided as input
information. Filters can be selected among the many available in the wavelength
range [0.29, 87.74831] µm. Finally the magnitude range of simulated galaxies has
to be fixed.
The image is then created by SkyMaker, by rendering sources of the input catalog
in the frame at the specified pixel coordinates, to which is added a uniform sky
background, Poissonian noise, and Gaussian read-out noise. Stellar sources are
modeled using a PSF internally generated, while the various types of galaxies are
modeled as differently weighted sums of a bulge profile and an exponential disk.
The PSF profile takes into account both atmospheric seeing and optical aberrations.
There are many parameters to be set in the SkyMaker configuration file. The most
important are related to: the pupil features, e.g., the size of the mirrors and the
aberration coefficients; the detector characteristics, e.g., gain, saturation level and
image size; and the observing conditions, e.g, full width at half maximum of the
seeing (FWHM) and exposure time.
For our work, we simulated images as they would be observed by the VST4 (VLT
Survey Telescope) and the OmegaCAM camera5. The field of view (FoV) of Omega-
CAM@VST is 1 square degree, with a pixel scale of 0.213 arcsec/pixel. In order to
reduce the computational time, we limited our simulations to a FoV of 1/4 of VST.
The aberration coefficients, the tracking errors, and the positions of the spiders were
set properly, according to the VST technical specifications. The allowed magnitude
range was set to 14-26 mag and the exposure time was fixed at 1500 s. Finally,
according to the ESO statistics at Cerro Paranal, the FWHM of the seeing was
set to 0.7 arcsec. In this section, we report results relative to B-band simulated
images. We obtain a catalog of N=4120 sources down to the input magnitude limit.
This corresponds to an image with an average surface number density of ∼ 20
sources/arcmin2.
In order to perform a more complete comparison of both software packages, we
also simulated a crowded image with an overdensity in the center (see Sect. 4.1.5).
To this purpose, the parameters of Stuff and SkyMaker are equal to those used for
images with uniform source distribution, except for the image size and the exposure
time. For these second group of tests, we reduced the exposure time to 300 s, with
an input magnitude limit of 14-25, while the image size is set to 2048x2048 pixels
(∼ 7x7 arcmin2). We wish to stress that, in the simulations, we did not include any
artifact such as bad pixels, ghosts or bad columns or other effects that, while being
crucial in other applications, are of no interest here, since we are comparing the
performances of two different software packages.

4http://www.eso.org/public/teles-instr/surveytelescopes/vst/surveys.html
5http://www.astro-wise.org/˜omegacam/index.shtml

http://www.eso.org/public/teles-instr/surveytelescopes/vst/surveys.html
http://www.astro-wise.org/~omegacam/index.shtml
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4.1.2 Source extraction software

In the following subsection, we briefly discuss how DAOPHOT works in com-
bination with ALLSTAR, and how SExtractor works in combination with PSFEx,
and give a brief overview of the main parameters that are needed to be set in order
to optimally run the selected software packages.

DAOPHOT II

DAOPHOT II is composed of a set of routines mainly designed to perform
stellar photometry and astrometry in crowded fields.
It requires several input parameters, listed in the file daophot.opt, including detector
gain, readout noise (GAIN, READ NOISE), saturation level (HIGH GOOD DATUM),
approximate size of unresolved stellar sources in the frame (FITTING RADIUS),
PSF radius (PSF RADIUS), PSF model (ANALYTIC MODEL PSF), and a parameter
designed to allow the user to visually inspect the output of each routine (WATCH
PROGRESS).
The first step performed by DAOPHOT II is to estimate the sky background and to
find the sources above a fixed input threshold through the FIND routine.
This threshold represents the level (in ADU), above the sky background, required
for a source to be detected. In order to ignore smooth large-scale variations in the
background level of the frame, the image is convolved with a lowered truncated
Gaussian function, whose FWHM is equal to the input value set by the FWHM
parameter. After the convolution, the program searches for the local maxima sky
enhancement.
Once the sources are detected, DAOPHOT II performs aperture photometry via the
PHOTO routine. Aperture photometry usually requires the definition of at least two
apertures. The first one is usually circular, centered on the source and with a radius
of a few times its FWHM. The second one is, instead, ring-shaped; usually this is
concentric to the first one and it has an inner radius equal to the radius of the first
aperture. The ring-shaped aperture is used to estimate the sky contribution and it
usually covers a number of pixels equal to or at least comparable with that of the
aperture. Then, the flux of the source is obtained by subtracting the sky flux from
the aperture flux. The aperture size must be chosen thoroughly. In fact, if the radius
of the inner aperture is too small, there will be a flux loss; while, if it is too large,
too much sky is included and the measurements will become too noisy. The radii
of the aperture and sky annulus for DAOPHOT can be specified in an input file:
photo.opt. The inner and outer radii of the sky annulus, which is centered on the
position of each star, must also be specified.
Beside the source magnitude, the PHOTO routine produces the coordinates of the
source centroids, corresponding to the barycenters of the intensity profile around
the source.
Aperture photometry performs rather well under the hypothesis of bright and isolated
stars. However, the stars in crowded fields are faint and tend to overlap. In these
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cases, the PSF fitting photometry can produce better results. This measurement
requires a PSF model to be derived from the stars in the image of interest. The
normalized PSF model is then fitted to each star in the image, in order to obtain the
intensity and magnitude.
DAOPHOT II can build a PSF model from a sample of stars obtained with the
PHOTO routine in an iterative procedure, intended to subtract neighboring stars that
might contaminate the profile. Among them, DAOPHOT will exclude stars within
one radius from the edges of the image and the stars too close to saturated stars.
The analytical formula of the PSF is chosen by the user among several available
models: a Gaussian function, two implementations of a Moffat function, a Lorentz
function, and two implementations of a Penny function (Penny, 1995). The PSF
routine produces a PSF model and a list of the PSF stars and their neighbors. The
modeled PSF stars can be visually inspected by setting properly the aforementioned
WATCH PROGRESS parameter.
Although DAOPHOT is designed for stellar photometry, extended sources are likely
always present in real images and, therefore, a reliable method is required to separate
galaxies from stars.
The sharpness parameter (SHARP) can be used as star/galaxy classifier. SHARP
describes how much broader is the actual profile of the object compared to the
profile of the PSF. The sharpness is, therefore, dependent on the model of the PSF,
and can be easily interpreted by plotting it as a function of apparent magnitude.
Objects with SHARP significantly greater than zero are probably galaxies.
Throughout the section, I indicate the stand-alone DAOPHOT II version 1.3-26

simply as DAOPHOT.

ALLSTAR

After having derived PSF models with DAOPHOT, ALLSTAR simultaneously
fits multiple overlapping point-spread functions to all the detected sources in the
image. At each iteration, ALLSTAR subtracts all the stars from a working copy
of the input image, according to the current best guesses about their positions and
magnitudes. Then, it computes the increments to the positions and magnitudes by
examining the subtraction residuals around each position. Finally, it checks each
star to see whether it has converged or it has become insignificant. When a star
has converged, its coordinates and magnitude are written in the output file, and the
star is permanently subtracted from the working copy of the image; when a star has
disappeared, it is simply discarded.
The input parameters for ALLSTAR, listed in allstar.opt, are similar to those in
daophot.opt and photo.opt.
Moreover, it is possible to optimize the determination of centroids, by applying a
PSF correction and setting the option REDETERMINE CENTROIDS.
An improvement of the star/galaxy classification is possible by using the afore-

6Available at http://starlink.jach.hawaii.edu/starlink

http://starlink.jach.hawaii.edu/starlink
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mentioned sharpness measure obtained by ALLSTAR (SHARP). This value may be
used also in conjunction with another ALLSTAR output parameter, for instance χ,
which is the observed pixel-to-pixel scatter from the model image profile, divided by
the expected pixel-to-pixel scatter from the image profile. Throughout the section,
I indicate simply with ALLSTAR the PSF-fitting software package that comes
together with DAOPHOT II version v. 1.3-2.

SExtractor

SExtractor is a software package mainly designed to produce photometric cat-
alogs for a large number of sources, both point-like and extended. Sources are
detected in four steps: i) sky background modeling and subtracting, ii) image fil-
tering, iii) thresholding and image segmentation, iv) merging and/or splitting of
detections. The final catalog is, indeed, extracted according to the input configura-
tion file, in which parameters are set by the user.
The first step of the background estimation can be skipped if the user provides
manually an input estimation of sky background. For the automatic background
estimation, the most critical input parameters to be set are BACK SIZE, the size of
each mesh of the grid used for the determination of the background map, and BACK
FILTERSIZE, the smoothing factor of the background map.
Once the sky background is subtracted, the image must be filtered. This implies
convolving the signal with a mask, shaped according to the characteristics that the
user wants to enhance in the image data. In fact, there are different filters available in
SExtractor. The more suitable are “top-hat” functions, optimized to detect extended,
low-surface brightness objects, Gaussian functions usually used for faint object
detection, and “Mexhat” filters, which work with a high value of detection threshold,
suitable for bright detections in very crowded star fields.
The detection process is mostly controlled by the thresholding parameters (DETECT
THRESHOLD and ANALYSIS THRESHOLD). The choice of the threshold must be care-
fully considered. A too high threshold determines the loss of a high number of
sources in the extracted catalog, while a too low value leads to the detection of
spurious objects. Hence it is necessary to reach a compromise by setting these
parameters according to the image characteristics, the background RMS, and also
to the final scientific goal of the analysis.
Two or more very close objects can be detected as a unique connected region of
pixels above threshold and, in order to correct for this effect, SExtractor adopts
a deblending method based on a multi-thresholding process. Each extracted set
of connected pixels is re-thresholded at N levels, linearly or exponentially spaced
between the initial extraction threshold and the peak value. Also, here a compro-
mise is needed to be found, since a too low value for the deblending parameter
leads to a lack of separation between close sources, while a too high value leads
to split extended faint sources in more components. Alternatively, it is possible to
extract the catalog with different deblending parameters and to merge detections for
extended sources or close pairs.
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Once sources have been detected and deblended, the software tool starts the mea-
surement phase. SExtractor can produce measurements of position, geometry, and
of several types of photometric parameters, including different types of magnitudes.
Among photometric quantities, there are: the aperture magnitude (MAG APER), hav-
ing the same meaning as explained in Sect. 4.1.2, the Kron magnitude (MAG AUTO),
which is the magnitude estimated through an adaptive aperture (Kron, 1980), and
the isophotal magnitude (MAG ISO), computed by considering the threshold value
as the lowest isophote.
Among the available position parameters, it is important to mention the barycen-
ter coordinates (X IMAGE, Y IMAGE), computed as the first order moments of the
intensity profile of the image, and windowed positional parameters (XWIN IMAGE,
YWIN IMAGE), computed in the same way as the barycenter coordinates, except that
the pixel values are integrated within a circular Gaussian window as opposed to the
object’s isophotal footprint.
To separate extended and point-like sources, it is possible to use the stellarity index
(CLASS STAR), which results from a supervised neural network that is trained to
perform a star/galaxy classification. CLASS STAR can assume values between 0
and 1. In theory, SExtractor considers objects with CLASS STAR equal to zero to
be galaxies, and those with value 1 as a star. In practice, stars are classified by
selecting a CLASS STAR value above 0.9. Two other parameters, often used to
discriminate between star and galaxies, are the half-light radius (FLUX RADIUS),
and the peak surface brightness above background (µmax). When plotted against the
Kron magnitude, these two parameters identify a so-called stellar locus.
Throughout the section, we indicate simply with SExtractor the software version
2.14.7 (trunk.r284).

PSFEx

The last version of SExtractor can work in combination with PSFEx, a package
able to build a model of the image PSF. The latter is expressed as a sum of N×N
pixel components, each one weighted by the appropriate factor in the polynomial
expansion (see Mohr et al. 2012). Then, SExtractor takes the PSFEx models as
input and uses them to carry out the PSF-corrected model fitting photometry for all
sources in the image.
PSFEx requires, as input, a catalog produced by SExtractor to build a model of the
image PSF, which can be read back in a second run by SExtractor itself. In order to
allow PSFEx to work, the first catalog produced by SExtractor must contain at least
a given number of parameters, as explained in the PSFEx manual7. In particular,
the catalog must contain the parameter VIGNET, a small stamp centered on each
extracted source, used to model the PSF. The size of VIGNET must be chosen ac-
cordingly to the size of the photometric apertures defined by PHOT APERTURES.
PSFEx models the PSF as a linear combination of basis vectors. These may be the

7https://www.astromatic.net/pubsvn/software/psfex/trunk/doc/psfex.pdf

https://www.astromatic.net/pubsvn/software/psfex/trunk/doc/psfex.pdf
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pixel basis, the Gauss-Laguerre or Karhunen-Loève bases derived from a set of
actual point-source images, or any other user-provided basis. The size of the PSF
and the number and type of the basis must be specified in the configuration file.
By using SExtractor combined with PSFEx, it is possible to obtain various estimates
of the magnitude, in addition to those described in the previous subsection: the
magnitude resulting from the PSF fitting (MAG PSF), the point source total magni-
tude obtained from fitting (MAG POINTSOURCE), the spheroidal component of the
fitting (MAG SPHEROID), the disk component of the fitting (MAG DISK), and the sum
of the spheroid and disk components (MAG MODEL). Moreover, it is also possible
to measure morphological parameters of the galaxies, such as spheroid effective
radius, disk aspect ratio, and disk-scale length.
The model of the PSF may be employed to extract a more accurate star/galaxy
classification using the new SExtractor classifier, SPREAD MODEL, which is a nor-
malized, simplified linear discriminant between the best fitting local PSF model and
a more extended model made by the same PSF convolved with a circular exponential
disk model with scalelength = FWHM/16, where FWHM is the full-width at half
maximum of the PSF model (Desai et al., 2012).
A more detailed description of PSFEx and the new SExtractor capabilities can be
found in Bertı̀n (2011) and Armstrong et al. (Jan 2010).
Throughout the section, we indicate simply with PSFEx the software version 3.9.1.

4.1.3 Catalog extraction

In this subsection we provide a general discussion on how to set the input
parameters in order to extract the catalogs with the software tools presented above.

DAOPHOT and ALLSTAR

Besides instrumental parameters, such as gain, saturation level, and readout
noise, which are set according to the values used for the simulations (Sect. 4.1.1), in
DAOPHOT the detection and photometric options must be configured by means of
input setup files. In the present analysis, the threshold value was chosen to detect
as many possible sources, while avoiding as much as possible spurious detections.
In fact, as the threshold decreases, the number of detected sources increases up to
a certain value, for which the relation changes in steepness. Thus it is possible to
choose a reasonable value for the threshold, by plotting the number of extracted
sources for different threshold values and by choosing the threshold near the “elbow”
of the function. Moreover, in order to avoid spurious detections, due to Poissonian
noise, the extracted catalog was visually inspected. In fact, by using the input
parameters as reported in Tab 4.1, only the 5% of the objects extracted in the catalog
is spurious. By decreasing the threshold, although the number of extracted input
sources increases, the percentage of spurious detections rapidly grows up to 30% at
4σ threshold, even reaching more then 88% at 3σ.
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Parameter Values
FITTING RADIUS 3.38
THRESHOLD (in sigmas) 5
ANALYTIC MODEL PSF 6
PSF RADIUS 7.5
a1 12.5
INNER RADIUS 20
OUTER RADIUS 35
REDETERMINE CENTROIDS 1.00

Table 4.1. Main input parameters set in the DAOPHOT and ALLSTAR configuration
files. FITTING RADIUS, PSF RADIUS, a1, INNER RADIUS and OUTER RADIUS
are expressed in pixels.

The FITTING RADIUS was set equal to the FWHM of the image (see Tab. 4.1).
To obtain the best aperture radius, we have derived the growth curve for input
stellar sources. Then, we fixed the aperture radius to 12.5 pixel (see a1 in Tab. 4.1),
producing the better coverage of the sources input magnitude. Thus, values of
INNER RADIUS and OUTER RADIUS were chosen accordingly, smaller and greater
than the aperture radius, respectively.
The PSF analytical model was chosen with the higher level of complexity, that is,
the implementations of the Penny function with five free parameters (option 6).
We chose to visually inspect the image of the PSF produced by DAOPHOT for all
the PSF stars. ALLSTAR parameters were set accordingly to those established for
DAOPHOT and, furthermore, we required the redetermination of the centroids.
The main parameters set for DAOPHOT and ALLSTAR are reported in Tab. 4.1.

SExtractor and PSFEx

As for DAOPHOT, SExtractor instrumental parameters are set accordingly to
those defined as input in the simulations (see Sect. 4.1.1).
Concerning the sky background modeling and subtraction, we decided to automat-
ically estimate the background within the software package adopting the global
background map. Given the average size of the objects, in pixels, in our images, we
chose to leave BACK SIZE to the default value 64. The choice of the filter was more
complex. We performed several tests with various filters obtaining the best results
by Gaussian and top-hat masks. However, the choice between the various filters, al-
though affecting the number of detected sources, does not alter their measurements.
For the thresholding parameters, we followed the same procedure approached with
DAOPHOT, as described in Sect. 4.1.3, that is, by choosing a value near to the
change in gradient of the relation between the number of extracted sources and
the threshold value for detections. Moreover, the catalog was visually inspected to
avoid residual spurious detections and to verify the deblending parameters.
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Parameter Values
DETECT MINAREA 5
DETECT THRESH 1.5σ
ANALYSIS THRESH 1.5σ
FILTER NAME tophat 3.0 3x3.conv
DEBLEND NTHRESH 64
DEBLEND MINCONT 0.001
BACK TYPE GLOBAL
BACK SIZE 64
BACK FILTERSIZE 3
PHOT APERTURES 25
BASIS TYPE PIXEL AUTO
BASIS NUMBER 20
PSF SIZE 25,25

Table 4.2. Main input parameters set in the SExtractor and PSFEx configuration files.
DETECT MINAREA, BACK SIZE, PHOT APERTURES and PSF SIZE are expressed in
pixels.

The size of the aperture for photometry, is fixed according to the one setted in
DAOPHOT, to 25 pixels of diameter (PHOT APERTURES). For PSFEx parameters
we used a set of 20 pixel basis and a size for the PSF image of 25 pixels according
with the aperture size. We adopted a 25×25 pixel kernel following PSF variations
within the image up to 2nd order. The main values set for SExtractor and PSFEx are
reported in Tab. 4.2.

4.1.4 Results

In this subsection, we compare the results obtained using the two software pack-
ages. We will focus on four aspects of the extracted catalog namely: photometric
depth, reliability, accuracy of the derived photometry, and determination of the
positions of the centroids.
All the quantities and the statistics shown in this subsection are obtained by ex-
cluding saturated sources. In Fig. 4.1, it is shown µmax as a function of the Kron
magnitude of the objects extracted by SExtractor. As evidenced by the flattening
of star sequence, sources with magnitude B≤19 mag are saturated in the simulated
images. Starting from Tab. 4.3 and Fig. 4.2, we report the comparison among results
obtained for the whole input magnitude range of unsaturated sources: 19-26 mag.
However, since we consider only input stellar sources recovered by both software
packages and since the completeness limit of the DAOPHOT star catalog is B=24
mag (see Sect. 4.1.4), the last two reported magnitude bins are underpopulated and
the results may be affected by catalog incompleteness.
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Figure 4.1. µmax as a function of the Kron magnitude for stars (diagonal crosses)
and galaxies (points) in the SExtractor catalog.

Photometric depth

The photometric limiting magnitude of the extracted catalog is defined as the
magnitude limit below which the completeness drops down to 90%, where the
completeness is the ratio of number of detected sources, Ndetected, and number of
input sources, Ninput.
With DAOPHOT, the photometric depth depends mainly on the threshold applied,
while for SExtractor, it depends also on the deblending of the sources, and on the
filter used for the detection (see Sect. 4.1.2). As discussed in Sect 4.1.3 and 4.1.3,
in order to fix the thresholding and deblending parameters, we performed several
tests, by visually inspecting the extracted sources, and finally we fixed the values
reported in Tab. 4.1 and 4.2. Then, we compared the results of source extrac-
tion obtained using two different filters: a Gaussian (dotted line in Fig. 4.2) and
a “top-hat” function (continuous line in Fig. 4.2). As shown in Fig. 4.2, using
SExtractor with a top-hat filter, we can improve the detection of faint sources. In
this case, the depth of the catalog is ∼ 25.0 mag. Hence, we refer to this filter in
all the tests performed with SExtractor and reported below. Figure 4.2 shows also
the percentage of extracted sources per magnitude bin obtained using DAOPHOT
(dashed line). With this software package, the completeness drops rapidly to very
low values for magnitudes fainter than B = 22.0 mag. However, this comparison
is misleading. In fact, DAOPHOT is not designed to work with extended sources.
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Figure 4.2. Ratio between detected and input sources for different magnitude the
bins. The dotted and the solid lines refer to SExtractor used with a Gaussian and
a top-hat filter respectively, while the dashed line refers to values obtained with
DAOPHOT.

For this reason, in Fig. 4.3a we report the ratio between the detected sources, which
are a priori known to be stars (Sdetected), and the input stars (Sinput). In Fig. 4.3b
we show the same quantities but for galaxies (Gdetected, Ginput). We can see that the
fraction of detected source is higher for stars for both SExtractor (B = 26.0 mag) and
DAOPHOT (B = 24.0 mag). Hence, in conclusion, considering only stars, the final
depth returned by DAOPHOT is ∼ 2 mag brighter than those produced by SExtractor.

Reliability of the catalog

The reliability of the catalog is defined as the ratio between the number of
well-classified sources and the number of the sources detected by the software
packages, see Eq. (6) of Laher, Grant & Fung (2008). For these tests we use only
the set of stars detected (Sdetected) and well-classified (Sclassified) by both SExtractor
and DAOPHOT. We compared results obtained with several methods to classify the
sources. In fact, each method leads to a different estimate of the reliability.
As far as DAOPHOT is concerned, we used the output parameters SHARP (see
Fig. 4.4a) and χ (see Fig. 4.4b), made the determination with ALLSTAR (see
Sect. 4.1.2). Fig. 4.4a shows the distribution of ALLSTAR sharpness SHARP for
our data. The separation between the two classes seems to be well defined. On the
other hand, Fig. 4.4b shows that the use of the χ parameter does not improve the
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Figure 4.3. The left panel shows the ratio between the numbers of detected and
input stars as a function of magnitude bins, as obtained by SExtractor (solid line)
and by DAOPHOT (dashed line); in the right panel are plotted the same quantities,
but for galaxies.



4.1. COMPARISON OF SOURCE EXTRACTION SOFTWARE 123

19 20 21 22 23 24 25 26

PSF magnitude (B)
−3

−2

−1

0

1

2

3

4
S

ha
rp

ne
ss

(a)

19 20 21 22 23 24 25 26

PSF magnitude (B)
0

5

10

15

20

25

χ

(b)

Figure 4.4. Distribution of DAOPHOT sharpness (left panel) and χ (right panel) as
a function of the PSF magnitude for simulated stars (diagonal crosses) and galaxies
(points). In the left panel the dashed line at zero sharpness is the adopted separation
limit for the star/galaxy classification (see Sect. 4.1.4).
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Figure 4.5. Distribution of SExtractor stellarity index (panel a), half-light radius
(panel b), µmax (panel c) and spread model (panel d), as a function of the Kron
magnitudes for simulated stars (diagonal crosses) and galaxies (points). The dashed
line in panels a and d is the adopted separation limit for the star/galaxy classification
(see Sect. 4.1.4).

star/galaxy classification. For this reason, we classified as stars all the sources with
SHARP lower than 0.
In order to investigate the reliability of the catalog made with SExtractor, we used
both traditional methods as well as the new parameter SPREAD MODEL. In Fig. 4.5a,
we plot CLASS STAR as a function of the Kron magnitude for our data. As shown,
the lower the established limit to separate stars and galaxies, the higher will be
the contamination of the star subsample from galaxies. A reasonable limit for the
separation is 0.98.

Figures 4.5b and 4.5c show the locus of stars, selected according to the relation
between half-light radius and µmax, respectively, as a function of the Kron magni-
tude. There is an improvement of the source classification compared to the use of
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CLASS STAR parameter, allowing a reliable star/galaxy separation down to B = 23.5
mag.
Finally, Fig. 4.5d shows SPREAD MODEL values as a function of Kron magnitude.
Stars and galaxies tend to arrange themselves in two distinct places on the plot.
Also in this case, the higher we choose the separation limit, the higher will be the
contamination of the stellar sequence from galaxies. A good compromise between
a reliable classification and a low contamination is the value 0.005.
In Fig. 4.6, it is shown the ratio between the sources correctly classified as stars
using the stellarity index (dotted line), spread model (continuous line) and sharpness
parameter (dashed line), as function of input magnitude.
In conclusion, if we define a classification with a reliability of at least 90% with
these methods we can acceptably classify the stars in DAOPHOT down to about 24
mag, which is the photometric depth of the extracted catalog, while in the case of
SExtractor, the classifier SPREAD MODEL allows us to obtain a reliable star/galaxy
separation down to B = 26 mag.

Photometry

In this subsection, we compare the results obtained with aperture and PSF pho-
tometry on the sample of stars detected by both SExtractor and DAOPHOT. We also
investigate the results obtained with Kron, isophotal and model-fitting photometry
for galaxies detected by SExtractor.
In Tab. 4.3, we report the mean difference and the standard deviation between aper-
ture and PSF magnitudes, as estimated by DAOPHOT (parts a and b, respectively)
and SExtractor (parts c and d, respectively), against input magnitude.
Figure 4.7 shows the residuals between aperture and input magnitudes (top panels),
and the residuals between PSF and input magnitudes (bottom panels), as estimated
by DAOPHOT (left panels) and SExtractor (right panels).
Table 4.3 and Fig. 4.7 show that there is a characteristic broadening of the resid-
uals at fainter magnitudes, as we expect when measurements become sky-noise
dominated, but the spread in the case of PSF photometry remains smaller than for
aperture measurements. This behavior is well known (e.g. Becker et al., 2007) for
DAOPHOT, but it is worth underlining that SExtractor has reached this level of
accuracy in PSF photometry only after the release of PSFEx.
In the top part of the Tab. 4.3, we also report the mean difference and the standard
deviation between Kron (part a), isophotal (part b) and model magnitudes (part c),
respectively, and input magnitudes for stars.
For completeness, since SExtractor is designed also to obtain accurate galaxy pho-
tometry, we report in the bottom part of the Tab. 4.4 the mean difference and the
standard deviation between Kron (part d), isophotal (part e) and model magnitudes
(part f), and input magnitudes for the “true” galaxies detected by the software
package (See Sect. 5.2).
By considering only stellar photometry, both software packages are able to deliver
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Figure 4.6. Ratio between stars classified by Stellarity Index (dotted line) and
Spread Model (solid line) from SExtractor with threshold values respectively to
0.98 and 0.005, and by DAOPHOT sharpness (dashed line) with a threshold value
equal to zero and detected stars, as function of input magnitude.

acceptable performances for both aperture and PSF photometry, up to a threshold
two magnitudes brighter than the limiting magnitudes of the input simulated images,
which is the completeness limit of the DAOPHOT catalog. Furthermore, the Kron
magnitude yields ∼ 94% of the total source flux within the adaptive aperture (Bertı̀n
& Arnouts, 1996) so, accordingly, we see a shift of ∼ 0.07 mag even in the brightest
magnitude bin. On the other hand, the isophotal magnitude depends on the detection
threshold and the model magnitudes (obtained through a sum of bulge plus disk),
and produce an unbiased estimate of the total magnitude also for stars.
In conclusion, the new PSF modeling of SExtractor produces photometric measure-
ments as accurate as those obtained with DAOPHOT.

Centroids

The last comparison is among extracted and input positions. There are different
ways to obtain centroid measurements. As stated above, DAOPHOT can provide
two different measurements for centroids. The simplest are the coordinates of the
source barycenter, derived during the thresholding process. These coordinates can
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Figure 4.7. Top panels: Residuals between aperture magnitudes estimated by
DAOPHOT (left panel) and by SExtractor (right panel), and input magnitudes for
detected stars. Bottom panels: Residuals between PSF magnitude estimated by
DAOPHOT (left panel) and by SExtractor (right panel), and input magnitude for
detected stars. Superimposed red points and solid red lines draw the mean and
standard deviation values reported in Tab. 4.3.
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Bin ∆mmean σ∆m ∆mmean σ∆m ∆mmean σ∆m ∆mmean σ∆m

(mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)
(a) (b) (c) (d)

19 - 20 0.007 0.005 0.002 0.006 -0.001 0.003 0.003 0.003
20 - 21 0.006 0.010 -0.001 0.011 -0.006 0.005 0.003 0.004
21 - 22 0.024 0.070 -0.011 0.031 -0.016 0.011 0.000 0.012
22 - 23 -0.020 0.075 -0.009 0.059 -0.023 0.013 0.003 0.014
23 - 24 -0.069 0.157 -0.011 0.106 -0.032 0.026 0.005 0.025
24 - 25 -0.147 0.302 -0.044 0.250 -0.034 0.058 -0.002 0.055
25 - 26 -0.306 0.379 -0.032 0.444 -0.122 0.088 -0.129 0.129

Table 4.3. The table reports, as a function of the magnitude bin (col. 1), the
mean difference ∆mmean (columns 2, 4, 6 and 8), and the standard deviation σ∆m
(columns 3, 5, 7 and 9) between aperture and input magnitudes as estimated by
DAOPHOT (part a) and by SExtractor (part b). Parts c and d report the mean
difference and the standard deviation between PSF and input magnitudes as obtained
by using DAOPHOT and SExtractor, respectively.

be redetermined by ALLSTAR, once DAOPHOT has built a PSF model, by applying
a PSF correction.
Concerning SExtractor, we chose to compare the results obtained using the barycen-
ter and the PSF corrected coordinates, as for DAOPHOT, and the results obtained
by using the windowed positions along both axes. These coordinates are obtained
by integrating pixel values within a circular Gaussian window. In Tab. 4.5, it is
reported the mean difference between barycenter coordinates and PSF-corrected
coordinates, estimated respectively with DAOPHOT (parts a and b) and SExtractor
(parts c and d) and input coordinates.
Finally, Tab. 4.6 shows the difference among input and windowed coordinates esti-
mated by SExtractor.
Fig. 4.8 and 4.9 show the difference between the input and barycenter coordinates
and between the input and PSF corrected coordinates.
Both software packages show a bias between output centroid coordinates ≤ 0.01
arcsec (equal to ∼ 0.47 pixel) and input X and Y, with an average deviation of ≤
0.02 arcsec (equal to ∼ 0.94 pixel), down to the DAOPHOT completeness magni-
tude limit. These values are in particular improved in terms of average deviation
(σ∆X(Y) ≤ 0.01 arcsec), when PSF correction is applied. Hence, we can conclude
that the results for centroids are satisfactory in both cases.

4.1.5 Non uniform star distribution

In order to evaluate the performances of both software in crowded fields, we
tested them on a simulated image with a non uniform stellar distribution, i.e.,
showing an overdensity of stars in the center. In the left panel of Fig. 4.10, we plot
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Figure 4.8. Difference between barycenter coordinates estimated by DAOPHOT
(upper panels) and by SExtractor (lower panels), and input coordinates and as
a function of input magnitude for detected stars. Superimposed red points and
solid red lines draw the mean and standard deviation values reported in top part of
Tab. 4.5.
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Figure 4.9. Difference between PSF-corrected and input coordinates estimated by
DAOPHOT (left panels) and by SExtractor (right panels), as a function of input
magnitude for detected stars. Superimposed red points and solid red lines draw the
mean and standard deviation values reported in bottom part of Tab. 4.5.
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Bin ∆mmean σ∆m ∆mmean σ∆m ∆mmean σ∆m

(mag) (mag) (mag) (mag) (mag) (mag) (mag)
(a) (b) (c)

19 - 20 0.074 0.005 0.058 0.007 0.057 0.023
20 - 21 0.077 0.009 0.073 0.012 0.048 0.025
21 - 22 0.076 0.027 0.093 0.024 0.028 0.046
22 - 23 0.076 0.046 0.128 0.039 -0.002 0.074
23 - 24 0.087 0.065 0.216 0.052 -0.034 0.091
24 - 25 0.051 0.143 0.389 0.121 -0.098 0.146
25 - 26 0.147 0.195 0.749 0.143 -0.145 0.151

Table 4.4. The table reports, as a function of the magnitude bin (col. 1), the mean
difference ∆mmean (columns 2, 4 and 6), and the standard deviation σ∆m (columns 3,
5 and 7) between Kron (part a), isophotal (part b), model (part c) and and input
magnitudes as obtained by using SExtractor.

the spatial distribution of the simulated stars, while the stellar density of the field,
as a function of the distance from the center, is shown in the right panel.

In order to carry out the test, we fixed the values for DAOPHOT, ALLSTAR,
SExtractor and PSFEx as in Sect.s 4.1.3 and 4.1.3.
The obtained results were evaluated by following the same criteria as in Sect. 4.1.4.
For all tests, we excluded saturated stars, which are stars with magnitude brighter
than B = 17 mag.
Also, in case of a non uniform stellar field, we obtain that, for point-like sources,
the final depth returned by DAOPHOT is ∼ 2 mag brighter than those produced
by SExtractor. In fact, SExtractor can recover the input star catalog, resulting in
a photometric depth of B = 25 mag, while for DAOPHOT the resulted limit in
magnitude is around 23 mag.
Moreover, by considering the reliability of the extracted catalogs, it is possible to
separate stars and galaxies down to the magnitude limit for each software package:
B = 25 mag for SExtractor and B = 23 mag for DAOPHOT.
In order to not bias the comparison of photometric measurements, we consider only
the input stellar sources recovered by both software packages. As a first step, we
analyze results for aperture photometry. Comparing the values of the mean and the
standard deviation of the difference between aperture and input magnitudes with
those reported in Tab. 4.3, we obtained a decline in the quality of the results, in
particular, those produced by SExtractor. In fact, in the magnitude bin 22-23, we go
from ∆m ± σ∆m = -0.009 ± 0.059 mag in the case of non-crowded field, to -0.165±
0.287 mag for SExtractor and from ∆m ± σ∆m -0.020 = 0.075 ± mag to -0.487 ±
0.474 for DAOPHOT.
By using PSF-fitting photometry, there is an improvement in the determination
of magnitude with respect to aperture photometry, but the results show a quality
decline as compared to the case of less crowded stars.
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Bin ∆Xmean σ∆X ∆Ymean σ∆Y ∆Xmean σ∆X ∆Ymean σ∆Y

(mag) (pixel) (pixel) (pixel) (pixel) (pixel) (pixel) (pixel) (pixel)
(a) (b)

19 - 20 0.033 0.055 0.063 0.062 0.046 0.011 0.053 0.016
20 - 21 0.032 0.045 0.041 0.059 0.041 0.019 0.070 0.054
21 - 22 0.058 0.061 0.043 0.050 0.060 0.024 0.061 0.024
22 - 23 0.033 0.068 0.048 0.058 0.023 0.072 0.061 0.047
23 - 24 0.046 0.108 0.043 0.090 0.043 0.062 0.059 0.079
24 - 25 0.033 0.209 0.026 0.202 0.026 0.132 0.055 0.138
25 - 26 0.027 0.167 0.107 0.288 -0.044 0.142 0.124 0.187

(c) (d)

19 - 20 0.050 0.005 0.050 0.004 0.051 0.005 0.050 0.003
20 - 21 0.052 0.009 0.051 0.006 0.051 0.007 0.051 0.006
21 - 22 0.052 0.009 0.053 0.014 0.054 0.009 0.053 0.014
22 - 23 0.044 0.020 0.054 0.022 0.044 0.022 0.052 0.022
23 - 24 0.043 0.048 0.046 0.053 0.044 0.044 0.049 0.052
24 - 25 0.031 0.116 0.043 0.111 0.033 0.114 0.047 0.109
25 - 26 -0.096 0.149 0.097 0.189 -0.007 0.186 0.107 0.269

Table 4.5. The table reports, as a function of the magnitude bin (col. 1), the mean
difference between DAOPHOT X (col. 2),Y (col. 4) barycenter measure and input
X, Y with the relative standard deviation (columns 3 and 5) in the part a, while in
the part b there are the mean difference between SExtractor X (col. 6), Y (col. 8)
barycenter measure and input X, Y with the relative standard deviation (columns 7
and 9). In parts c and d are reported the mean difference between X (columns 2
and 6), Y (columns 4 and 8) PSF corrected and input measurements obtained by
using DAOPHOT and SExtractor, respectively, with the relative standard deviation
(columns 3, 5, 7 and 9).

Bin ∆Xmean σ∆X ∆Ymean σ∆Y

(mag) (pixel) (pixel) (pixel) (pixel)

19 - 20 0.050 0.004 0.050 0.004
20 - 21 0.051 0.006 0.051 0.007
21 - 22 0.054 0.010 0.056 0.016
22 - 23 0.032 0.036 0.054 0.025
23 - 24 0.044 0.046 0.052 0.057
24 - 25 0.028 0.127 0.040 0.120
25 - 26 -0.043 0.124 0.134 0.173

Table 4.6. The table reports, as a function of the magnitude bin (col. 1), the mean
difference between X (col. 2) and Y (col. 4) windowed and input measurements as
estimated by SExtractor with the relative standard deviation (columns 3 and 5).
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Figure 4.10. Upper panel: Spatial distribution of input stars for the over-dense
stellar field. Colors of points refer to the surface number density of stars. Density
values are reported in the vertical color-bar. Lower panel: Numerical stellar density
as a function of the distance from the center. Dotted line represents the average
stellar density (∼ 40 stars/arcmin2) obtained excluding the circular region within a
radius of 1.5 arcmin from the center.
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By considering the last bin, for DAOPHOT PSF-fitting photometry, the results
change from ∆m ± σ∆m = -0.023 ± 0.013 mag to -0.079 ± 0.080 mag. While, by
using SExtractor PSF-fitting photometry, we pass from ∆m ±σ∆m = -0.003 ± 0.014
mag to -0.063 ± 0.110 mag.
Finally, we compare the results among those obtained with barycenter and PSF
corrected centroids and those reported in Tab. 4.5. In the last bin of magnitude,
DAOPHOT measurements of PSF centroids go from ∆X±σ∆X; ∆Y±σ∆Y = -0.044
± 0.020; -0.054 ± 0.022 pixel to ∆X ± σ∆X; ∆Y ± σ∆Y = -0.045 ± 0.146; -0.040 ±
0.148 pixel.
On the other hand, in the same bin, SExtractor measurements of PSF centroids go
from ∆X ± σ∆X; ∆Y ± σ∆Y = -0.044 ± 0.022; -0.052 ± 0.022 pixel to ∆X ± σ∆X;
∆Y ± σ∆Y = -0.063 ± 0.133; -0.055 ± 0.150 pixel.
On the basis of this comparison, we can conclude that, as shown in Sect 4.1.4, the
results obtained by both packages, in the case of an overdense region, are completely
equivalent both for PSF fitting photometry and PSF fitting determination of centroids,
and with regard of the reliability of the extracted catalog. With SExtractor, however,
we can optimize the detection of the sources to recover the whole input catalog.

4.1.6 Summary

The advent of new photometric surveys and the need to deal with fainter sources
have led to an increase in the demand for quality and accuracy of photometric
measurements. Moreover, the analysis of massive data sets needs a single software
tool in order to minimize the number of required reprocessing steps. Therefore, a
crucial aspect in this context is the choice of source detection software package. An
important innovation was introduced since 2010 with the public release of PSFEx,
which can work in combination with SExtractor. This new software package has
deeply improved the performances of SExtractor, filling the gap against other avail-
able procedures, such as DAOPHOT and PHOTO, concerning PSF photometry.
In the present work, for the first time, the performances of DAOPHOT and SExtrac-
tor are compared to check the quality and accuracy of extraction procedures with
respect to the requirements of modern wide surveys. The software packages are
tested on two kinds of B-band simulated images having, respectively, a uniform
spatial distribution of sources and an overdensity in the center.
In the first case, by considering only the number of extracted sources, it appears
that the limiting magnitude for the extracted catalog is extremely low, in particular
for DAOPHOT is B = 22 mag. If we limit to consider only stellar sources, the
photometric depth is improved down to 24 mag for DAOPHOT and 26 mag for
SExtractor. This could be related to the fact that only SExtractor gives the possibility
to choose the filter for catalog extraction, according to the image characteristics (see
Sect. 4.1.3). In fact, as shown in Sect 4.1.4, the filter choice affects the photometric
depth of the extracted catalog.
A relevant aspect of the catalog extraction is the capability to discriminate between
extended and point-like sources. As we have seen, within the different software
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packages, there are various methods to perform the star/galaxy classification. In
particular the sharpness parameter available in DAOPHOT, improved by using
ALLSTAR, returns a reliable star/galaxy classification down to the photometric
depth of the catalog (B = 24 mag). All the traditional methods available in SEx-
tractor, instead, limit the star/galaxy classification, at least one magnitude above
the completeness magnitude of the catalog. The new parameter SPREAD MODEL,
which is a discriminant between the best fitting local PSF and a more extended
model, has largely improved the classification, allowing to separate extended and
point-like sources down to the completeness limit of the catalog (B = 26 mag for
stellar sources).
Since DAOPHOT is mainly designed to perform stellar photometry, in order to
not bias the comparison of photometric measurements, we considered only input
stellar sources recovered by both software packages. Both software tools are able to
deliver acceptable performances in both aperture (with a σ∆m < 0.2 mag) and PSF
photometry (with a σ∆m < 0.03 mag), down to B = 24 mag, the completeness limit
of the DAOPHOT catalog.
Moreover, since SExtractor allows us to derive different estimates of the total mag-
nitudes of sources, which we can also compare among themselves: Kron, isophotal
and model magnitudes. The isophotal magnitude is highly dependent on the detec-
tion threshold. In fact, in the [23-24] magnitude bin, there is a higher shift of ∆m
(0.216 mag) than in other magnitudes. The Kron magnitude yields ∼ 94% of the
total source flux within the adaptive aperture (Bertı̀n & Arnouts, 1996). Accord-
ingly, we find a shift of ∼ 0.07 mag even in the brightest magnitude bin. The model
magnitude results a good estimate of the input magnitude also for stars, with an
error of 0.091 mag in the [23 - 24] magnitude bin.
An accurate determination of the object’s centroids is crucial for the relative astrom-
etry and thus, also for matching sources in different bands. Both software packages
show a bias between output centroids and input X and Y coordinates ≤ 0.01 arcsec,
with an average deviation of ≤ 0.02 arcsec down to B = 24 mag. These values are
improved in terms of average deviation (σ∆X(Y) ≤ 0.01 arcsec), when PSF correction
is applied. So, we can conclude that these results are satisfactory in both cases.
We also tested both software packages on simulated images with a non uniform
stellar distribution, i.e., showing an overdensity of stars in the center. By analyzing
the results obtained in this last case, we can confirm the conclusions described
above. In particular, DAOPHOT provides a catalog ∼ 2 mag shallower than the one
extracted by SExtractor. On the other hand, by analyzing the extracted catalogs in
terms of the mean difference and the standard deviation among output and input
magnitudes and centroids, we notice a decline in the quality of the results for both
software packages, with respect to the case of a uniform spatial distribution of
stars. Finally, DAOPHOT and ALLSTAR provide very accurate and reliable PSF
photometry, with a robust star-galaxy separation. However, it is not useful for
galaxy characterization. On the other hand SExtractor, associated with PSFEx, turns
competitive in terms of PSF photometry. It returns acceptable aperture photometry
and accurate PSF modeling also for faint sources. The windowed centroids are
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as good as PSF centroids. Moreover, SExtractor allows to go very deep in source
detection through a properly choice of image filtering masks. The deblending model
is very extensible, and the use of neural networks for object classification, plus the
novel SPREAD MODEL parameter, push down to the limiting magnitude the capability
of star/galaxy separation. Considering that SExtractor returns accurate photometry
also for galaxies, we can conclude that the new version of SExtractor, used in com-
bination with PSFEx, represents a very powerful software tool for source extraction,
with performances comparable to DAOPHOT also for overdense stellar fields. In
the next years, it will be important to extensively test SExtractor plus PSFEx on
real crowded stellar fields in order to definitively assess the performances of this
software tool. However, an important aspect for the use of PSFEx and SExtrac-
tor, that we cannot avoid to mention, is the processing time. Without considering
problems, such as degradation in performances during periods of heavy disk access,
on average, SExtractor requires 0.5 s per detection to perform PSF photometry
and source modeling, by using one single CPU with 6GB of RAM. This suggests
that currently, the only disadvantage of using SExtractor and PSFEx on wide field
images is the processing time. However, on the other hand, although DAOPHOT is
more efficient in terms of processing time just for the calculation, it requires more
time if the user visually inspects the modeled PSF stars.

4.2 Globular Cluster Classification

In this paragraph I present an application of self-adaptive supervised learning
classifiers derived from the Machine Learning paradigm, to the identification of
candidate Globular Clusters in deep, wide-field, single band HST images. Several
methods provided by the DAME web application, were tested and compared on
the NGC1399 HST data described in Paolillo et al. (2011). The best results were
obtained using a Multi Layer Perceptron with Quasi Newton learning rule which
achieved a classification accuracy of 98.3%, with a completeness of 97.8% and 1.6%
contamination. An extensive set of experiments revealed that the use of accurate
structural parameters (effective radius, central surface brightness) does improve
the final result, but only by ∼ 5%. It is also shown that the method is capable to
retrieve also extreme sources (for instance, very extended objects) which are missed
by more traditional approaches.

In this work I used a variety of methods provided by DAMEWARE for the
identification of Globular Clusters (GCs) in the galaxy NGC1399 using single band
photometric data obtained with the Hubble Space Telescope (HST).

this section is largely extracted from:
• Brescia, M.; Cavuoti, S.; Paolillo, M.; Longo, G.; Puzia, T.; 2012, The detection of Globular Clusters in galaxies as a data mining problem,

MNRAS, Volume 421, Issue 2, pp. 1155-1165, available at arXiv:1110.2144v1.

• Cavuoti, S.; Garofalo, M.; Brescia , M.; Paolillo, M.; Pescape’, A.; Longo, G.; Ventre, G.; GPUs for astrophysical data mining. A test on
the search for candidate globular clusters in external galaxies, Submitted to New Astronomy, accepted

• Cavuoti, S.; Garofalo, M.; Brescia, M.; Pescape’, A.; Longo, G.; Ventre, G., 2012, Genetic Algorithm Modeling with GPU Parallel Com-
puting Technology, 22nd WIRN, Italian Workshop on Neural Networks, Vietri sul Mare, Salerno, Italy, May 17-19 refereed proceeding

http://arxiv.org/abs/1110.2144v1
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The identification and physical characterization of Globular Cluster (GC) popula-
tions in external galaxies is of interest to many astrophysical fields: from cosmology,
to the evolution of star clusters and galaxies, to the formation and evolution of binary
systems. The identification of Globular Clusters in external galaxies usually requires
the use of wide-field, multi-band photometry since in galaxies located more than
a few Mpc away they appear as unresolved sources in ground-based astronomical
images and are thus hardly distinguishable from background galaxies which intro-
duce significant contamination problems. For such reason, GCs are traditionally
selected using methods based on their colors and luminosities. However, in order to
minimize contamination and to measure GC properties such as sizes and structural
parameters (core radius, concentration, etc.), high-resolution data are required as
well which, for star clusters outside the Local Group, are available only through
the use of space facilities (i.e. Hubble Space Telescope, HST). Obtaining suitable
HST data is however challenging in terms of observing time since the optimal
datasets should be: i) deep, in order to sample the majority of the GC population
and ensure the high S/N required to measure structural parameters (see e.g. Carlson
& Holtzman, 2001); ii) with wide-field coverage, in order to minimize projection
effects as well as to study the overall properties of the GC populations, which often
differ from those inferred from observations of the central region of a galaxy only;
and iii) multi-band, to effectively select GC based on colors.

It is apparent that, in order to reduce observing costs, it would be much more
effective to use single-band HST data. Such approach however requires to carefully
select the candidate GCs based on the available photometric and morphological
parameters in order to avoid introducing biases in the final sample (see below).
Here I intend to show that the use of properly tuned DM algorithms can yield very
complete datasets with low contamination even with single band photometry, thus
minimizing the observing time requirements and allowing to extend such studies to
larger areas and to the outskirts of nearby galaxies.

4.2.1 The data

The dataset used in this experiment consists of wide field HST observations
of the giant elliptical NGC1399 located at the heart of the Fornax cluster. This
galaxy represents an ideal test case since, due to its distance (D = 20.13 ± 0.4
Mpc, see Dunn & Jerjen, 2006), it is possible to cover a large fraction of its GC
system (out to > 5Re) with a limited number of observations. Furthermore, it is
particularly challenging because, at this distance, GCs are only marginally resolved
even by HST; in fact at NGC 1399 distance 1 ACS pixel corresponds to 2.93 pc
(1” = 97.7 pc). This dataset was used by Paolillo et al. (2011) to study the GC-
LMXB connection and by Puzia et al. (2012, in preparation) to study the structural
properties of the GC population. We summarize below the main properties of the
dataset, and refer to these works for a more detailed description of the observations
and of data analysis.

The optical data were taken with the HST Advanced Camera for Surveys
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(ACS, program GO-10129, PI T.Puzia), in the F606W (broad V band) filter, with
integration time of 2108 seconds for each field. The observations were arranged in a
3x3 ACS mosaic, and combined into a single image using the MultiDrizzle routine
(Koekemoer et al., 2003). The final scale of the images is 0.03”/pix, providing
Nyquist sampling of the ACS PSF. The field of view of the ACS mosaic covers 100
square arcmin (Figure 4.11) extending out to a projected galactocentric distance of
∼ 55 kpc, i.e. 4.9re of the GC system (∼ 5.7rgal

e ). The source catalog was generated
with SExtractor by imposing a minimum area of 20 pixels: it contains 12915
sources and reaches 7σ detection at mV = 27.5, i.e. 4 mag below the GC luminosity
function turnover, thus allowing to sample the entire GC population (see Figure
4.12). The catalog astrometric solution was registered to the USNO-B1 reference
frame, obtaining a final accuracy of 0.2” r.m.s.

For 4239 sources we were able to measure structural parameters (which require
very high S/N, see Carlson & Holtzman 2001 and Puzia et al. 2012), fitting King
surface brightness profile models with the Galfit software (Peng et al., 2002), and
deriving tidal, core, effective radii and central surface brightness values for each
cluster. The accuracy of these measurements was estimated simulating several
thousand artificial GCs with the Multiking code8 specifically written to account for
ACS field distortion, PSF variation, dithering pattern (Paolillo et al., 2011, Puzia et
al. 2012).

The NGC1399 region covered by our mosaic lacks color information for all
HST F606W sources. In this work I make use of two ancillary multiwavelength
datasets: archival HST g − z observations (Kundu et al., 2005), which cover the
very central region of the galaxy (10% of the sample, see Figure 4.11), and C − T1
ground based photometry from Bassino et al. (2006), covering the whole mosaic.
The latter is only available for ∼ 14% of our sources, and due to background light
contamination it is very incomplete in the proximity of the galaxy center. In total
2740 sources of the catalog have multi-band (either g − z or C − T1) photometry.

Finally, the subsample of sources used to build our Knowledge Base (KB) to
train the DM algorithms, is composed by the 2100 sources with all photometric and
morphological informations: isophotal magnitude, kron radius, aperture magnitudes
within a 2, 6 and 20 pixels (corresponding to 0.06′′, 0.18′′, and 0.6′′) diameter,
ellipticity, position angle, FWHM, SExtractor stellarity index, King’s tidal and
core radii, effective radii, central surface brightness, and either g− z or C − T1 color.
The magnitude distribution of such subsample is shown in Figure 4.12 as a dashed
line.

The typical choice to select GCs based on multi-band photometry would be
to adopt the magnitude and color cuts reported in Table 4.7, and highlighted in
Figure 4.13 with a dashed line; the magnitude limit z < 22.5 does not exploit the
full depth of the HST data but is adopted to be consistent with the T1 < 23 limit
used for the ground-based colors, thus ensuring a uniform limit across the whole
field-of-view. In the following we thus assume that bona-fide GCs are represented

8available at: http://people.na.infn.it/paolillo/Software.html

http://people.na.infn.it/paolillo/Software.html
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Figure 4.11. The field of view covered by the 3x3 HST/ACS mosaic in the F606W
band. The central field, with a different orientation, shows the region covered by
previous archival ASC observations in g and z bands.
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Table 4.7. Photometric selection criteria for GC candidates

color cut magnitude cut
Ground-based 1.0 ≤ C−T1 < 2.2 T1 < 23
data

HST data 1.3 ≤ g−z < 2.5 z < 22.5

by such sources, in order to explore how well different selection methods based on
single band photometry are able to retrieve the correct population of objects. The
F606W magnitude distribution of color-selected GCs is shown in Figure 4.12 as a
black solid line.

4.2.2 Results

As discussed in the Introduction, the purpose of this work was to implement
an alternative, DM based, method to select globular clusters in single band HST
images, thus saving the observing time needed to obtain complete sets of multiband
data. In this subsection we shortly summarize the results of the series of (numerical)
”experiments” which were performed to determine the best model and the best
combination of features, while in next subsection we discuss the overall properties
of the sample obtained with the DM algorithms, in comparison with traditional
selection methods.

Terms like completeness, contamination, accuracy etc. are differently defined
by astronomers and “data miners”. In what follows we use the following definitions.
Classification accuracy: fraction of patterns (objects) which are correctly classified
(either GCs or non-GCs) with respect to the total number of objects in the sample;
completeness: fraction of GCs which are correctly classified as such; contamination:
fraction of non-GC objects which are erroneously classified as GCs.

All experiments were performed on the KB sample presented in section 4.2.1,
assuming that bona-fide GCs are represented by sources selected according to the
color cuts in Table 4.7. We used as features the following quantities:

• The isophotal magnitude (Feature 1).

• Three aperture magnitudes (features 2–4) obtained through circular apertures
of radii 2, 6, and 20 arcsec respectively;

• The Kron radius, the ellipticity and the FWHM of the image (features 5-7);

• The structural parameters (features 8-11) which are, respectively, the central
surface brightness, the core radius, the effective radius and the tidal radius.

By making an exhaustive pruning test on all 11 dataset parameters, with the
5 machine learning models previously introduced, we collected a total of 425
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Figure 4.12. Luminosity distributions of all detected (dotted line) and point-like (e.g.
with stellarity index > 0.9, solid gray line) sources within the HST FOV. Also shown
are the two additional subsamples discussed in section 4.2.1 and section 4.2.2: the
KB composed of sources with both color and structural parameters (dashed line),
and the subset of bona-fide color-selected GCs based on Table 4.7 (solid black line).
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Figure 4.13. Color-magnitude diagrams using C−T1 ground-based (left panel) and
g−z HST photometry (right panel). Ground-based photometry covers the whole
FOV of our ACS mosaic, while HST colors are limited to the central ACS field
(∼200”×200”, Figure 4.11). Open grey dots represent all sources in color catalogs
while solid ones refer to the subsample with both color and structural parameters that
represents our Knowledge Base. Blue squares mark pointlike sources, i.e. sources
with stellarity index > 0.9, while the dashed line highlights the parameter space
(Table 4.7) used to select bona-fide GC.
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experiments (85 per model). The details of the experiment setup can be found in
Appendix A.

Table 4.8 summarizes the most relevant results: in terms of classification accu-
racy and completeness, the best results (98.3% and 97.8% respectively) are obtained
by MLPQNA using all parameters; using all available features but the number 11
(the tidal radius) we obtain marginally worse results, as can be expected given the
high noise present in this last parameter, which is affected by the large background
due to the host galaxy light. In terms of contamination comparable results (. 2%)
are obtained with the same model both with or without feature 11. We point out
that since the experiment without feature 11 provides results comparable to the
one using all features, but requires less information and is less computationally
demanding, we consider the latter to be the case providing the highest overall perfor-
mance, as usually done in DM experiments. In other words the experiment without
feature 11 represents the best compromise between required overall performance
and complexity of the KB.

The best result obtained without using the structural parameters is 93.9% (clas-
sification accuracy) thus indicating that the availability of detailed structural pa-
rameters does indeed help to improve the results, but only by ∼ 5%. Moreover,
the pruning in the mixed cases (by excluding some structural and optical features)
revealed a similar behavior in all models, in terms of quantity of correlated in-
formation introduced by individual features in the patterns. Five optical features
(namely the isophotal and aperture magnitudes and the FWHM of the image) were
recognized as the most relevant by all models. Among the structural parameters,
the central surface brightness and the core radius were recognized as relevant by all
models but the SVM and MLPGA models. In all other cases, other residual optical
and structural parameters were evaluated low carriers of correlated information.

It is worth pointing out that the performances, in terms of completeness and
contamination, quoted above are all derived with respect to the test sample (and
thus ultimately from the KB), and do not include possible biases affecting the KB
itself. Such biases will be propagated to the final sample by any DM algorithm, as
these rely on the assumption that the KB is a fair and complete representation the
“real” population that we want to identify. Thus if the KB is severely incomplete or
contaminated, this is a separate issue that has to be addressed in the training sample
selection phase.

4.2.3 Discussion

In order to test the effectiveness of our method, we need to compare its per-
formances with those offered by more traditional approaches. For homogeneity
(same data set) we shall use as template the method discussed in Paolillo et al.
(2011) which used a selection criteria based on magnitude and morphology. Figure
4.12 shows that sources with SExtractor stellarity index > 0.9 (grey solid line)
are distributed as the GC luminosity function down to mV = 26, while at fainter
magnitudes background unresolved sources dominate the overall sample. Based on
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Figure 4.14. Same as Figure 4.13 showing the color distribution of the MLPQNA
selected sample. The MLPQNA sample (blue squares) reproduces the properties of
the color-selected GC population (i.e. the KB) with much less contaminants than,
e.g., the pointlike population shown in Figure 4.13.
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these considerations Paolillo et al. choose as GC candidates sources having stellarity
index > 0.9 and mV < 26 mag. Clearly a more sophisticated selection process,
based on complex combinations of photometric and structural parameters (see for
instance Puzia et al., 2012), could be adopted but any such approach requires anyway
extensive testing to verify what biases are introduced in the final sample and it is
not clear how such biases can be evaluated and corrected for without the availability
of additional data (e.g. more uniform color coverage or random background fields
to compare with).

From Figure 4.13 it can be seen that although the use of the stellarity and
magnitude criteria effectively selects the bulk of the color-selected GC population,
there are sources consistent with GC colors, which are missed by this approach;
on the other hand this subsample includes many objects outside the allowed color
range. We can calculate the level of completeness and contamination resulting from
the simple approach of Paolillo et al. (2011), as done in section 4.2.2 for the DM
methods. We derive two different estimates: i) for the central region covered by the
more accurate g and z HST photometry and, ii) for the entire field covered by the
ground based C and T1 data. Within the central region 92% of our GC candidates
(within mV < 26 by definition) are consistent with the 1.3 ≤ g − z < 2.5 color
cut and z < 22.5. Using the C − T1 photometry instead, which extends over the
whole HST mosaic we find that 82% of the GC candidates are consistent with the
1.0 ≤ C−T1 < 2.2 color and T1 < 23 magnitude cuts. On the other hand, ∼ 4%
and ∼ 9% of the GC candidates have respectively g − z and C − T1 colors outside
the allowed range as given in Table 4.7.

When these numbers are compared with those presented in Table 1, we see that
the MLPQNA outperforms the simpler approach used by Paolillo et al. (2011) both
in the central region and across the whole field, in the sense that it results in higher
completeness, retrieving a larger fraction of the color-selected sources using only
single band photometry. GAME and SVM may still perform better in the galaxy
outskirts, although in the galaxy center they are slightly less accurate. In terms of
contamination the MLPQNA again performs better than the Paolillo et al. (2011)
approach, yielding < 2% spurious sources in the two best experiments (complete
patterns and no par.11). The other MLPQNA experiments and all SVM cases are
still competitive in the galaxy outskirts.

The performance of the MLPQNA method is better understood looking at the
color-magnitude plot shown in Fig. 4.14. The MLPQNA sample reproduces the
properties of the color-selected GC population with much less contaminants than,
e.g., the pointlike population shown in Fig. 4.13, and less outliers. In Fig. 4.15 we
show the luminosity distribution of the MLPQNA sample: the MLPQNA approach
(dashed red line) is able to retrieve almost the entirety of the color-selected GC
population (solid black line). We point out that the luminosity limit at mV ∼ 24 is
due to the magnitude threshold imposed on the color-selected sample (Table 4.7) in
order to get a uniform limit across the whole color range (Figure 4.14) and FOV,
and is thus not an intrinsic feature of the GC luminosity function which extends
down to mV & 26 mag.
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A detailed investigation of the properties of the spurious sources is difficult
since the strength of DM algorithms is to detect hidden correlations among the
parameters, and use them to classify unknown sources; this however means that such
correlations are hard to identify through a simple (and low-dimensional) view of the
source distribution in the parameter space. In our specific case we found that most
contaminants are indeed GCs which fail the color-magnitude classification technique
by only one criteria (e.g. they lie just outside the chosen color or magnitude range,
see Figure 4.14). It is thus unsurprising that the MLPQNA identifies such sources
as GCs as all other parameters obey the correlations identified in the training phase.
A few more extreme objects are found to be affected by photometric or structural
problems in the data, such as the overlap with a nearby source which may introduce
severe contamination in low-resolution ground based data, or a position close to
the chip gap in HST data. A few can also be expected to be foreground stars which
are misclassified due to the small angular size of some GCs in the training sample,
lying at the resolution limit of HST data (gray region in Figure 4.16).

An additional advantage in the use of DM techniques can be see comparing
the structural parameters of pointlike sources with mV < 26 mag with those of
the color-selected subsample (Figure 4.16, left panel): we find that the Paolillo
et al. (2011) selection criteria misses extended sources with Re f f & 5 pc, as it
can be expected given the compactness requirement (stellarity index > 0.9). The
right panel of the same Figure shows that the MLPQNA methods is instead able
to retrieve also the most extended GCs. While some of these extended sources
may be background galaxies, we point out that the most extended GCs, such as
the Galactic GC ω-Cen, do fall in this range. In fact we used the subset of GC
confirmed through radial velocity measurements (Dirsch et al., 2004) to verify that
a significant fraction (∼ 10%) of the NGC1399 GC population has Re f f & 5 pc, and
that the size distribution of this subsample is statistically indistinguishable from both
the color- and MLPQNA-selected populations. Obviously we cannot confirm that
all extended sources are genuine GCs but, as already discussed in section 4.2.2, we
emphasize that the performance of the method has to be evaluated only by its ability
to retrieve the same sources included in the training sample, i.e. the color-selected
GCs in our experiment.

Applying the same algorithm to the larger ensemble of sources with structural
parameters (but no color information) we are now able to retrieve more objects
than available in the color-selected subsample, sharing very similar properties to
the latter population. The population of MLPQNA selected GCs identified within
the whole population is shown in Figure 4.15 and Figure 4.16 (right panel) as a
dot-dashed line. In our specific test case (e.g. NGC1399) this method allows to
identify ∼ 30% more GCs than relying the subsample of sources with color; this
larger sample closely follow the GC LF down to the magnitude limit imposed by the
color selection, as well as the structural properties of the bona-fide GC population.
Thus the gain with respect to other selection techniques is in the ability to retrieve a
larger population with well defined properties, at lower observational cost. In other
programs the gain can be much larger: for instance in cases of large surveys where
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Figure 4.15. Same as Figure 4.12 but for the MLPQNA selected samples. The
MLPQNA approach (dashed red line) is able to retrieve almost the entirety of the
color-selected GC population (solid black line); applying the same algorithm to all
sources with structural parameters (but no color, blue dot-dashed line) we can thus
retrieve many more objects than available in the color-selected subsample, sharing
the same luminosity distribution of the latter population.
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DM algorithms can be trained on a KB consisting on a limited number of multi-band
observations covering only a small fraction of the FOV; the trained algorithm will
then allow to extract statistically equivalent samples from the entire survey.

Finally we note that each experiment was not really time consuming. It was
executed on a common desktop multi-core PC in a multi-threading environment,
resulting in about 3600 sec (1 hour) of duration for the training phase in the worst
case (i.e. on the whole dataset patterns with all 11 features). The test phase is
instantaneous, since the trained network acts like a one-shot function. Of course
the complexity and indeed the execution time depends in a quadratic form on the
dataset dimension. But in case of small datasets, like the present one, this is not an
issue. Besides computing time, the relevant result is that the proposed MLPQNA
model revealed a strong performance also in case of small datasets where, as known,
machine learning method performances are usually degrading, due to the limited
size of the training samples. This is demonstrated by the poorer results obtained by
other methods, shown in Table 4.8, which usually perform significantly better on
larger datasets.

4.2.4 Conclusion

We performed an experiment showing that the use of Data Mining (DM) tech-
niques on small datasets, allows to solve complex astronomical problems such as
the selection of Globular Cluster candidates in external galaxies, from single band
images, provided that a subsample of sources can be used to train the DM algorithm.
Since such methods do not assume any a-priori model of the population we are
looking for, they allow to retrieve samples which share the same properties of the
training sample and are affected by less biases than results using simpler selection
techniques.

In principle we could use more refined approaches than those tested here, such
as the use of radial velocity (RV) measurements to improve the the reliability of
the Knowledge Base (KB), but any such approach would require the availability of
additional data i.e., in this particular case, spectroscopic observations. Such type of
data are difficult to obtain and expensive in terms of observing time, thus justifying
the DM methods proposed in this work. Obviously in some instances these data
could already be available in the archives, as for the NGC1399 case were they have
been used to verify some of our results (section 4.2.3).

As a closing remark, we can safely state that, in the emerging scenario of the data-
driven science, a Data Mining based approach to data analysis and interpretation
seems to provide a large competitive edge over classical methods in particular
for what concerns the ability to recognize patterns and derive correlations in high
dimensionality dataset that are not easily handled by human perception.
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Figure 4.16. Upper panel: Half-light radius distribution for the entire ACS optical
catalog (solid line), compared to Paolillo et al. (2011) GC candidates, i.e. pointlike
sources with mV < 26 (dotted line). Restricting the sample to color-confirmed GCs
(dashed and dot-dashed lines) shows that the Paolillo et al. (2011) selection criteria
misses very extended GCs with Reff > 5 pc. The shaded region highlights the region
where our size measurement are poorly constrained (see Paolillo et al. 2011; Puzia
et al. 2012). Lower panel: Same as left panel but for the MLPQNA selected samples.
The MLPQNA selected sample (dotted red line) reproduces the size distribution
of the the color-selected GC population (dashed black line), thus avoiding the size
biases resulting from the simpler Paolillo et al. (2011) selection criteria; the same is
true when applying the MLPQNA algorithm to the larger subsample with structural
parameters (blue dot-dashed line).
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4.3 Photometric AGN CLassification in the SDSS with Ma-
chine Learning Methods

Active galactic nuclei (AGNs) and quasars are known as the most luminous
long-lived discrete objects in the Universe. One of the major scientific goals in
extragalactic astronomy is to investigate the physical conditions in the proximity
of the central power source (the so called “central engine”), almost certainly a
supermassive black hole with a surrounding accretion disk.

This section is aimed at showing the feasibility and the performances of a method
based on self-adaptive learning techniques to classify AGNs using photometric
data instead of spectroscopic information. AGN selection is usually performed
by observing the overall spectral distribution and based on some spectroscopic
indicators, like equivalent line width FWHM of specific lines, or lines flux ratios. A
reliable and accurate AGN classification tool based only on photometric information
would allow to save precious instrument observing time and engage several studies
based on statistically significant samples of objects.

Modern surveys, like SDSS, produce a great quantity of data, several TB, in
which the usual statistical approach is not suitable because it may be applied just to
few dimensions, so we want to engage a different paradigm of analysis. Throughout
the present work we show how Machine Learning (ML) methodology may be
useful to distinguish strong candidates AGN from SDSS data using just photometric
parameters.

We apply some DAMEWARE algorithms to a dataset obtained by the joining of
three catalogues of objects within 0.02 < z < 0.3. The resulting dataset contains
photometric parameters (hereinafter named as input features), supervised by a flag,
based on the spectroscopic information (hereinafter named as target vector) used
only in the training steps of the procedure.

Over the principal target we apply the algorithm first to distinguish between
Type 1 and Type 2 objects, while the last application has been based on Seyfert vs.
LINERs classification.

4.3.1 The data

The experiments in this section have been performed using objects belonging
to at least one of the catalogues of galaxies and candidate AGNs provided by
Sorrentino et al. (2006), and by Kauffmann et al. (2003).

According to the standard unified model of active galactic nuclei (Antonucci,
1993) AGNs can be classified into two categories, depending on whether the central
black hole and its associated continuum and broad emission-line region are viewed
directly (a “type 1” AGN) or are obscured (a “type 2” AGN) by the dust torus

this section is largely extracted from:
• Cavuoti, S.; Brescia, M.; D’Abrusco, R.; Longo, G.; Photometric AGN Classification in the SDSS with Machine Learning Methods to be

Submitted to MNRAS
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surrounding the black hole. The AGNs have been selected from the normal galaxies
using the method devised by Baldwin, Phillips and Terlevich (hereafter BPT, Bald-
win et al. 1981), i.e. considering the intensity ratios of two pairs of relatively strong
emission lines, and classifying objects according to their position in the so-called
BPT diagram.

Three different experiments have been performed using three different samples
of photometric objects for which a classification based on spectroscopy, is available.
All three samples have been drawn from the SDSS DR4 catalogue: they belong to
the PhotoSpecAll table, containing all the objects for which both photometric and
spectroscopic observations have been carried out.

Our sample is made by the join of the three catalogues, described in the follow-
ing.

Catalogue of Sorrentino et al.

The first selected catalogue has been obtained by Sorrentino et al. (2006) which
operates a separation between (0.05 < z < 0.095) objects into Seyfert 1, Seyfert 2
and Not AGN. That catalogue contains 24293 objects.

One object is an AGN if it is over one of the Kewley’s line (Kewley et al., 2001):

log
[OIII]λ5007

Hβ
=

0.61

log [NII]λ6583
Hα

− 0.47
+ 1.19 (4.1)

log
[OIII]λ5007

Hβ
=

0.72

log [S II]λλ6717,6731
Hα

− 0.32
+ 1.30 (4.2)

log
[OIII]λ5007

Hβ
=

0.73

log [OI]λ6300
Hα

− 0.59
+ 1.33 (4.3)

The division obtained according the Kewley’s line is shown in figure 4.17. Once
one object is declared as AGN, then it is declared to be a Seyfert 1 if

FWHM(Hα) > 1.5FWHM([OIII]λ5007) (4.4)

or

FWHM(Hα) > 1200Kms−1 (4.5)

and

FWHM([OIII]λ5007) < 800Kms − 1 (4.6)

The rest of the objects is classified as Seyfert 2. They found:

• 1829 AGN:

– 725 Sy 1
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Figure 4.17. The division obtained according to the Kewley’s line.

– 1105 Sy 2

• 22464 Not AGN

Catalogue of Kauffman et al.

The second selected catalogue9 contains spectra lines and ratio for 88178
galaxies (0.02 < z < 0.3). According to the work of Kauffmann et al. (2003),
we define a zone where there are just AGNs located over the Kewley’s line, (eq.
4.1) Kewley et al. 2001, and a zone where objects are not AGNs, i.e. under the
Kauffman’s line, Kauffmann et al. 2003; Kewley et al. 2006):

log
[OIII]λ5007

Hβ
=

0.61

log [NII]λ6583
Hα

− 0.05
+ 1.3 (4.7)

The division obtained according the Kauffman’s line is shown in figure 4.18, with
an overlap mixed zone in which both AGNs and not AGNs objects are present.

The mixed and pure AGN zones have been further divided into Seyfert and
LINER zones by following the Heckman’s line (Heckman, 1980; Kewley et al.,
2006):

[OIII]λ5007
Hβ

= 2.1445
[NII]λ6583

Hα
+ 0.465 (4.8)

The division obtained according to that line is shown in figure 4.19.
The resulting five areas of the AGN map are shown in figure 4.20.

9http://www.mpa-garching.mpg.de/SDSS/DR4/

http://www.mpa-garching.mpg.de/SDSS/DR4/
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Figure 4.18. The division obtained according to the Kauffman’s line.

Figure 4.19. The division obtained according to the Heckman’s line.
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Figure 4.20. A representation of the catalogue in the BPT diagram.

Catalogue of D’Abrusco et al.

The catalogue made by D’Abrusco et al. (2007) contains photometric redshift
with an accuracy estimated by σrob = 0.02, evaluated by (zphot − zspec).

The final catalogues

The process performed in order to obtain the final catalogues for our experi-
ments was divided into four phases: the first was to join catalogs of Kauffman and
Sorrentino. In case of overlap, the information of both type 1 and 2 objects has been
taken from Sorrentino, while all other types from Kauffman. By merging these two
catalogs, we obtained a total of 108162 objects. The second phase was to merge
the outcoming catalogue with the one of D’Abrusco by matching and including
the photometric redshift information, obtaining a final catalogue of 100069 objects.
The third stage was to extract the corresponding photometric information for the
selected objects from the SDSS archive.

The information retrieved from the SDSS DR4 database for each object was:

• f iberMag u

• f iberMag g

• f iberMag r

• f iberMag i
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• f iberMag z

• petroMag u

• petroMag g

• petroMag r

• petroMag i

• petroMag z

• petroR50 u

• petroR50 g

• petroR50 r

• petroR50 i

• petroR50 z

• petroR90 u

• petroR90 g

• petroR90 r

• petroR90 i

• petroR90 z

• dered u

• dered g

• dered r

• dered i

• dered z

After a statistical pruning just a subsample of those parameters, described more
in detail in the section 4.3.2, has been used for the final experiments.

From the obtained dataset, all the objects with undefined values for some of their
parameters (named also as NaN) have been removed. This was because machine
learning empirical models may suffer from the potentially misleading information
coming from such unknown terms.

The last phase was the creation of three different catalogues for the three different
experiments:

1. AGN vs Not AGN
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CLAS S CAT ALOGUE Exp.1 Exp.2 Exp.3
NotAGN All Class0 − −

Type1 S orrentino Class1 Class1 −

Type2 S orrentino Class1 Class0 −

Mix − LINER Kau f f man Class0 − −

Mix − S ey f ert Kau f f man Class0 − −

Pure − LINER Kau f f man Class1 − Class0
Pure − S ey f ert Kau f f man Class1 − Class1

Mix − LINER − Type1 overlap Class0 − −

Mix − S ey f ert − Type1 overlap Class0 − −

Pure − LINER − Type1 overlap Class1 Class1 Class0
Pure − S ey f ert − Type1 overlap Class1 Class1 Class1
Mix − LINER − Type2 overlap Class0 − −

Mix − S ey f ert − Type2 overlap Class0 − −

Pure − LINER − Type2 overlap Class1 Class0 Class0
Pure − S ey f ert − Type2 overlap Class1 Class0 Class1

S IZE : 24293 S orrentino 84885 1570 30380
S IZE : 88178 Kau f f man

Table 4.9. The dataset composition after the merging from original catalogues. The
empty fields indicate the unused typology. The division between class 0 and class 1
are referred to the target vector (used during training). The final sizes fo the three
experiment datasets are obtained after the D’Abrusco photo-z catalogue matching
and the whole NaN removal process.

2. Type 1 vs Type 2

3. Seyferts vs LINERs

The dataset for the first experiment is the whole dataset itself, with 84885
objects; the dataset for the second experiment contains just the objects belonging to
the dataset of Sorrentino and that are pure AGN, resulting into 1570 objects; the
last dataset contains the objects, belonging to the catalogue of Kauffman, that are
pure AGN divided into LINERs and Seyferts, obtaining 30380 objects; the datasets
obtained are summarized in table 4.9.

4.3.2 The experiments

In order to evaluate the performances after the training we need to explain the
evaluation terminology:

• total efficiency: the ratio between the amount of correctly classified objects
and the total number of objects in the dataset.

• purity of a class: the ratio between the number of correctly classified objects
of a class and the number of objects classified in that class, also known as
efficiency of a class.
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• completeness of a class: the ratio between the amount of correctly classified
objects of that class and the total number of objects of that class in the dataset.

• contamination of a class: is the dual of the pureness, the ratio of misclassi-
fied object of a class and the number of objects classified in that class.

Each experiment was performed by dividing the dataset in two parts, a train set
containing 80% of the dataset and a test set containing the remaining 20%. All the
results presented in the following sections are evaluated on the test set that is never
used to train the ML models.

The dataset

In order to perform our experiments we use the following groups of parameters
(also named as input features) to feed our nets:

1. petroR50 u

2. petroR50 g

3. petroR50 r

4. petroR50 i

5. petroR50 z

6. concentration index r

7. z phot corr

8. f ibermag r

9. (u − g)dered)

10. (g − r)dered)

11. (r − i)dered)

12. (i − z)dered)

13. deredr

Parameters i-v are the radii which contain 50% of the petrosian magnitude.

The SDSS has adopted a modified form of the Petrosian (1976) system, by
measuring galaxy fluxes within a circular aperture whose radius is defined by the
shape of the azimuthally averaged light profile.

In order to define the Petrosian radii, it is necessary to report what it is intended
as petrosian ratio. the “Petrosian ratio”<P at a radius r from the center of an object
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to be the ratio of the local surface brightness in an annulus at r to the mean surface
brightness within r (Blanton et al., 2001; Yasuda et al., 2001):

<P(r) =

∫ 1.25r
0.8r dr′2πr”I(r′)/[π(1.252 − 0.82)r2]∫ r

0 dr′2πr′I(r′)/(πr2)
(4.9)

where I(r) is the azimuthally averaged surface brightness profile.
The Petrosian radius rP is defined as the radius at which<P(rP) equals some

specified value <P,lim, set to 0.2 in our case. The Petrosian flux in any band is
then defined as the flux within a certain number NP (equal to 2.0 in our case) of r
Petrosian radii:

The concentration index, parameter vi, is the ratio between radii that contain
50% and 90% of the total flux from the object in the approximation of symmetric
source, is a good index of how much the flux is bounded in the center of the source.

The photometric redshift, parameter vii, is the redshift derived by the catalogue
of D’Abrusco et al. (2007).

The fiber magnitude in the r-band, parameter viii, is the flux contained in 3”.

Parameters from ix to xii are deredded colors, while the parameter xiii is the
deredded r-band magnitude.

The presence of parameters not measured, usually known as “Not a Number” or
NaN, can be misleading for our models so we remove each object that has at least
one parameter not measured.

Experiment Nr. 1 - AGN Classification

Concerning the first of the three mentioned experiments, i.e. classification
between AGN and not AGN, the described ML models are feeded using a target
vector whose values are labeled as 1 for each object that is over the Kewley’s
line(pure AGN) and 0 for the object under this line (mixed zone and certainly not
AGN), resulting in 84885 objects after the removal of the patterns affected by NaN
presence. According to the mentioned strategy the train set (80% of the whole
dataset) contains 67908 patterns while the test set (20% of the dataset) contains
16977 patterns.

The best result has been obtained by the MLP with the Quasi Newton learning
rule.

The following values summarize the validation performances after the training
for the best experiment.

• total efficiency : e = 75.99%

• AGN pureness: pagn = 71.38%
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Figure 4.21. Ratio of correct evaluated AGN and not-AGN misclassified, first half
of the Test Set.

• AGN completeness: cagn = 55.64%

• not AGN completeness: cmix = 87.44%

• AGN contamination: 1 − pagn = 28.62%

The percentage of false positives that we know spectroscopically to be surely
not AGN is 0.89%; The percentage of object that spectroscopically are certainly not
AGN that became false positive is 0.82%.

As we have seen the contamination due to galaxies is very small, and con-
tamination caused by objects in the Mixed zone could be partially attributable to
unrecognized AGN. Anyway we tried to maximize pureness of the AGN class. This
was done by varying the confidence threshold value. The MLP classifier is not
crisp, so the output represents a probability of belonging to a class; in this sense a
confidence threshold value major than 0.5 is considered as class label 1 (in that case,
a class label 1 stands for AGN objects). In order to avoid statistical fluctuations the
results on the test set have been splitted by considering alternately the first half, the
second one and then the whole test set, as shown in figures respectively 4.21, 4.22
and 4.23.

By following such strategy we found a common maximum at a threshold of
around 0.837; with such threshold we obtained a very low completeness, about
9.13% but a great pureness, about 89.14%.

With the SVM we reached a lower efficiency that in the best experiment is equal
to 75.76% obtained with C = 32768 and γ = 0.001953125; see figure 4.24.

A single SVM training experiment, in that case, had a huge computational cost
(about one week), thus, in order to be able to perform the foreseen 110 experiments,
as described in the section 2.3.1, we launched them in parallel by exploiting the
SCoPE10 GRID infrastructure resources (Brescia et al., 2009) available.

10http://www.scope.unina.it

http://www.scope.unina.it
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Figure 4.22. Ratio of correct evaluated AGN and not-AGN misclassified, first half
of the Test Set.

Figure 4.23. Ratio of correct evaluated AGN and not-AGN misclassified, whole
Test Set.

rule total% agn% not agn% pureness contamin.
CG 75.54% 55.63% 86.74% 68.49% 31.51%

SCG 75.74% 55.12% 87.23% 68.36% 31.64%
QNA 75.99% 55.64% 87.44% 71.38% 28.62%
SVM 75.76% 55.41% 87.20% 70.91% 29.09%

Table 4.10. Experiment nr. 1, results; the first column is the model used, while
the others are the percentages of respectively, total efficiency, AGN completeness,
Not-AGN completeness, AGN pureness and AGN contamination.
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Figure 4.24. AGN classification, contour graph of the grid search for the best
configuration of C, and γ; γ vary as: C = 2−5, 2−3, ...215, γ = 2−15, 2−13...23

The table 4.10 reports the complete results by using the three MLP learning
rules and the SVM.

Experiment Nr. 2 - Type 1 - Type 2 AGNs separation

Concerning the second of mentioned three experiments, i.e. classification
between type 1 and type 2 objects, the described ML models are feeded using a
target vector whose values are labeled as 1 for each object that are classified as
seyfert 1 in the catalogue of Sorrentino et al. (2006) and as 0 the objects classified
as seyfert 2, resulting in 1570 objects after the removal of the patterns affected by
NaN values.

According to the mentioned strategy the train set (80% of the whole dataset)
contains 1256 patterns while the test set (20% of the dataset) contains 314 patterns.

The best result has been obtained by the MLP with the Quasi Newton learning
rule.
The following values summarize the validation performances after the training for
the best experiment.

• total efficiency: e = 99.4%

• type 1 pureness: ptype1 = 98.4%

• type 2 pureness: ptype2 = 100%
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learning rule total efficiency type 1 % type 2 %
CG 97.1% 94.7% 98.9%

SCG 95.9% 93.1% 97.8%
QNA 99.4% 98.4% 100%
SVM 81.5% 75.8% 75.7%

Table 4.11. Experiment nr. 2, results; the first column is the model used, while the
others are respectively, the total efficiency, type 1 pureness and type 2 pureness.

• type 1 completeness: ctype1 = 100%

• type 2 completeness: ctype2 = 98.9%

Using the SVM, the best result produced a total efficiency equal to 81.5%
obtained with C = 512 and γ = 0.03125; see figure 4.25.

The table 4.11 reports the complete results by using the three MLP learning
rules and the SVM.

Experiment Nr. 3 - Seyferts - LINERs separation

Concerning the last experiment, i.e. classification between Seyferts and LINERS
objects, the described ML models are feeded using a target vector whose values
are labeled as 1 for objects under the Heckman’s line and 0 for objects over this
line, resulting in 30380 objects after the removal of the patterns affected by NaN
presence.

According to the mentioned strategy the train set (80% of the whole dataset)
contains 24304 patterns while the test set (20% of the dataset) contains 6076
patterns.

The best result has been obtained by the MLP with the Quasi Newton learning
rule.
The following values summarize the validation performances after the training for
the best experiment.

• total efficiency: e = 79.69%

• Seyfert pureness: pS ey f ert = 74.76%

• LINER pureness: pLINER = 81.09%

• Seyfert completeness: cS ey f ert = 52.77%

• LINER completeness: cLINER = 91.69%

Using SVM we reached a total efficiency equal to 78.18% obtained with C =

8192 and γ = 0.03125; see figure 4.26.
The table 4.12 reports the complete results by using the three MLP learning

rules and the SVM.
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Figure 4.25. Type 1 - Type 2 separation, contour graph of the grid search for the
best configuration of C, andγ; γ vary as: C = 2−5, 2−3, ...215, γ = 2−15, 2−13...23

learning rule total efficiency Seyfert % LINER %
CG 78.09% 72.34% 79.53%

SCG 79.36% 74.37% 80.74%
QNA 79.69% 74.76% 81.09%
SVM 78.18% 71.01% 80.24%

Table 4.12. Experiment nr. 3, results; the first column is the model used, while
the others are respectively, the total efficiency, Seyfert pureness and the LINER
pureness.
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Figure 4.26. Seyferts - LINERs separation, contour graph of the grid search for the
best configuration of C, andγ; γ vary as: C = 2−5, 2−3, ...215, γ = 2−15, 2−13...23

4.3.3 Discussion

In general terms, the three different classification experiments, despite their
intrinsic diversity, basically in terms of dataset dimension, heterogenous source and
complexity of classification task, have revealed a better behavior of the MLP with
QNA model, both in terms of performance and robustness. For instance, it is well
known that empirical self-adaptive methods, such as neural networks, particularly
suffer a low dimension of data samples, causing a poor learning capability and
consequently resulting in a poor efficiency and robustness. On the contrary, the
MLP trained by QNA shows a wider capability to optimize the poor information in
such cases, due to its fine approximation in the calculation of the inverse Hessian of
the training error.

Regarding the experiment nr. 1 we obtain a classifier able to select strong
candidates AGN on purely photometric data. The network is not intended to find
all the candidates (great completeness), but to have very high confidence on the
selected candidates (great pureness). The presence of the mixed zone in the KB
has a relevant effect on the overall performances of the methods. The experiments
performed show minimum variations in terms of efficiency (less than 1%), and the
three MLP learning rules show that the different degree of approximation improves
the results. A similar comment may be formulated for the contamination and the
purity.
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Concerning the experiment nr. 2 the SVM seems to perform much worse than
the three MLPs, where the separation shows a very high efficiency, that may be
caused by the relatively small dimension of the dataset. By concerning the com-
parison between the three MLP variants, the best result was achieved by the QNA
learning rule, although their difference in terms of overall efficiency is quite small,
for instance about 4% from the best to the worse MLP learning rule.

For what it concerns the last experiment, the separation between Seyfert and
LINER types is not so evidently sharp. This probably depends on a low difference
between the two categories, as it can be seen in figures 4.19 and 4.20, where it
is evident that the separation also in the spectroscopic parameters is far over the
Kewley’s line. Hence a different kind of KB is probably needed. The results of
different models show minimum changes, about 1.5% from the best to the worse
result. The consideration about the degree of approximation in the MLP rules is
the same as in the experiment nr.1. Moreover, in terms of purity, there is a bigger
difference between the CG learning rule and the other MLP variants; in fact, the CG
method performs worse of about 5%, which may be due to the lack of capability of
separating the two classes in presence of many contaminants.

4.4 Summary

The three different classification experiments, despite their intrinsic diversity,
basically in terms of dataset dimension, heterogenous source and complexity of
classification task, have revealed a better behavior of the MLP with QNA model,
both in terms of performance and robustness. Moreover we obtained a classifier
able to select strong candidates AGN on purely photometric data. The network
is designed not to look for all the candidates (great completeness), but to have
very high confidence on the selected candidates (great pureness) Concerning to
the separation between objects of type 1 and type 2 are have been also obtained
good results although few data in our possession. The separation between Seyfert
and LINER is not clear and results probably depend on a difference between the
two categories that is not particularly strong, which in effect one may observe in
figures 4.19 and 4.20, where it is evident that the separation also in the spectroscopic
parameters is far above the line Kewley regarding the phenomenological aspects.



Chapter 5

Regression Problems:
Photometric redshifts

“Space is big. Really big. You won’t believe how
hugely mind boggling big it really is.”
Douglas Adams.

Redshift happens when light seen coming from an object that is moving away is
proportionally increased in wavelength, either by doppler effect or by cosmological
expansion.

In the early part of the twentieth century, Slipher, Hubble and others made the
first measurements of the “red” and “blue” shifts of galaxies beyond the Milky
Way. They initially interpreted these redshifts and blueshifts as due solely to
the Doppler effect, but later first Lundmark and then Hubble discovered a rough
correlation between the increasing redshifts and the increasing distance of galaxies.
Theorists almost immediately realized that these observations could be explained
by a different mechanism for producing redshifts. Hubble’s law of the correlation
between redshifts and distances was in fact required by cosmological models derived
from general relativity that have a metric expansion of space. As a result, photons
propagating through the expanding space are stretched, creating a cosmological
redshift from the observational point o view.

When a spectrum can be obtained, determining the redshift is rather straight-
forward: if you can localize the spectral fingerprint of a common element, such as
hydrogen, then the redshift can be computed using simple arithmetic by comparing
the observed wavelength with the expected in laboratory. But similarly to the case
of Star/Quasar classification, the task becomes much more difficult when only

this chapter is largely extracted from:
• Brescia, M.; Cavuoti, S.; D’Abrusco, R.; Longo, G.; Mercurio, A.; 2013, Photo-z prediction on WISE - GALEX - UKIDSS - SDSS Quasar

Catalogue, based on the MLPQNA model, Submitted to ApJ

• Cavuoti, S.; Brescia, M.; Longo, G.; Mercurio, A.; 2012, Photometric Redshifts with Quasi Newton Algorithm (MLPQNA). Results in the
PHAT1 Contest, A&A, Vol. 546, A13, pp. 1-8
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Figure 5.1. The spectrum of the star Vega (α-Lyr) at three different redshifts. The
SDSS ugriz filters are shown in gray for reference.
At redshift z = 0, the spectrum is bright in the u and g filters, but dim in the i and z
filters. At redshift z = 0.8, the opposite is the case. This suggests the possibility of
determining redshift from photometry alone. The situation is complicated by the
fact that each individual source has unique spectral characteristics, but nevertheless,
these photometric redshifts are often used in astronomical applications.
Credit of: Pedregosa et al. (2011)

photometric observations are available. In fact in this case, no spectral features can
be observed and an estimate of the redshift must be done only with photometrical
features. Because of the spectrum shift, an identical source at different redshifts will
have a different color through each pair of filters as illustrated in the figure 5.1.

Photometric redshifts are a typical example of the data mining functionality
called regression (see sec. 2.1).

Estimating redshifts of celestial objects is one of the most pressing technological
issues in observational astronomy and, since the advent of modern multiband digital
sky surveys, photometric redshifts (photo-z) have become fundamental when it is
necessary to know the distances of million of objects over large cosmological vol-
umes. Photo-z’s provide redshift estimates for objects fainter than the spectroscopic
limit and turn out to be much more efficient in terms of the number of objects per
telescope time with respect to spectroscopic ones (spec-z). For these reasons, after
the advent of modern panchromatic digital surveys, photo-z’s have become crucial.
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For instance, they are essential in constraining dark matter and dark energy studies
by means of weak gravitational lensing for the identification of galaxy clusters and
groups (e.g. Capozzi et al. 2009), for type Ia supernovae, and for the study of the
mass function of galaxy clusters (Albrecht et al., 2006; Peacock et al., 2006; Keiichi
et al., 2012).

The need for fast and reliable methods of photo-z evaluation will become even
greater in the near future for exploiting ongoing and planned surveys. In fact, future
large-field public imaging projects, such as KiDS (Kilo-Degree Survey1), DES
(Dark Energy Survey2), LSST (Large Synoptic Survey Telescope3), and Euclid
(Euclid Red Book 2011), require extremely accurate photo-z’s to obtain accurate
measurements that do not compromise the survey’s scientific goals. This explains
the very rapid growth in the number of methods that can be more or less effectively
used to derive photo-z estimates and in the efforts made to better understand and
characterize their biases and systematics. The possibility of achieving a very low
level of residual systematics (Huterer et al., 2006; D’Abrusco et al., 2007; Laurino
et al., 2011) is in fact strongly influenced by many factors: the observing strategy,
the accuracy of the photometric calibration, the different point spread function in
different bands, the adopted de-reddening procedures, etc.

The evaluation of photo-z’s is made possible by the existence of a rather com-
plex correlation existing between the fluxes, as measured in broad band photometry,
the morphological types of the galaxies, and their distance. The search for such a
correlation (a nonlinear mapping between the photometric parameter space and the
redshift values) is particularly suited to data mining methods. Existing methods can
be broadly divided into two large groups: theoretical and empirical. Theoretical
methods use templates, such as libraries of either observed galaxy spectra or model
spectral energy distributions (SEDs). These templates can be shifted to any redshift
and then convolved with the transmission curves of the filters used in the photo-
metric survey to create the template set for the redshift estimators (e.g. Koo 1999,
Massarotti et al. 2001a, Massarotti et al. 2001b, Csabai et al. 2003). However, for
datasets in which accurate and multiband photometry for a large number of objects
are complemented by spectroscopic redshifts, and for a statistically significant
subsample of the same objects, the empirical methods offer greater accuracy, as well
as being far more efficient. These methods use the subsample of the photometric
survey with spectroscopically-measured redshifts as a training set to constrain the
fit of a polynomial function mapping the photometric data as redshift estimators.

Several template-based methods have been developed to derive photometric
redshifts with increasingly high precision such as BPZ4, HyperZ5, Kcorrect6, Le

1http://www.astro-wise.org/projects/KIDS/
2http://www.darkenergysurvey.org/
3http://www.lsst.org/lsst/
4http://acs.pha.jhu.edu/ txitxo/bpzdoc.html
5http://webast.ast.obs-mip.fr/hyperz/
6http://cosmo.nyu.edu/blanton/kcorrect/
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PHARE7, ZEBRA8, LRT Libraries9, EAzY10, and Z-PEG11. Moreover there are also
training-based methods, such as AnnZ12 and RFPhotoZ13. The variety of methods
and approaches and their application to different types of datasets, as well as the
adoption of different and often not comparable statistical indicators, make it difficult
to evaluate and compare performances in an unambiguous and homogeneous way.
Blind tests of photo-z’s that one useful but limited in scope have been performed in
Hogg et al. (1998) on spectroscopic data from the Keck telescope on the Hubble
Deep Field (HDF), in Hildebrandt et al. (2008) on spectroscopic data from the
VIMOS VLT Deep Survey (VVDS; Le Févre et al. 2004) and the FORS Deep Field
(FDF; Noll et al. 2004, and in Abdalla et al. 2008) on the sample of luminous red
galaxies from the SDSS-DR6.

A significant advance in comparing different methods has been introduced by
Hildebrandt and collaborators ((Hildebrandt et al., 2010)), with the so-called PHAT
(PHoto-z Accuracy Testing) contest, which adopts a black-box approach that is
typical of benchmarking. Instead of insisting on the subtleties of the data structure,
they performed a homogeneous comparison of the performances, concentrating the
analysis on the last link in the chain: the photo-z’s methods themselves.

As pointed out by the authors, in fact, “it is clear that the two regimes - data
and method - cannot be separated cleanly because there are connections between
the two. For example, it is highly likely that one method of photo-z estimation will
perform better than a second method on one particular dataset while the situation
may well be reversed on a different data set.” (cf. Hildebrandt et al. 2010).

Considering that empirical methods are trained on real data and do not require
assumptions on the physics of the formation and evolution of stellar populations,
neural networks (hereafter NNs) are excellent tools for interpolating data and
extracting patterns and trends (cf. the standard textbook by Bishop 2006). In this
section I show the application both to the galaxy (in particular the PHAT1 contest)
and to the quasars of the MLPQNA that has been employed for the first time to
interpolate the photometric redshifts.

5.1 The PHAT contest

First results from the PHAT contest were presented in Hildebrandt et al. (2010),
but the contest still continues on the project’s web site. PHAT provides a standard-
ized test environment that consists of simulated and observed photometric catalogs
complemented by additional materials like filter curves convolved with transmission

7http://www.cfht.hawaii.edu/ arnouts/LEPHARE/lephare.html
8http://www.exp-astro.phys.ethz.ch/ZEBRA
9http://www.astronomy.ohio-state.edu/ rjassef/lrt/

10http://www.astro.yale.edu/eazy/
11http://imacdlb.iap.fr:8080/cgi-bin/zpeg/zpeg.pl
12http://www.homepages.ucl.ac.uk/ ucapola/annz.html
13http://www.sdss.jhu.edu/ carliles/photoZ/RFPhotoZ/
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curves, SED templates, and training sets. The PHAT project has been conceived
as a blind contest, still open to host new participants who want to test their own
regression method performances, as in our case, since we developed our model in
the past two years. However, the subsets used to evaluate the performances are still
kept secret in order to provide a more reliable comparison of the various methods.
Two different datasets are available (see Hildebrandt et al. 2010 for more details).

The first one, indicated as PHAT0, is based on a very limited template set and
a long-wavelength baseline (from UV to mid-IR). It is composed of a noise-free
catalog with accurate synthetic colors and a catalog with a low level of additional
noise. PHAT0 represents an easy case for testing the most basic elements of photo-z
estimation and identifying possible low-level discrepancies between the methods.

The second one, which is the one used in the present work, is the PHAT1
dataset, which is based on real data originating in the Great Observatories Origins
Deep Survey Northern field (GOODS-North; Giavalisco et al. 2004). According
to Hildebrandt et al. (2010), it represents a much more complex environment to
test methods to estimate photo-z’s, pushing codes to their limits and revealing
more systematic difficulties. Both PHAT test datasets are made publicly available
through the PHAT website14, while in Hildebrandt et al. (2010) there is a detailed
description of the statistical indicators used for comparing the results provided by
the 21 participants who have so far participated by submitting results obtained with
17 different photo-z codes.

The PHAT1 dataset consists of photometric observations, both from ground
and space instruments, presented in Giavalisco et al. (2004), complemented by
additional data in other bands derived from Capak et al. (2004). The final dataset
covers the full UV-IR range and includes 18 bands: U (from KPNO), B, V, R, I, Z
(from SUBARU), F435W, F606W, F775W, F850LP (from HST-ACS), J, H (from
ULBCAM), HK (from QUIRC), K (from WIRC), and 3.6, 4.5, 5.8, and 8.0 µ (from
IRAC Spitzer).

The photometric dataset was then cross correlated with spectroscopic data
from Cowie et al. (2004), Wirth et al. (2004), Treu et al. (2005), and Reddy et al.
(2006). Therefore, the final PHAT1 dataset consists of 1984 objects with 18-band
photometry and accurate spectroscopic redshifts. In the publicly available dataset a
little more than one quarter of the objects comes with spectroscopic redshifts and can
be used as the knowledge base (KB) for training empirical methods. In this contest,
in fact, only 515 objects were made available with the corresponding spectroscopic
redshift, while for the remaining 1469 objects the related spectroscopic redshift has
been hidden from all participants. The immediate consequence is that any empirical
method exploited in the contest was constrained to using the 515 objects as training
set (knowledge base) and the 1469 objects as the test set, to be delivered to PHAT
contest board in order to receive the statistical evaluation results back. While it
is clear that the limited amount of objects in the knowledge base is not enough to
ensure the best performances of most empirical methods, the fact that all methods

14http://www.astro.caltech.edu/twiki_phat/bin/view/Main/GoodsNorth

http://www.astro.caltech.edu/twiki_phat/bin/view/Main/GoodsNorth
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must cope with similar difficulties makes the comparison consistent.

5.1.1 The experiment workflow

In this subsection we describe the details of the sequence of concatenated
computational steps performed in order to determine photometric redshifts. This is
what we intended as a workflow, which can be seen also as the description of the
procedure building blocks. The MLPQNA method was applied by following the
standard machine learning (ML) workflow (Bishop 2006), which is summarized
here: i) extraction of the KB by using the 515 available spectroscopic redshifts; ii)
determination of the “optimal” model parameter setup, including pruning of data
features and training/test with the available KB; iii) application of the tuned model
to measure photometric redshifts on the whole PHAT1 dataset of N=1984 objects,
by including also the re-training on the extended KB. We also follow the rules of the
PHAT1 contest by applying the new method in two different ways, first to the whole
set of 18 bands and then only to the 14 non-IRAC bands. In order to better clarify
what is discussed more in the next subsections, it is important to stress that the 515
objects, the publicly available spectroscopic redshifts, have been used to tune our
model. In practice, 400 objects have been used as a training set and the remaining
115 as a test/validation set (steps i) and ii) of the workflow, see Sec.s 5.1.1, 5.1.1).
After having tuned our model, we performed a full training on all 515 objects, in
order to exploit all the available knowledge base (see Sec. 5.1.2).

Extraction of the knowledge base

For supervised methods it is common praxis to split the KB into at least three
disjoint subsets: one (training set) to be used for training purposes, i.e. to teach
the method how to perform the regression; the second one (validation set) to check
against loss of generalization capabilities (also known as overfitting); and the third
one (test set) to evaluate the performances of the model. As a rule of thumb, these
sets should be populated with 60%, 20% and 20% of the objects in the KB. In order
to ensure a proper coverage of the parameter space (PS), objects in the KB are
divided up among the three datasets by random extraction, and usually this process
is iterated several times to minimize the biases introduced by fluctuations in the
coverage of the PS.

In the case of MLPQNA described here, we used cross-validation (cf. Geisser
1975) to minimize the size of the validation set (∼ 10%). Training and validation
were therefore performed together using ∼ 80% of the objects as a training set
and the remaining ∼ 20% as test set (in practice 400 records in the training set
and 115 in the test set). To ensure proper coverage of the PS, we checked that the
randomly extracted populations had a spec-z distribution that is compatible with
that of the whole KB. The automatized process of the cross-validation was done by
performing ten different training runs with the following procedure: (i) we split the
training set into ten random subsets, each one composed of 10% of the dataset; (ii)
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at each training run we apply the 90% of the dataset for training and the excluded
10% for validation. This procedure is able to avoid overfitting on the training set
(Bishop 2006). There are several variants of cross validation methods (Sylvain &
Celisse, 2010). We have chosen the k-fold cross validation in particular, because it
is particularly suitable in the presence of a scarcity of known data samples (Geisser,
1975).

Model optimization

As is known, supervised machine learning models are powerful methods for
learning the hidden correlation between input and output features from training
data. Of course, their generalization and prediction capabilities strongly depend on
the intrinsic quality of data (signal-to-noise ratio), level of correlation inside of the
PS, and the amount of missing data present in the dataset. Among the factors that
affect performances, the most relevant is that most ML methods are very sensitive
to the presence of Not a Number (NaN) in the dataset to be analyzed (Vashist &
Garg 2012). This is especially relevant in astronomical dataset where NaNs may
either be nondetections (i.e. objects observed in a given band but not detected since
they are below the detection threshold) or related to patches of the sky that have
not been observed. The presence of features with a large fraction of NaNs can
seriously affect the performances of a given model and lower the accuracy or the
generalization capabilities of a specific model. It is therefore good praxis to analyze
the performance of a specific model in presence of features with large fractions of
NaNs. This procedure is strictly related to the so called feature selection or “pruning
of the features” phase which consists in evaluating the significance of individual
features to the solution of a specific problem. In what follows we briefly discuss the
outcome of the “pruning” performed on the PHAT1 dataset.

Pruning of features

It is also necessary to underline that especially in the presence of small datasets,
there is a need for compromise. On the one hand, it is necessary to minimize
the effects of NaNs; on the other, it is not possible to simply remove each record
containing NaNs, because otherwise too much information would be lost.

In Table 5.1 we list the percentage of NaNs in each photometric band, both in
the training and the full datasets. Poor features, namely the fluxes in the K and m5.8
bands, were not used for the subsequent analysis. As shown this difference remains
always under 3%, demonstrating that the two datasets are congruent in terms of
NaN quantity.

The pruning was performed separately on the two PHAT1 datasets (18-bands
and 14-bands). A total of 37 experiments was run on the two datasets, with the
various experiments differing in the groups of features removed. We started by
considering all features (bands), removing the two worst bands, for instance K
and m5.8, whose outlier quantity was over the 15% of patterns. Then a series of
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BAND Dataset column ID % NaN in whole set % NaN in Training NaN % absolute difference
m5.8 17 19.35 17.28 2.07

K 14 17.14 18.64 1.5
HK 13 5.65 6.21 0.57
m8 18 3.48 3.5 0.02

F435W 7 2.67 1.75 0.92
H 12 2.37 2.52 0.16
J 11 1.16 1.55 0.39
U 1 1.01 1.17 0.16
R 4 0.15 0.19 0.04
B 2 0.1 0.19 0.09
V 3 0.05 0.19 0.14

F606W 8 0.05 0 0.05
m 3.6 15 0.05 0 0.05

I 5 0 0 0
Z 6 0 0 0

F775W 9 0 0 0
F850LP 10 0 0 0

m4.5 16 0 0 0

Table 5.1. The percentages of Not a Number (NaN) in the whole dataset (col 3),
with 1984 objects and in the trainset (col 4) with 515 objects, for each band.
The last column reports the absolute differences between the two NaN percentages.

exp. n missing features feat. hid. step res. dec. MxIt CV scatter outliers% bias
37 m5.8,K, HK, m8 14 29 0.0001 30 0.1 3000 10 0.057 22.61% -0.0077
26 m5.8, K, m3.6, m4.5, HK, m8 12 25 0.0001 30 0.1 3000 10 0.062 17.39% 0.0078

Table 5.2. Description of the best experiments for the 18 bands (Exp. n. 37) and the
14 bands datasets (Exp. n. 26).
Column 1: sequential experiment identification code; column 2: features not used
in the experiment; columns 3-4: number of input (features) and hidden neurons;
column 5–9: parameters of the MLPQNA used during the experiment; column
10: scatter error evaluated as described in the text; column 11: fraction of outliers;
column 12: bias.

experiments was performed by removing one band at a time, by considering the
NaNs percentage shown in Table 5.1.

Performance metrics

The performances of the various experiments were evaluated (as done in the
PHAT contest) in terms of

• scatter: the RMS of ∆z

• bias: the mean of ∆z

• fraction of outliers: where outliers are defined by the condition: |∆z| > 0.15,

where

∆z ≡
zspec − zphot

1 + zspec
. (5.1)

At the end of this process, we obtained the best results, reported in Table 5.2.
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5.1.2 Application to the PHAT1 dataset

We performed a series of experiments in order to fine tune the model parameters,
whose best values are
MLP network topology parameters (see Table 5.2):

• feat: 14 (12) input neurons (corresponding to the pruned number of input
band magnitudes listed in Table 5.1),

• hid: 29 (25) hidden neurons,

• 1 output neuron.

QNA training rule parameters (see Table 5.2):

• step: 0.0001 (one of the two stopping criteria. The algorithm stops if the
approximation error step size is less than this value. A step value equal to
zero means to use the parameter MxIt as the unique stopping criterion.);

• res : 30 (number of restarts of Hessian approximation from random positions,
performed at each iteration);

• dec : 0.1 (regularization factor for weight decay.
The term dec ∗ ||networkweights||2 is added to the error function, where
networkweights is the total number of weights in the network. When properly
chosen, the generalization error of the network is highly improved);

• MxIt: 3000 (max number of iterations of Hessian approximation. If zero the
step parameter is used as stopping criterion);

• CV: 10 (k-fold cross validation, with k=10. This parameter is described in
Sec. 4.1).

With these parameters, we obtained the statistical results (in terms of scatter, bias,
and outlier percentage) as reported in the last three columns of Table 5.2.
Once the model optimization described above had been determined, the MLPQNA
was re-trained on the whole KB (515 objects) and applied to the whole PHAT1
dataset (1984 objects), which was then submitted to the PHAT contest for final
evaluation (see below).

Details of the experiments can be found on the DAME web site15, while the
parameter settings and the results for the best models are summarized in Table 5.3.

5.1.3 The PHAT1 results and comparison with other models

With the model trained as described in the above subsection, we calculated
photometric redshifts for the entire PHAT1 dataset, i.e. also for the remaining

15http://dame.dsf.unina.it/dame_photoz.html

http://dame.dsf.unina.it/dame_photoz.html
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1469 objects, for which the corresponding spectroscopic redshift was hidden to the
contest participants, obtaining a final photometric catalog of 1984 objects. This
output catalog has finally been delivered to the PHAT contest board, receiving the
statistical results (scatter, bias and outlier’s percentage) as feedback coming from
the comparison between spectroscopic and photometric information, in both cases
(18 and 14 bands).
So far, the statistical results and plots have referred to the whole data sample, which
is kept secret from all participants as required by the PHAT contest, were provided
by H. Hildebrandt and also reported in the PHAT Contest wiki site 16. So far, the
results obtained by analyzing the photometric redshifts calculated by MLPQNA,
are shown in Table 5.3.

The most significant results can be summarized as follows:

i) 18-band experiment: 324 outliers with |∆z| > 0.15, corresponding to a rela-
tive fraction of 16.33%. For the remaining 1660 objects bias and rms are
0.000604251 ± 0.0562278;

ii) 14-band experiment: 384 outliers with |∆z| > 0.15, corresponding to a rela-
tive fraction of 19.35%; 1600 objects with bias and variance 0.00277721 ±
0.0626341.

A more detailed characterization of the results can be found in the first line of
parts A, B, and C in Table 5.3, while Fig. 5.2, provided by H. Hildebrandt, gives the
scatter plots (spec-z’s vs photo-z’s) for the 18 and 14 bands.

To compare our results with other models, we also report in Table 5.3 the
statistical indicators for the other empirical methods that competed in the PHAT1
contest. The methods are

• AN-e: ANNz, artificial neural network, an empirical photo-z code based on
artificial neural networks (Collister & Lahav, 2004);

• EC-e: Empirical χ2, a subclass of kernel regression methods; which mimics a
template-based technique with the main difference that an empirical dataset
is used in place of the template grid (Wolf, 2009);

• PO-e: Polynomial fit, a “nearest neighbor” empirical photo-z method based
on a polynomial fit so that the galaxy redshift is expressed as the sum of its
magnitudes and colors (Li & Yee, 2008);

• RT-e: Regression Trees, based on random forests which are an empirical,
non-parametric regression technique (Carliles et al., 2010).

More details can be found in the quoted references and in Hildebrandt et al. (2010).

16http://www.astro.caltech.edu/twiki_phat/bin/view/Main/GoodsNorthResults#

Cavuoti_Stefano_et_al_neural_net

http://www.astro.caltech.edu/twiki_phat/bin/view/Main/GoodsNorthResults#Cavuoti_Stefano_et_al_neural_net
http://www.astro.caltech.edu/twiki_phat/bin/view/Main/GoodsNorthResults#Cavuoti_Stefano_et_al_neural_net
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(a)

(b)

Figure 5.2. Results obtained by our model and provided by the PHAT contest board
in terms of direct comparison between our photometric and blind spectroscopic
information. The (a) panel plots the photometric vs. spectroscopic redshifts for the
whole dataset using 10 photometric bands (Experiment 37). In panel (b) the same
but using only 14 photometric bands (Experiment 26). (Courtesy of H. Hildebrandt).
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For each of the datasets (18 and 14 bands), statistics in Table 5.3 refer to several
regimes: the first one (A) defines all objects having |∆z| > 0.15 as outliers and it
is divided into two subsections: the left hand side includes all objects, while the
right hand side includes objects brighter than R = 24; the second one (B) defines
objects having |∆z| > 0.50 as outliers; the third one (C) defines as outliers objects
having |∆z| > 0.50 and divided into a left side, for objects with z ≤ 1.5 and a right
side having z > 1.5.

By analyzing the MLPQNA performance in the different regimes, we obtained:
All objects: in the 18 bands experiment, QNA scores the best results in term

of bias, and gives comparable results with PO-e in terms of scatter and number
of outliers. In fact, while the scatter is slightly larger in Part A than those of PO-
e method (0.052 against 0.056), the number of outliers is lower (18.0% against
16.3%), and in Part. B is the viceversa (0.124 against 0.114 and 3.1% against 3.8%).
In the 14-band experiment QNA obtains values slightly higher than PO-e in terms of
scatter (0.051 against 0.063) and than EC-e in terms of bias (0.002 against 0.0028).
For the fraction of outliers, QNA scores turn out to be larger than PO-e and EC-e
(13.7% and 16.7% against 19.3%).

Bright objects: for bright objects (R<24), the QNA resulting bias is again the
best within the different empirical methods, while for scatter and number of outliers,
QNA obtains slightly higher values than PO-e in both the 18 (0.047 against 0.053
and 10.7% against 11.7%) and the 14 band datasets (0.046 against 0.060 and 7.1%
against 13.7%).

Distant vs near objects: in the distant sample (zsp > 1.5) QNA scores as first in
terms of bias, scatter, and number of outliers for 18 bands. In the 14-band dataset
case, it is the best method in terms of scatter, but with a bias (0.015 against 0.0222)
and number of outliers (29.5% against 35.0%) higher than EC-e. In the near sample
(zsp < 1.5) QNA is the best in terms of bias. The scatter is slightly higher than
PO-e’s for both 18 (0.049 against 0.053) and 14 bands (0.047 against 0.061). For
outliers, PO-e performs better at 18 bands (12.6% against 14.6%), while PO-e and
EC-e perform better at 14 bands (9.4% and 14.5% against 16.6%).

5.1.4 Summary

The MultiLayer Perceptron with Quasi Newton learning rule was applied on the
whole PHAT1 dataset of N=1984 objects Hildebrandt et al. (2010) ) to determine
photometric redshifts after an optimization of the model performed by using the
515 available spectroscopic redshifts as a training set.

The statistics obtained by the PHAT board, by analyzing the photometric red-
shifts derived with MLPQNA, and the comparison with other empirical models are
reported in Table 5.3. From a quick inspection of Table 5.3, it exists no empirical
method that can be regarded as the best in terms of all the indicators (e.g. bias, scat-
ter, and number of outliers) and that EC-e (Empirical χ2 method), PO-e (Polynomial
Fit method), and MLPQNA produce comparable results. However, the MLPQNA
method, on average, gives the best result in terms of bias in any regime.
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By considering the dataset with 18 bands reported in Parts A and B of Table 5.3,
MLPQNA obtains results for the scatter comparable to the PO-e method. In fact, in
Part A, PO-e’s scatter is better than MLPQNA, but with more outliers, while the
trend is reversed in Part B. In the other cases both the scatter and number of outliers
are slightly worse than with PO-e and EC-e methods.

In general, MLPQNA seems to have better generalization capabilities than most
other empirical methods especially in the presence of underpopulated regions of
the knowledge base. In fact, ∼ 500 objects with spectroscopic redshifts spread over
such a large redshift interval are by far not sufficient to train most other empirical
codes on the data. This has also been pointed out by Hildebrandt et al. (2010),
who noticed that the high fraction of outliers produced by empirical methods is on
average higher than what is currently found in the literature (∼ 7.5%) and explained
it as an effect of the small size of the training sample, which poorly maps the very
wide range in redshifts and does not include enough objects with peculiar SEDs.

In this respect we wish to stress that, as already shown in another application
(cf. Brescia et al. 2012a) and as will be more extensively discussed in section
5.2, MLPQNA enjoys the very rare prerogative of being able to obtain good per-
formances, also when the KB is small and thus undersampled (Brescia et al. in
preparation).

5.2 Redshifts for quasars

In the last few years it has in fact been demonstrated that, provided an accurate
enough photometry and significant wavelength coverage, it is possible to obtain
samples of photometrically selected quasars matching the low contamination and
high completeness (cf. (D’Abrusco et al., 2009; Bovy et al., 2012)) required by
many fields of modern cosmology. The relevance of these photometrically selected
samples will increase more and more in the near future, when the new generation of
deeper and more accurate surveys will allow to access larger and more complete
samples of QSOs. These photometric samples are in fact already being used for
a variety of applications such as the measurement of the integrated Sachs–Wolfe
effect (Giannantonio et al. , 2008), the cosmic magnification bias (Scranton et al.
, 2005), the clustering of quasars on large (Myers et al. , 2006, 2007a) and small
(Hennawi et al. , 2006) scales, to quote just a few. Since both candidate selection
and photometry redshift estimates are performed on the same data (colors in many
bands), it is also apparent that for the same samples, photometric data alone should
carry enough information to characterize in an almost univocal way the SED and
therefore also to derive accurate estimates of photometric redshifts (D’Abrusco et
al., 2009; Laurino et al., 2011; Bovy et al., 2012).
It goes without saying that the utility of this photometrically selected samples goes
hand in hand with the development of photo-z methods capable to provide accurate
enough estimates of the redshifts.
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Figure 5.3. Transmission curves for all filters in the four surveys considered.

In this section we present the application of the MLPQNA to the evaluation of
photometric redshift of quasars.

5.2.1 The Dataset

The sample of quasars, used in the experiments described in this section, is
based on the spectroscopically selected quasars from the SDSS-DR7 database (table
”Star” of the SDSS database). According to the spectroscopic classification index
(index SP or specClass) provided in the SDSS-DR7 release, objects are divided in
six different classes: S P = 0 unknown sources, S P = 1 stars, S P = 2 galaxies,
S P = 3 nearby AGN, S P = 4 quasars; S P = 5 sky and S P = 6 late type stars. In
order to minimize contamination from other sources, we selected only those with
specClass = {3,4}, and for which a reliable measure of the spectroscopic redshifts
(with zConf > 0.90) is available.
We then cross-matched the SDSS quasars sample identified as point sources with
clean measured photometry in all filters (ugriz), with the latest versions of the
datasets from: GALEX (Martin et al., 2005), UKIDSS (Lawrence et al., 2007) and
WISE (Wright et al., 2010). These three surveys observed large fractions of the sky
in the ultraviolet, near infrared and middle infrared spectral intervals, respectively.
SDSS - (DR7) (Aihara et al., 2011) has observed ∼1.4 × 104 deg2 of the sky in 5
bands (ugriz) covering the [3551, 8931] Å wavelengths range. Photometric SDSS
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observations reach the limiting magnitude of 22.2 in the r band (95% completeness
for point sources; Abazajian et al. (2009)).
GALEX - (DR6/7) (Martin et al., 2005) is a 2-band survey (nuv, fuv for near and far
ultraviolet respectively) covering the [1300,3000] Å wavelength interval. GALEX
photometric survey has observed the whole sky to the near ultraviolet limiting
magnitude nuv=20.5.
UKIDSS - (DR9) (Lawrence et al., 2007) has been designed to be the SDSS in-
frared counterpart and covers ∼7500 deg2 of the sky in the YJHK near-infrared
bands covering the ∼ 0.9 to 2.4 µm spectral range down to the limiting magnitude
K=18.3. The Large Area Survey (LAS) has imaged ∼ 4000 deg2 (overlapping with
the SDSS), with the additional Y band down to the limiting magnitude of 20.5.
The WISE mission (Wright et al., 2010) has observed the entire sky in the mid-
infrared spectral interval at 3.4, 4.6, 12, and 22 µm with an angular resolution of
6.1′′, 6.4′′, 6.5′′ & 12.0′′ in the four bands, achieving 5σ point source sensitivities
of 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic, respectively. The
astrometric accuracy of WISE is ∼ 0.50′′, 0.26′′, 0.26′′, and 1.4′′ for the four WISE
bands respectively.

All these surveys present a large common overlap region and overall good
astrometry with comparable astrometric accuracy. In order to cross-match the
catalogue we used a maximum radius r = 1.5′′ to associate the optical quasars
to counterparts in each of the three catalogs. Afterwords we rejected all sources
with missing data (or NaN) in any of the photometric parameters. This last step is
crucial in empirical methods since the presence of missing data might affect the
generalization capabilities Marlin (2008).

The resulting number of objects in the datasets used for the experiments are:

• SDSS: ∼ 1.0 × 105;

• SDSS ∩ GALEX: ∼ 4.5 × 104;

• SDSS ∩ UKIDSS: ∼ 3.1 × 104;

• SDSS ∩ GALEX ∩ UKIDSS: ∼ 1.5 × 104;

• SDSS ∩ GALEX ∩ UKIDSS ∩WISE: ∼ 1.4 × 104;

An additional dataset was produced by decimating the final four-surveys cross-
matched catalogue. This dataset was used to perform the preliminary feature-
selection or pruning phase (see sect. 5.2.3) and consisted of ∼ 3.8 × 103 objects,
each observed in 15 bands (4 UKIDSS, 2 GALEX, 5 SDSS and 4 WISE) and with
accurate spectroscopic redshift estimates. The decimation was needed to reduce the
computational time needed to perform the large number of experiments needed. For
some bands there are multiple measurements (i.e. magnitude measured accordingly
to different definitions) and therefore we are left with a total of 43 different features.

Finally, we wish to emphasize that in producing test and training sets we made
sure that they had compatible spectroscopic redshifts distributions.
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Figure 5.4. Histograms of spectroscopic redshift distribution in the five sur-
vey cross-matched samples as derived from the SDSS spectroscopic data. (a)
SDSS; (b) SDSS+GALEX; (c) SDSS+UKIDSS; (d) SDSS+GALEX+UKIDSS; (e)
SDSS+GALEX+UKIDSS+WISE. Gray dotted line is the training sample. Black
line is the test sample.
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5.2.2 Statistical Indicators

In order to evaluate and reciprocally compare the experiments described in the
next section we adopted the following definitions:

bias =

N∑
i=1

xi

N
(5.2)

σ =

√√√√√√√√√√√ N∑
i=1

xi −


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i=1
xi

N



2

N
(5.3)

MAD = Median (|x|) (5.4)

NMAD = 1.48 × Median (|x|) (5.5)

RMS =

√√√√√ N∑
i=1

x2
i

N
(5.6)

where σ is the standard deviation, MAD is the Median Absolute Deviation and
RMS is the Root Mean Square. The term x may be either ∆z defined as :

∆z = (zspec − zphot) (5.7)

or the normalized residuals ∆z′ defined as:

∆z′ = (zspec − zphot)/(1 + zspec) (5.8)

In the latter case the statistical indicators are labeled as normalized quantities
(e.g. σnorm, biasnorm, MADnorm, RMS norm).

5.2.3 The experiments

In what follows we shall discuss the general experiment workflow and the out-
come of the experiment phases: feature selection (see Sec. 5.2.3), color magnitude
selection (see Sec. 5.2.3) and then the complexity selection (see Sec. 5.2.3).

As it is common practice in machine learning experiments, the MLPQNA
model has been applied by following a series of concatenated steps (what we call
a workflow): i) extraction of the proper KB by using the available spectroscopic
redshifts related to the 15 bands from the 4 used surveys (see Sec. 5.2.1); ii) tuning
of the optimal model parameter setup, including the selection of data features and
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training/test subsets within the available KBs (see Sec. 5.2.3) and the validation of
training; iii) analysis of the tests.

The knowledge base and model setup

For machine learning supervised methods it is common praxis to use the avail-
able KB to obtain at least three disjoint subsets for every experiment: one (training
set) for training purposes, i.e. to train the method in order to acquire the hidden
correlation among the input features which is needed to perform the regression;
the second one (validation set) to check the training, in particular against loss of
generalization capabilities (a phenomenon also known as overfitting); and the third
one (test set) to evaluate the overall performances of the model. As a rule of thumb,
these sets should be populated with respectively 60%, 20% and 20% of the objects
in the KB (Kearns , 1996). In order to ensure a proper coverage of the KB Parameter
Space (PS), the data objects are indeed divided up among the three datasets by
random extraction, and usually this process is iterated several times to minimize the
possible biases induced by fluctuations in the coverage of the PS.
The first two criteria used to decide the stopping condition of the algorithm, as
mentioned at the end of Sec. 2.4.1, are mainly sensitive to the choice of specific
parameters and may lead to poor results if the parameters are improperly set. The
cross validation does not suffer of such drawback. It can avoid overfitting the data
and is able to improve the generalization performance of the model. However, if
compared to the traditional training procedures, it is much more computationally
expensive. By exploiting the cross validation technique (see Sec. 2.4.1), training
and validation were indeed performed together using ∼ 80% of the objects as a
training + validation set, and the remaining ∼ 20% as test set (in practice 3029
records in the training/validation set and 758 in the test set).
The automatized process of the cross-validation was done by performing ten differ-
ent training runs with the following procedure: (i) splitting of the training/validation
set into ten random subsets, each one composed of 10% of the dataset; (ii) at each
training run we applied the 90% of the dataset and the excluded 10% for validation.
As remarked in 2.4.1, the k-fold cross validation is able to avoid overfitting on the
training set (Bishop, 2006), with an increase of the execution time estimable around
k − 1 times the total number of runs (Cavuoti et al., 2012b).
In terms of the internal parameter setup of the MLPQNA, we need to consider the
following topological parameters:

• input layer: a variable number of neurons (corresponding to the pruned
number of survey parameters used in all experiments , up to a maximum
number of 43 nodes (all available features);

• neuron on the first hidden layer: a variable number of hidden neurons, de-
pending on the number N of input neurons (features in the dataset), equal to
2N + 1 as rule of thumb;
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• neuron on the second hidden layer: a variable number of hidden neurons,
ranging from 0 (to ignore the second layer) to N − 1 which usually is the
default value;

• output layer: one neuron, returning the calculated photo-z value.

For the QNA learning rule, after several trials, we fixed the following values as best
parameters for the final experiments:

• step: 0.0001 (one of the two stopping criteria. The algorithm stops if the
approximation error step size is less than this value. A step value equal to
zero means to use the parameter MaxIt as the unique stopping criterion);

• res : 40 (number of restarts of Hessian approximation from random positions,
performed at each iteration);

• dec : 0.1 (regularization factor for weight decay. The term dec∗||networkweights||2

is added to the error function, where networkweights is the total number of
weights in the network, directly depending on the total number of neurons in-
side. When properly chosen, the generalization performances of the network
are highly improved);

• MaxIt: 8000 (max number of iterations of Hessian approximation. If zero the
step parameter is used as stopping criterion);

• CV (k): 10 (k-fold cross validation, with k = 10);

• Error evaluation: Mean Square Error (between target and network output).

With these parameters, we obtained the statistical results reported in Sec. 5.2.3.

Selection of features

As it is known, supervised machine learning models are powerful methods for
learning the hidden correlation between input and output features from training
data. Of course, their generalization and prediction capabilities strongly depend on:
the intrinsic quality of data (signal-to-noise ratio), the level of correlation among
different features; the amount of missing data present in the dataset (Ripley, 1996).
It is obvious that some, possibly many, of the 43 parameters listed in Tab. 5.4 may
not be independent and that their number needs to be reduced in order to speed
up the computation (which scales badly with the number of features). This is a
common problem in data mining and there is a wide literature on how to optimize
the selection of features which are most relevant for a given purpose (Lindeberg,
1998; Guyon & Elisseeff, 2003, 2006; Brescia, 2012d). This process is usually
called Feature selection or pruning, and consists in finding a compromise between
the number of features (and therefore the computational time) and the accuracy of
the final results. In order to do so, we extracted from the main catalogue several
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subsets containing different groups of variables (features). Each one of these subsets
was then analyzed separately in specific runs of the method (runs which in the data
mining community are usually called experiments), in order to allow the comparison
and evaluation. We wish to stress that our main concern was not only to disentangle
which bands carry the most information but also, for a given band, which type of
measurements (e.g. Point Spread Function, Kron or isophotal magnitude) are more
effective.

We performed a series of regression experiments to evaluate the performances
obtained by the pruning of photometric quantities on the small dataset described in
5.2.1.

The pruning experiments consisted into several combinations of surveys and
their features:

• a full features experiment to be used as a benchmark for all the other experi-
ments;

• some service experiments used to select the best combination of input features
in order to eliminate redundancies in the flux measurmemnts (i.e., petrosian
magnitudes against isophotal magnitudes).

• three-survey experiments for all possible combinations of three (out of four)
surveys;

• two-survey experiments with all possible combinations of two (out of four)
surveys;

• single-survey experiments.

The output of the experiments consisted of lists of photometric redshift estimates
for all objects in the KB. All experiments were performed using ∼ 3000 objects in
the training set and ∼ 800 in the test set. In Table 5.5, we list the outcome of the
experiments for the feature selection. Both bias and σ (∆z) were computed using
the objects in the test set alone. As it can be seen, among the various types of
magnitudes available for GALEX and UKIDSS the best combination is obtained
using the isophotal magnitudes for GALEX and the calibrated magnitudes (all mag)
for UKIDSS.

Therefore at the end of the pruning phase the best compbination of features
turned out to be: the five SDSS PS FMAG, the two isophotal magnitudes of GALEX,
the four all mag for UKIDSS, the four magnitudes for WISE.

Magnitudes vs Colors

Once the most significant features had been identified we had to check which
type of flux combinations were more effective. More in detail, we wanted to check
whether it is better to propose to the network, magnitudes, colors or colors plus one
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GALEX SDSS UKIDSS WISE BIAS σ

Service Experiments
X X X X 0.0033 0.174

X1,2 X X1 X -0.0001 0.152
X3 X X1 X -0.0016 0.165
X1 X X1 X 0.0054 0.151
X2 X X1 X -0.0026 0.151

X4,5 X X1 X -0.0008 0.152
X1,2,3 X X1 X 0.0041 0.163
X2,3 X X1 X -0.0033 0.155

X1,2 -0.0091 0.299
X2 0.0111 0.465
X1 -0.0081 0.294

Four Survey Experiment
X2 X X1 X -0.0026 0.151

Three Survey Experiment
X2 X X1 -0.0046 0.152
X2 X X 0.0025 0.162

X X1 X -0.0032 0.179
X2 X1 X 0.0110 0.203

Two Survey Experiment
X1 X 0.0045 0.236

X2 X 0.0175 0.288
X X1 -0.0027 0.210
X X -0.0039 0.197

X2 X -0.0055 0.240
X2 X1 0.0133 0.238

One Survey Experiment
X 0.0165 0.297

X -0.0162 0.338
X1,2 0.0550 0.419

X1 -0.0081 0.294

Table 5.5. List of the experiments performed during the feature selection phase in
order to evaluate the best possible combination of parameters. Column 1 through 4:
surveys used for the experiment where superscript index indicates the magnitude
used in our experiments. For istance the index for GALEX means: 1 mag; 2
mag iso; 3 mag Aper 1, 2 and 3; 4 mag auto and 5 kron radius. While for UKIDSS:
1 stands for HallMag and 2 for PetroMag. A cross in a column means that all the
bands of the survey corresponding to that column were used for the experiment.
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reference magnitude (e.g. R for SDSS, nuv for GALEX, K for UKIDSS and W4 for
WISE). Experiments were performed on all 5 datasets listed in section 5.2.1.

As it could be expected, the optimal combination turned out to be always the
mixed one, i.e the one including colors and one reference magnitude for each of
the included surveys (r for SDSS, nuv for GALEX, K for UKIDSS). From the
data mining point of view this is rather surprising since the amount of information
should not change by applying linear combinations between features. But from
the physical point of view this can be easily understood by noticing that even
though colors are derived as a simple subtraction of magnitudes, the content of
information is different since an ordering relationship is implicitly assumed thus
increases the amount of information in the final output (gradients instead of fluxes).
The additional magnitude removes instead the degeneracy in the luminosity class
for a specific galaxy type. It was however surprising that experiments with just
colors or just magnitudes did not provide the same winner in all experiments.

Network Topology

The final check was about the complexity of the network, whether shallow or
deep Bengio & LeCun (2007). The above quoted datasets were therefore processed
through both a three layers (input-hidden-output) layer and a four (input - 2 hidden -
output) layers network. In all cases the four layers network performed significantly
better.

5.2.4 Discussion and conclusions

Beginning in 2002 Tagliaferri et al. (2002) some people in this group begun to
explore the usage of MLPs for the evaluation of photo-z’s both for normal galaxies
and quasars. In 2007 D’Abrusco et al. 2007 a combination of two MLPs was used
to correct for the degeneracy introduced by the disomogeneity in the knowledge
base. In 2011 Laurino et al. 2011 it was demonstrated that the subtleties in the
mapping function could be more easily captured using the so called Weak Gated
Experts method: a combination of MLPs each specialised in a specific partition of
the parameter space, with the individual outputs combined by an additional MLP. In
2007 Bengio & LeCun 2007 published a seminal paper which somehow disproved
the Haykin-pseudo theorem pointing out that problems with a high variation of
density in the parameter space, are better treated by what they called deep networks,
i.e. networks with more than one computational (hidden) layer. In this section we
exploited Bengio & LeCun 2007 findings by using the new machine learning based
method MLPQNA to evaluate photometric redshifts of quasars using multiband data
obtained from the intersection of the GALEX, SDSS, UKIDSS and WISE surveys.

In the Tables 5.7 and 5.8 we compare our best results to those presented by
other authors in the recent literature. In order to be as fair as possible, we applied
our method to datasets which, at the best of our knowledge, matched the dataset
used by the other teams and used an homogeneous set of statistical indicators (also
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in normalized form). Unfortunately, the whole set of indicators was not available
for all bibliographical sources and, actually, in several cases we could only use a
few not normalized quantities. Results are listed according to the combinations of
surveys used in the experiment.

The larger the number of surveys (bands) used, the more accurate are the results.
This result - which might seem obvious - is not obvious at all since the higher
amount of information carried by the additional bands implies also a strong decrease
in the number of objects which are contained in the training set and should therefore
imply a decrease in the performances of the network. This result, together with the
fact that MLPQNA performs well also with small KBs (cf. Cavuoti et al. (2012b)),
seems particularly interesting, since it has far reaching implications on ongoing
and future surveys: a better photometric coverage is much more relevant than an
increase of spectroscopic templates in the KB.

We wish to stress that whatever are the statistical indicators used, it is good
praxis to evaluate them on data (i.e. the test set) which have never been presented to
the network. The usage of test plus training data as it is often encountered in the
literature, introduces an obvious positive systematic bias which masks reality. As
already mentioned above, all statistical indicators used in this section were evaluated
using the test data only.
As it can be seen, in all cases MLPQNA outperforms the other methods. Only in the
SDSS+GALEX case, the non-normalized quantities show a substantial agreement
between our results and those by Laurino et al. 2011. The better performances of
MLPQNA in the normalized indicators is a consequence of the better performances
of the MLPQNA method in terms of fraction of outlayers. We wish to stress
that both MLPQNA and the WGE method discussed in Laurino et al. 2011 take
advantage of a substantial improvement in complexity with respect to the traditional
single layer MLP networks used in the literature, and therefore deal better with the
complexity of the multi-color parameter space.

Average statistical indicators such as bias and standard deviation, however,
provide only part of the information which allows to correctly evaluate the perfor-
mances of a method and, for instance, they provide only very little evidence of the
systematic trends which are observed as a sudden increase in the residuals spread
over specific regions of the redshift space (Laurino et al., 2011).
In the worst cases, these regions correspond to degeneracies in the parameter space
and, as it could be expected, the relevance of such degeneracies decreases for
increasing number of bands. In we list the percentage of catastrophic outliers,
defined as objects with

Let us know briefly discuss the problem posed by the catastrophic outliers as
summarised in Table 5.8. According to Mobasher et al. (2007), the parameter D95 ≡

∆95/
(
1 + zphot

)
enables the identification of outliers in photometric redshifts derived

through SED fitting methods (usually evaluated through numerical simulations
based on mock catalogues). In fact, in the hypothesis that the redshift error ∆z =(
zspec − zphot

)
/
(
1 + zspec

)
is Gaussian, the catastrophic redshift error limit would

be limited by the width of the redshift probability distribution corresponding to the
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Exp n. obj. σ (∆znorm) % outliers σclean (∆znorm) NMAD (∆znorm)
|∆znorm| > 2σ (∆znorm)

SDSS 41431 0.15 6.53 0.062 0.058
SDSS + GALEX 17876 0.11 4.57 0.045 0.043
SDSS+UKIDSS 12438 0.11 3.82 0.041 0.040
SDSS+GALEX+UKIDSS 5836 0.087 3.05 0.040 0.032
SDSS+GALEX+UKIDSS+WISE 5716 0.069 2.88 0.035 0.029

Table 5.6. Catastrophic outliers evaluation and comparison between the residual
σclean (∆znorm) and NMAD (∆znorm).

95% confidence interval, i.e. with ∆95 = 2σ (∆znorm).
In our case, however, phot-z’s are empirical, i.e. not based on any specific fitting

model and it is preferable to use the standard deviation value σ (∆znorm) derived
from the photometric cross matched samples, altough it could overestimate the
theoretical Gaussian σ, due to the residual spectroscopic uncertainty as well as to
the method training error. Therefore, we consider as catastrophic outliers the objects
with |∆znorm| > 2σ (∆znorm).

It is also important to notice that for empirical methods it is useful to analyze
the correlation between the NMAD(∆znorm) = 1.48 × median (|∆znorm|) and the
standard deviation σclean(∆znorm) calculated on the data samples cleaned for which
|∆znorm| ≤ 2σ(∆znorm). In fact, the quantity NMAD would be comparable to the
value of σclean.

As it is shown in Table 5.6, in our data, the σclean(∆znorm) is always slightly
larger than the corresponding NMAD(∆znorm), which is exactly what is expected
due to the overestimate induced by the above considerations.

Finally, we would like to stress that the difficulties encountered by us and by
other teams in comparing different methods, especially in light of the crucial role
that photo-z play in the scientific exploitation of present and future large surveys
(cf. The Dark Energy Survey Collaboration 2005, Chambers 2011, Refregier et
al. 2010), confirm that it would be desirable to repropose an upgraded version
of the extremely useful PHAT contest (Hildebrandt et al., 2010), which allowed
a direct, effective and non ambiguous comparison3 of different methods applied
on the same datasets and through the same set of statistical indicators. This new
contest should be applied to a much larger dataset, with a more practical selection
of photometric bands, and should take into account also other parameters such as
scalability, robustness of the algorithms as well as a better characterization of the
degeneracies.
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Figure 5.5. ∆znorm distributions for all five cross-matched test data sets. Lines are
referred to, respectively, SDSS (gray), SDSS+GALEX (blue), SDSS+UKIDSS
(green), SDSS+GALEX+UKIDSS (red) and SDSS+GALEX+UKIDSS+WISE
(black).
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Exp. BIAS σ MAD RMS BIAS norm σnorm MADnorm RMS norm NMADnorm

SDSS
MLPQNA 0.007 0.25 0.102 0.26 0.032 0.15 0.039 0.17 0.058
Bovy et al. - 0.46 - - - - - - -

Laurino et al. 0.210 0.28 0.110 0.35 0.095 0.16 0.041 0.19 -
Ball et al. - 0.35 - - 0.095 0.18 - - -

Richards et al. - 0.52 - - 0.115 0.28 - - -
SDSS + GALEX

MLPQNA 0.003 0.21 0.060 0.22 0.012 0.11 0.029 0.11 0.043
Bovy et al. - 0.26 - - - - - - -

Laurino et al. 0.13 0.21 0.061 0.25 0.058 0.29 0.029 0.11 -
Ball et al. - 0.23 - - 0.06 0.12 - - -

Richards et al. - 0.37 - - 0.071 0.18 - - -
SDSS + UKIDSS

MLPQNA 0.001 0.25 0.066 0.26 0.008 0.11 0.027 0.11 0.040
Bovy et al. - 0.28 - - - - - - -

Laurino et al. - - - - - - - - -
Ball et al. - - - - - - - - -

Richards et al. - - - - - - - - -
SDSS + GALEX + UKIDSS

MLPQNA 0.0009 0.18 0.043 0.19 0.005 0.087 0.022 0.088 0.032
Bovy et al. - 0.21 - - - - - - -

Laurino et al. - - - - - - - - -
Ball et al. - - - - - - - - -

Richards et al. - - - - - - - - -
SDSS + GALEX + UKIDSS + WISE

MLPQNA 0.002 0.15 0.040 0.15 0.004 0.069 0.020 0.069 0.029
Bovy et al. - - - - - - - - -

Laurino et al. - - - - - - - - -
Ball et al. - - - - - - - - -

Richards et al. - - - - - - - - -

Table 5.7. Comparison among the performances of the different references. Column
1: reference; Column 2-9, respectively: bias, standard deviation, MAD, RMS,
normalized bias, normalized standard deviation, normalized MAD, normalized
RMS. For the definition of the parameters and for discussion see text.
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Figure 5.6. Scatter plots (zspec vs zphot); (a) SDSS, (b)
SDSS+GALEX, (c) SDSS+UKIDSS, (d) SDSS+GALEX+UKIDSS and
(e) SDSS+GALEX+UKIDSS+WISE. All diagrams refer to results on test sets.
Gray points are catastrophic outliers (defined in Tab. 5.8).
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Exp Outliers (|∆z|) Outliers (|∆znorm|)
> 2σ > 4σ > 2σ > 4σ

SDSS
MLPQNA 7.68 0.38 6.53 1.24
Bovy et al. 0.51

SDSS+GALEX
MLPQNA 4.88 1.61 4.57 1.37
Bovy et al. 1.86

SDSS+UKIDSS
MLPQNA 4.00 1.73 3.82 1.38
Bovy et al. 1.92

SDSS+GALEX+UKIDSS
MLPQNA 2.86 1.47 3.05 0.23
Bovy et al. 1.13

SDSS+GALEX+UKIDSS+WISE
MLPQNA 2.57 0.87 2.88 0.91

Table 5.8. Comparison in terms of outliers percentages among the different refer-
ences. Column 1: reference; Column 2-5, fractions of outliers at different σ based
on deltaz; Column 6-9, fractions of outliers at different σ based on normalized
deltaz. For the definition of the parameters and for discussion see text.



Chapter 6

The variable sky

“I am not now
That which I have been.”
Lord Byron.

The exploration of the Time Domain allow us to study numerous types of
astrophysical phenomena. Targets of Time Domain Astronomy are in fact all those
sources which show some kind of variability. As mentioned before, imaging surveys
allow us to find and observe astrometric and photometric variables. Astrometric
variables, also defined transits, are objects whose position in the sky changes with
time. Photometric variability instead takes place when a source show an intrinsic
change in brightness at different epochs. In this work we shall focus only on
photometric variables.
Photometric variability may take place at any wavelength range. In this thesis,
however, we shall focus only on those phenomena which have at least an optical
manifestation. A schematic representation of the different types of photometric
optical transients is given in Figure 6.1.
Photometric variability can be both extrinsic or intrinsic.
Extrinsic variables show change in brightness due to the eclipse of one object by
another or to the effect of rotation. They can be asteroids or stellar objects. Among
the second group there are the microlensing events, the eclipsing binary systems
or the Rotating stars. In an eclipsing system a star can change its brightness due
to an asteroid occultation, to a planetary transit or to the interaction with another
star. in the latter case we talk about Eclipsing Binaries. These systems are formed
by physically bound stars having an orbital plane lying near the line-of-sight of the
observer. The components periodically eclipse each another, causing a decrease
in the apparent brightness of the system as seen by the observer. The period of
the eclipse, can range from minutes to years. Rotating stars, instead, show small
changes in light that may be due to dark or bright spots on their stellar surfaces.
In this thesis we focus on intrinsic variables. Intrinsic variables show brightness
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variations caused by changes in the physical parameters of the object. This group
can be divided in stellar objects, and galaxies.
Intrinsic variable stars are usually divided in three more classes, pulsating, cata-
clysmic, and eruptive variables depending on which phenomenon is at the origin of
their variability. Another class is then formed by stars displaying secular evolution,
which are usually stars in the post-AGB (Asymptotical Giant Branch) of the H-R
(Herztsprung-Russell) diagram.
Eruptive variable stars vary in brightness because of violent processes and flares
occurring in their chromospheres and coronae. The light changes are usually ac-
companied by shell events or mass outflow in the form of stellar winds of variable
intensity and/or by interaction with the surrounding interstellar medium. The most
famous example of eruptive variables are the Wolf-Rayet and the R Coronae Bore-
alis stars. A R Coronae Borealis variable is a luminous, hydrogen-poor, carbon-rich,
supergiant star which spend most of its time at maximum light, occasionally fading
even nine magnitudes at irregular intervals. Wolf-Rayet stars are very luminous hot
Population I stars of effective temperatures between 30000 and 50000 K. They have
a characteristic high mass-loss rate (∼ 10−5M�yr−1). They show light variations
with amplitudes of several hundredths of a magnitude and time scales from millisec-
onds to years.
Of the other two types of intrinsic stellar variables we shall discuss in detail in the
next subsections focusing in particular on the most representative object of each
class, Cepheids for Pulsating variables and Supernovae for Cataclysmic variables.
Galaxies hosting Active Galactic Nuclei (AGNs) are also usually variable. AGNs,
however, are very particular variables. In fact they emit strongly over a wide range
of wavelengths, from X-ray to radio. Many AGNs vary in brightness by substantial
amounts over timescales as short as, months, days, or even hours. AGNs are conve-
niently divided in two main classes called radio-loud and radio-quiet, depending on
whether or not they emit in the radio portion of the electromagnetic spectrum.

6.1 Types of Pulsating Variables

Types of pulsating variables may be identified on the basis of their pulsation
period, mass and evolutionary status of the star, and the characteristics of their
pulsations.

• RR Lyrae stars. These are short-period (0.05 to 1.2 days), pulsating, blue
giant stars, usually of spectral class A. The amplitude of variation of RR
Lyrae stars is generally from 0.3 to 2 magnitudes.

• δ Scuti. This variable stars exhibit variations in their luminosity due to
both radial and non-radial pulsations of their surface. Typical brightness
fluctuations are from 0.003 to 0.9 magnitudes in V over a period of a few
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Figure 6.2. Position of some Pulsating Variables in the H−R diagram.

hours, although the amplitude and period of the fluctuations can vary greatly.
These stars are usually A0 to F5 type giant or main sequence stars.

• RV Tauri. These stars are yellow supergiants having a characteristic light
variation with alternating deep and shallow minima. Their periods, defined
as the interval between two deep minima, range from 30 to 150 days. The
light variation can be up to 3 magnitudes. Some of these stars show long-term
cyclic variations from hundreds to thousands of days. Generally, the spectral
class ranges from G to K.

• Pulsating white dwarf. The luminosity of these white dwarf varies due to
non-radial gravity wave pulsations. These variables all exhibit small (1%−
30%) variations in light output, arising from a superposition of vibration
modes with periods of hundreds to thousands of seconds.

• Long Period Variables. These stars are pulsating red giants or supergiants in
which variations in brightness occur over long timescales of months or years.
The two major subclasses are Mira and Semiregular variables.

• Irregular Variable Star. These are usually red supergiants with little or no
periodicity. They are often poorly studied semi-regular variables that, upon
closer scrutiny, should be reclassified.
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The main example of pulsating stars are Cepheid variables. They are massive stars
of spectral type changing during the pulsation and varying from F at maximum
luminosity to a G or K at minimum. These stars are mostly radial pulsators. There
are four classes of Cepheid variables:

• Classical Cepheids, or type I Cepheids, fundamental mode pulsators with
periods running form 1 to 70 days.

• Beat Cepheids, which display the presence of two or more simultaneously
operating pulsation modes, usually the fundamental one and the first overtone.
The have periods between 2 and 7 days.

• S Cepheids, which are probably first-overtone pulsators, with periods in the
same range of Beat Cepheids.

• W Virginis, population II Cepheids with periods between 1 and 30 days.
These stars are fundamental mode pulsators.

Although Cepheids exhibit strong correlations between their periods, luminosities
and colors, the amplitudes of Cepheids do not appear to correlate with other observ-
ables. Cepheids, as well as most of the other pulsating variables, exhibit periodic
light curves with a sinusoidal form. An example of light curve for each type of
Cepheids are reported in Fig. 6.3, Fig. 6.4, Fig. 6.5 and Fig. 6.6.

All the light curves have been produced with the data available on the site of the
AAVSO (American Association of Variable Star Observers)1.

6.1.1 Period-Luminosity relation

In 1912 the American astronomer Henrietta Swan Leavitt found that for a
sample of Classical Cepheids in the Large Magellanic Cloud there was a linear
correlation between the apparent magnitude of the star and the logarithm of its
period. Since all the Cepheids in the LMC, can be considered at the same distance
from us, this relation is valid also for the absolute magnitude, up tp a zeropoint
magnitude. Leavitt’s discovery is known as the ”Period-Luminosity relation” and
can be expressed as:

M = a + b ∗ log10P. (6.1)

The original P-L relationship obtained by Leavitt is shown is Fig. 6.7.
Once it has been properly calibrated, the Period-Luminosity relation allow us to
derive from the measured period of a Cepheid, its absolute magnitude and therefore,
via the comparison with the observed one, its distance module.

1http://www.aavso.org/

http://www.aavso.org/
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Figure 6.3. Pre-calibrated BVRI light curve for the Classical Cepheid SS Sct. On
the y-axis there is the apparent magnitude of the star and on the y-axis the Julian
date of the observation. Blu points are the values of the magnitude in B band. Green
points are the values of the magnitude in B band. Blu points are the values of the
magnitude in B band. Orange points are the values of the magnitude in R band. Red
points are the values of the magnitude in I band.

6.1.2 Cataclysmic variables: Supernovae

Cataclysmic variables are usually close binary stars in which the most mas-
sive component is usually a white dwarf and the companion is commonly a main
sequence star. The majority of these systems steadily transfer mass from the compan-
ion to the white dwarf through a surrounding accretion disk. This accreted material
powers symbiotic activity, including occasional eruptions and jets. Components of
this class of objects are:

• Novae. These systems are composed by a white dwarf and a main-sequence
low mass star. A classical nova shows an increase of brightness from 7 to 15
magnitude in a range of 1 to several hundred days.

• Dwarf Novae. These consist of a white dwarf and a red dwarf star slightly
cooler of our sun. They show semi-regular outbursts with a typical timescale
ranging from weeks to years and a typical amplitude of 4-5 magnitudes.

• Symbiotic Stars. These systems are interacting binary stars composed of an
evolved red giant and a hot companion star. The hot component can be a main
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Figure 6.4. Pre-calibrated BVRI light curve for the Beat Cepheid TU Cas. On the
y-axis there is the apparent magnitude of the star and on the y-axis the Julian date
of the observation. Blu points are the values of the magnitude in B band. Green
points are the values of the magnitude in B band. Blu points are the values of the
magnitude in B band. Orange points are the values of the magnitude in R band. Red
points are the values of the magnitude in I band.

sequence star, a white dwarf, or a neutron star. Most symbiotics have orbital
periods of a few years; some systems orbit over several decades.

The most famous type of cataclysmic variables still remain the Supernovae (SNe).
With the term Supernova we refer to the catastrophic explosion occurring in the later
stages of the life of a massive star. During these explosions a mass of ∼ 10− 100M�
is ejected with velocities of about 0.01-0.1c. The explosion commonly ejects
heavy elements. The burst of radiation in a Supernova often briefly outshines
the luminosity of the host galaxy, before fading from view over several weeks or
months.

Since no Supernova has been observed in our Galaxy in the telescopic era, it is clear
that almost all we know about this phenomenon, has been derived from Supernovae
in other galaxies.

6.1.3 Classification of Supernovae

Categories of Supernovae are traditionally defined by the features of their optical
spectra near the maximum light and, at later stages, by the characteristics of their
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Figure 6.5. Pre-calibrated BVRI light curve for the S Cepheid Y Oph. On the y-axis
there is the apparent magnitude of the star and on the y-axis the Julian date of the
observation. Blu points are the values of the magnitude in B band. Green points are
the values of the magnitude in B band. Blu points are the values of the magnitude
in B band. Orange points are the values of the magnitude in R band. Red points are
the values of the magnitude in I band.
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Figure 6.6. Pre-calibrated BVRI light curve for the prototype of W Virginis variables,
W Vir. On the y-axis there is the apparent magnitude of the star and on the y-axis
the Julian date of the observation. Blu points are the values of the magnitude in B
band. Green points are the values of the magnitude in B band. Blu points are the
values of the magnitude in B band. Orange points are the values of the magnitude
in R band. Red points are the values of the magnitude in I band.
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Figure 6.7. The first period-luminosity diagram for the Cepheids. This diagram
shows Henrietta Leavitt’s graph of data for the Small Magellanic Cloud. On the
x-axis there is the Logarithm of the Period of the stars. On the y-axis on the left
there is the average apparent magnitude of the variable as observed, on the right the
absolute magnitude of the variable stars.

Figure 6.8. Remnants of the Supernovae SN185, SN1006, SN1054, SN1604.
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light curves. Supernovae were first categorised in 1941, by R. Minkowski, in
two main types, type I and type II. The main difference between them being the
lack of hydrogen emission line, Hα in type I Supernovae. Type Ia Supernovae are
further divided in three sub classes: Type Ia, Ib and Ic, according to their spectral
characteristics. Type Ia Supernovae show the absorption line of the Si IIλ6355, type
Ib show, instead, the absorption line of He Iλ5876 together with emission lines of
Oxygen and Calcium, while type Ic Supernovae do not show any of the previous
adsorption lines. type II Supernovae are divided in two further categories based on
the resulting light curve following the explosion. type II-L show a steady (Linear)
decline after the maximum, whereas type II-P display a period of slower decline (a
plateau) followed by a normal decay.
Type Ia Supernovae seem to be present in all kind of galaxies, that is ellipticals,
spirals and irregulars. They show characteristic elements in their spectrum, such
as magnesium, silicon, sulphur, and calcium near maximum light and iron later on.
Their presence in elliptical galaxies, where there is no evidence of stellar formation,
means that their progenitors must be long-lived stars.
Type Ib and Ic Supernovae only seem to explode in the arms of spiral galaxies, that
is instellar-formation zones. This indicates that their progenitors must be short-lived
stars. The composition of these objects is similar to that expected in the core of a
massive star that has been stripped of its hydrogen. In the case of Type Ic, most of
the helium is gone as well.
Type II Supernovae occur mostly in stellar formation zones, like HII regions of
Spiral’s disks, or in Irregular galaxies. Their progenitors are also short-lived stars,
hence massive stars.

6.1.4 Type Ia Supernovae light curves

The light curves of all types of Supernovae, can all be explained by the energy
released by the decay of the 56Ni in 56Co and subsequently in 56Fe.
The type Ia light curves in optical and near-infrared bands have all similar shapes.
We can identify four phases.

• Rise time. The SN rises to maximum very fast. Only in very lucky occasions
have early observations been recorded.

• Maximum phase.

• Second Maximum. A pronounced second maximum has been observed in
redder light curves about from 20 to 40 days after the first maximum.

• Late decline. After about 50 days the light curves settle onto a steady decline,
which is exponential in luminosity.

The peak luminosity is directly linked to the amount of radioactive 56Ni produced
during the explosion. The rise time of the light curve is determined primarily by the
explosion energy and by the manner in which the ejecta become optically thin to
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Figure 6.9. UBVRI light curves of SN 1998bu, credit to Jha et al. 1999. The light
curves in U,B,R,I have been shifted to avoid overlapping.

thermalized radiation, while the late decline of the light curve is governed by the
combination of the energy input by the radioactive material and the rate at which
this input energy is converted to optical photons in the ejecta.

An example of the light curve of the Supernova SN 1998bu in the M96 galaxy
in the filters of the Johnson photometric system is reported below.

6.2 The detection experiments

As we said in section 3.2 among the scopes of this work there was also to test
several data mining algorithms in order to find the one optimized for each type of
variable object.
The algorithms we used in this work belong to the rather wide category of Neural
Networks which have been used for classification tasks in a variety of scientific and
non scientific domains.
The term Neural Network refers to an artificial system of information processing
methods that attempt to simulate the functional mechanisms at the base of the human
brain (Bishop 2006).
Neural Networks are mathematical models which define a function f: X → Y,
between a set of input variables (also called features) and a set of output variables
(the targets). This function f(x) can be defined as a composition of other func-
tions gi(x). A widely used type of composition is the nonlinear weighted sum,
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f(x) = K
(∑

i wigi(x)
)

, where K (commonly referred to as the activation function) is
some predefined function.
What is most interesting of the Neural Networks is their possibility to learn. Given
a specific task to solve, and a class of functions F, learning means using a set of
observations to find f∗ ∈ F which solves the task in some optimal sense. There are
two different learning paradigms for a neural network: supervised and unsupervised.
We can use a supervised method when we have a training set including typical
examples of the inputs and the corresponding outputs: in this way the network can
learn how to infer the relation between the input and the output variables. Then,
the network is trained by using a variety of suitable learning rules (such as the well
known Back Propagation; Bishop 2006), which use the input-output data samples
(also called patterns) in order to modify the internal weights and other parameters of
the network itself in order to minimize an error function, representing the training
error. If the training is successful, the network learns to recognize the unknown
relationship between the input and the output variables, and is therefore able to
make predictions on new input samples even if their output is not known a priori
(generalization capability).
An unsupervised learning method, instead, is based on training algorithms that
modify the weights of the network making reference only to a set of data that
includes the only input variables. These algorithms attempt to group the input data
by making use of topological or probabilistic methods.

6.2.1 The experiments

As we explained in section 3.2 the strategy of our project is to use a hierarchical
approach to variable object classification. This approach has the typical decision
tree structure and aims at a classification which becomes finer and finer as we to
higher level of branching. The first level of this approach is to perform the crispy
classification based on the variable/not variable object dichotomy. We choose to use
the MLPQNA algorithm, since it is the one which provides best results to several
astrophysical problems (Brescia et al., 2012a, Brescia et al., 2012e) and the one
which deals better with poorly populated datasets.
In the following subsections there are presented the data used for these tests and the
strategy behind the choice of the parameters for the classifier.

6.2.2 The data

To test the MLPQNA algorithm for the variable object classification we built
a set of four simulations, each of them consisting in 50 images, corresponding to
50 different epochs, spaced within 90 days with an uneven sampling rate. The
instrumental characteristics are the same for each simulation and fine tuned the
characteristics of VST optics and instrumentation (see Sect. 3.2.9). The charac-
teristics of the detector, such as the gain and saturation level are chosen equal to
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Figure 6.10. Light curve of a Host galaxy, whose Supernova is not detected by the
extraction software.

those defined in Sect. 3.2.9, while the image size varied between the simulations.
The magnitude range is set to 14-25 mag, in order to remain within the magnitude
limit of SExtractor. The seeing FWHM is chosen to vary randomly between 0.6 and
1.0 arcsec (respectively medium and worst conditions at VST site, Cerro Paranal,
Chile), while the exposure time is set to 1500s.
The types objects simulated in our images are: non variable stars, and galaxies,
Cepheids, type Ia Supernovae with their host galaxies and random variable objects
approximating the behavior of eruptive variables and Active galactic nuclei. As
described in Sect. 3.2.7 every SN is associated to a nearby galaxy. This implies
that in some cases the SN is so close to the nucleus of the parent galaxy that the
extraction software fails in deblending the Supernova. In these cases the whole
galaxy appears to br variable due to the contribution of the SN (Fig. 6.10).

Tables 6.1- 6.4 summarize the number of the objects in each simulation, divided in
their categories, i.e. the total catalog, the train and test sets respectively. The number
of the objects is obviously different in each simulation, as result of the different
image size. Fig 6.11-6.14 show a stamp of the B image at t=0d for each simulation.
For each simulation we obtain a train and a test catalog. The train set contains ∼
80 % of the total number of the objects, being careful to assign a Supernova and its
host galaxy to the same set.
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OBJECTS TYPE FULL TRAIN TEST
SN Ia 80 64 16
Cepheids 80 64 16
Random 80 64 16
Host Galaxy with SN 80 64 16

Variable

Host Galaxy without SN 11 8 3
Stars 216 172 44Not variable Galaxies 1259 1007 252

TOTAL 1806 1443 363

Table 6.1. Number of objects in the first simulation. For each class of objects, the
col. 3 shows the quantities in the entire simulation, while col. 4 and 5 show the
number of the objects in train and test set respectively.

Figure 6.11. Stamp of the B band image at t=0d for the first simulation.

OBJECTS TYPE FULL TRAIN TEST
SN Ia 206 160 46
Cepheids 200 160 40
Random 200 160 40
Host Galaxy with SN 206 160 46

Variable

Host Galaxy without SN 23 18 5
Stars 617 493 124Not variable Galaxies 3510 2808 702

TOTAL 4956 3959 1003

Table 6.2. Number of objects in the second simulation. For each class of objects,
the col. 3 shows the quantities in the entire simulation, while col. 4 and 5 show the
number of the objects in train and test set respectively.
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Figure 6.12. Stamp of the B band image at t=0d for the second simulation.

OBJECTS TYPE FULL TRAIN TEST
SN Ia 1081 678 144
Cepheids 1100 677 173
Random 1100 702 148
Host Galaxy with SN 1081 678 172

Variable

Host Galaxy without SN 18 11 3
Stars 1374 1093 281Not variable Galaxies 6580 5245 1333

TOTAL 12334 9084 2254

Table 6.3. Number of objects in the third simulation. For each class of objects, the
col. 3 shows the quantities in the entire simulation, while col. 4 and 5 show the
number of the objects in train and test set respectively.

Figure 6.13. Stamp of the B band image at t=0d for the third simulation.
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OBJECTS TYPE FULL TRAIN TEST
SN Ia 1079 681 169
Cepheids 1099 670 180
Random 1100 705 145
Host Galaxy with SN 1079 681 169

Variable

Host Galaxy without SN 19 12 7
Stars 1387 1099 288Not variable Galaxies 6576 5263 1313

TOTAL 12339 9111 2271

Table 6.4. Number of objects in the forth simulation. For each class of objects, the
col. 3 shows the quantities in the entire simulation, while col. 4 and 5 show the
number of the objects in train and test set respectively.

Figure 6.14. Stamp of the B band image at t=0d for the fourth simulation.

6.2.3 Choice of parameters for MLPQNA

In this first phase of the project we choose to use as parameters for MLPQNA a
set of magnitudes, (Kron magnitudes as estimated by the source extraction software),
and times at which they are measured (mi, ti) . In order to be more congruent with
a real case, and in order to reduce the computational time, we can not use (mi, ti)
for all the available epochs, but we have to select a subset of epochs. How many
epochs, and how they must be chosen, must be carefully evaluated. There are at
least three possibilities to take into account:

1. N epochs randomly extracted equal for each object;

2. N epochs randomly extracted different for each objects;

3. N epochs equally spaced equal dor each objects.

Once selected the epochs according to one of these possibilities, we have to be sure
that among them each object has at least one measure of magnitude. It is possible,
in fact, that the object is not always detected from source extraction software. This
happens when the magnitude of the object is near the limit in magnitude of the
source extraction software. It is possible that due to their magnitude variation a
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variable object is detected only in some epochs. If an object in the train or in test set
in the chosen epochs does not have any measure for the magnitude, it is rejected.

6.2.4 Results

The results of each test performed by the MLPQNA on each simulation are
discussed below in terms of three evaluation criteria: accuracy, purity and contam-
ination. The accuracy (CA) is the fraction of objects correctly classified (either
variable or not-variable), with respect to the total number of objects in the sample.
The purity (CO) is the fraction of variable objects correctly classified as variable.
The contamination is the fraction of not variable objects erroneously classified as
variable.

Test 1

In the first test we used a simulation dataset of 1806 objects, consisting of 1443
objects as training set and 363 objects as test set, as shown in Tab. 6.1.

In terms of the internal parameter setup of the MLPQNA, we used the following
topological parameters:

• MLP network topology: a three layer MLP;

• input layer: 20;

• hidden layer: 41;

• output layer: 2.

For the QNA learning rule we fixed the following values as best parameters:

• step: 0.0001;

• res: 30;

• dec: 0.01;

• MaxIt: 3000;

• CV(k): 10;

• Error evaluation: Cross Entropy.

The numerical results are shown in the confusion matrices referred to respectively,
training phase in Tab. 6.5 and test phase in Tab. 6.6.

As we can see in the training case, we obtain:



6.2. THE DETECTION EXPERIMENTS 215

Predicted class 1 Predicted class 2
Target class 1 1173 6
Target class 2 9 255

Table 6.5. Confusion matrix of the training performed with the data of the first
simulation (Tab. 6.1). Each column of the matrix represents the instances in a
predicted class, while each row represents the instances in an actual class. All
correct guesses are located in the diagonal of the table.

Predicted class 1 Predicted class 2
Target class 1 280 16
Target class 2 29 30

Table 6.6. Confusion matrix of the test performed with the data of the first simulation
(Tab. 6.1). Each column of the matrix represents the instances in a predicted class,
while each row represents the instances in an actual class. All correct guesses are
located in the diagonal of the table.

• total classification percentage: 98.96%

• class 1 (NOT VARIABLES) classification percentage: 99.49%

• class 2 (VARIABLES) classification percentage: 96.59%

As we can see in the test case, in terms of statistical indicators, the accuracy of the
network, which is the ratio between the number of the objects on the diagonal of
the matrix and the total number of the objects of the test set, is ∼88 % , while the
purity is ∼ 57 %. The contamination of the experiment is about ∼ 5%.

Test 2

In the second test we used a simulation dataset of 4956 objects, consisting of
3959 objects as training set and 1003 objects as test set, as shown in Tab. 6.2.
The internal parameter setup of the MLPQNA has be set as in Test 1.
The numerical results are shown in the confusion matrices referred to respectively,
training phase in Tab. 6.7 and test phase in Tab. 6.8.

Predicted class 1 Predicted class 2
Target class 1 3274 27
Target class 2 16 655

Table 6.7. Confusion matrix of the training performed with the data of the second
simulation (Tab. 6.2). Each column of the matrix represents the instances in a
predicted class, while each row represents the instances in an actual class. All
correct guesses are located in the diagonal of the table.
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Predicted class 1 Predicted class 2
Target class 1 766 60
Target class 2 58 123

Table 6.8. Confusion matrix of the test performed with the data of the second
simulation (Tab. 6.2). Each column of the matrix represents the instances in a
predicted class, while each row represents the instances in an actual class. All
correct guesses are located in the diagonal of the table.

Predicted class 1 Predicted class 2
Target class 1 2511 235
Target class 2 162 6176

Table 6.9. Confusion matrix of the training performed with the data of the third
simulation (Tab. 6.3). Each column of the matrix represents the instances in a
predicted class, while each row represents the instances in an actual class. All
correct guesses are located in the diagonal of the table.

As we can see in the training case, we obtain:

• total classification percentage: 98.92%

• class 1 (NOT VARIABLES) classification percentage: 99.18%

• class 2 (VARIABLES) classification percentage: 97.61%

The accuracy of the network in this case remains ∼ 88 % , while the purity increases
of about ∼ 10% by doubling the dimension of the dataset, reaching a value of ∼ 67
%. The contamination of the experiment is about ∼ 7%.

Test 3

In the third test we used a simulation dataset of 12334 objects, consisting of
9084 objects as training set and 2254 objects as test set, as shown in Tab. 6.3.
The internal parameter setup of the MLPQNA has be set as in Test 1.
The numerical results are shown in the confusion matrices referred to respectively,
training phase in Tab. 6.9 and test phase in Tab. 6.10.

As we can see in the training case, we obtain:

• total classification percentage: 95.63%

• class 1 (NOT VARIABLES) classification percentage: 91.44%

• class 2 (VARIABLES) classification percentage: 97.44%

The accuracy of the network decreases to ∼ 72 % . The purity is ∼ 83 %. The
contamination increases to ∼ 51%.
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Predicted class 1 Predicted class 2
Target class 1 384 393
Target class 2 244 1233

Table 6.10. Confusion matrix of the test performed with the data of the third
simulation (Tab. 6.3). Each column of the matrix represents the instances in a
predicted class, while each row represents the instances in an actual class. All
correct guesses are located in the diagonal of the table.

Test 4

In the forth test we used a simulation dataset of 12339 objects, consisting of
9111 objects as training set and 2271 objects as test set, as shown in Tab. 6.4.

In terms of the internal parameter setup of the MLPQNA, we used the following
topological parameters:

• MLP network topology: a four layer MLP;

• input layer: 20;

• first hidden layer: 41;

• second hidden layer: 20;

• output layer: 2.

For the QNA learning rule, after several trials, we fixed the following values as best
parameters:

• step: 0.001;

• res: 30;

• dec: 0.01;

• MaxIt: 4000;

• Error evaluation: Cross Entropy.

The numerical results are shown in the confusion matrices referred to respectively,
training phase in Tab. 6.11 and test phase in Tab. 6.12.

As we can see in the training case, we obtain:

• total classification percentage: 97.9473%

• class 1 (NOT VARIABLES) classification percentage: 96.22%

• class 2 (VARIABLES) classification percentage: 98.69%
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Predicted class 1 Predicted class 2
Target class 1 2645 104
Target class 2 83 6278

Table 6.11. Confusion matrix of the training performed with the data of the fourth
simulation (Tab. 6.4). Each column of the matrix represents the instances in a
predicted class, while each row represents the instances in an actual class. All
correct guesses are located in the diagonal of the table.

Predicted class 1 Predicted class 2
Target class 1 439 231
Target class 2 266 1335

Table 6.12. Confusion matrix of the test performed with the data of the fourth
simulation (Tab. 6.4). Each column of the matrix represents the instances in a
predicted class, while each row represents the instances in an actual class. All
correct guesses are located in the diagonal of the table.

The accuracy of the network is ∼ 78 %, while the purity is ∼ 65 %. The contamina-
tion is ∼ 40%.
In Tab. 6.13 there are summarized the results obtained in all four simulation. For
completeness we report also the results obtained with the train set, although less
relevant for the quality evaluation. In fact, it is clear that the only relevant results are
those obtained with the test sets, that have not been used for the network training
process.

As we can see from the previous tests and in Tab. 6.13, when increasing the sample
of objects there is a large increase in the contamination, while not obtaining a
significant improvement in terms of accuracy and purity of the network. This also
by exploring slight differences in the model setup.
These results, although not exalting, are to be considered very preliminary. In
particular, what affects the classification is the choice of the features, that in this
case is carrying poor information in terms of feature correlation. We also decided
to use MLPQNA, one of the more robust existing classification empirical models,

TRAIN TEST
CA % CO % CN % CA % CO % CN %

SIM 1 98,96 96,59 0,51 87,60 56,72 5,41
SIM 2 98,92 97,61 0,82 88,28 67,96 7,26
SIM 3 95,63 97,44 8,56 71,74 83,48 50,58
SIM 4 97,95 96,22 1,30 78,12 65,52 39,70

Table 6.13. Train and test recognition rates for the four simulations described in
Sect. 6.2.1.
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based on the machine learning supervised paradigm, in order to exclude, with a high
confidence, the possibility that poor results could be associated to the selected model.
So far, future developments of the work will consists basically into the investigation
whether the classification may be improved by using more fine statistical features,
indirectly derived from the light curves, and not simply the light curves themselves.

6.3 Euclid Supernovae Working Group

I was involved in the definition of the requirements for the proposal for a
Supernova Pipeline What follows is largely extracted from our proposal to the
Euclid Board for the Supernova Pipeline. I wish to stress that in the near future I
expect to use the above described simulation pipeline to produce simulated Euclid
data streams. Generally speaking, transient science requires rapid reduction of data
in order to trigger follow-up observations. In the case of Euclid, transient searching
is likely to be limited to very specific datasets, for example repeated observations
of the deep fields and/or a dedicated SN survey taking place over a limited period
during the mission. Thus our goals do not need to be met for the entire Euclid
dataset, since it concerns one (or several) special deep survey field(s) observed many
times.

Below we use the term “Supernova Trigger Pipeline” (STP) to mean the rapid
inspection of the data that is needed to trigger follow up observations. The STP is
addressing the treatment of images taken each time the SN field is surveyed. The
“Supernova Final Pipeline” (SFP) addresses the general (re)-processing of all the
images associated with a given supernova, with the final reference images built
from all images, and the analysis of light-curves. The STP data does not need to
be calibrated to the same precision as the final reductions. Whether or not the STP
and SFP reductions are performed using the same pipeline software is left open at
this stage. In particular, in the early stages of the transient search it is important
that the pipeline software be quickly adaptable, as lessons are learned from the first
subtractions of real data. Not only can the reference image be updated, but also the
code might need optimization. The software should be engineered to allow easy
maintenance/debugging upgrade (especially during commissioning).

In case of long, possibly single exposures for our dedicated survey, it would
be necessarily to consider not standard dither patterns. However other constraints
may mean to split the exposures, allowing sub-pixel dithering. This is also likely to
make clean image subtraction more difficult. For both STP and SFP analysis, we
could need to create an oversampled reference image for subtraction (made from
several dithers). Note that this is specific to Euclid, so existing SN search software
will not work straightforwardly.
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Figure 6.15. The SGS data processing levels, indicating data products and responsi-
bilities

6.3.1 Summary of Euclid Science Ground Segment specifications

In this section a quick overview of Science Ground Segment (SGS) specifica-
tions is recalled, by focusing the attention to some aspects strictly related to the
proposed SN pipelines and detection strategies.

Concerning the official data level hierarchy, shown in 6.15, there are several
constraints to the availability of data at different processing levels, that must be
taken into account at this stage of the preliminary design of the SN pipelines.

In terms of internal (to the EC) data release, it is planned that Level 1 would
be daily available, Level Q TBC hours after L1, while fully calibrated data (L2)
would be ready within 3 days after their observation and transfer to the archive.
The L2 processing will have not to wait the completion of L1 production. It begins
immediately after L1 metadata start to be registered in the EMA.

In the following, we report the definitions of data processing levels for com-
pleteness (cf. EC SGS Science Implementation Plan, issue 2, November 2011,
EUCL-OTS-SGS-PL-00003), in which we have highlighted (bold typing) the inter-
esting parts for the SN pipelines:

• Level E (LE): external data (images, catalogues, all relevant calibration and
meta-data, observational data in science-usable format) derived from other
missions and/or external survey projects, reformatted to be “euclidised”2 , i.e.
handled homogeneously with Euclid data. These data are required to allow
the EC to provide its final data products at the expected level of accuracy. The
official strategy within SGS is not yet defined.

• Level S (LS): pre-mission simulated data (catalogues, satellite and mission
modeling data, etc.) used before and during the mission, mainly for calibration

2Euclidisation: Function of the Euclid pipeline processing that resample all Euclid data (internal
and external) in a common reference system: pixel (0.1′′/pixel), sky (astrometry catalogue, NIR
catalogue), and physical units. Euclidisation is a two-step process: step-1 delivers External images
and External calibration data and meta-data with the same meaning as Euclid data; step-2 provides
the homogenization and merging of all Euclid data into a single Euclid reference system, based on the
Euclid VIS imaging instrument
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and modeling purposes. This level will be implemented in parallel with
respect to levels 1, 2 and 3 and provide inputs to their development. The data
for this processing level are prepared before the mission (and refined/updated
during the in-flight commissioning and initial calibration phase) and are used
as appropriate, before and during the mission. The data are delivered by the
EC.

• Level 1 (L1): is composed of three separate sub processing functions: teleme-
try checking and handling, including real-time assessment (RTA) on house-
keeping; telemetry unpacking and decompression (edited telemetry); quick-
look analysis (QLA) on science telemetry and production of daily reports.
The input data for this processing level come from the satellite via MOC and
are used to perform quality control. The data are delivered by the SOC. The
EMA L1 contains:

– Raw VIS and NISP images;

– Processed housekeeping telemetry and associated ancillary information
such as pointing history files;

• Level Q (LQ): Quick-Release data. Basic removal of instruments signatures
and production of calibrated images for rapid distribution to the scientific
community. The Euclid Science Team will define the exact content of LQ.
Level Q is a subset of Level 2, integrated and run at SOC. The EMA LQ
contains:

– Products defined so that they are suitable for most purposes in Astron-
omy, except for the main cosmological goals of the mission.

• Level 2 (L2): instrumental data processing, including the calibration of the
data as well as the refined removal of instrumental features in the data; trend
analysis on instruments performance and production of weekly reports. The
data processing at this level is under the responsibility of the SDCs in charge
of the instruments monitoring. The EMA L2 contains:

– Calibrated and co-added images from VIS and NISP validated for
cosmology analysis

– PSF model and optical distortion maps

– Co-added spectra

– Transients: Transient events data products: include derived transient
category (e.g. supernova candidates , solar system object, etc) and
brightness, target position and possible finding chart.

• Level 3 (L3): data processing pipelines for the production of science-ready
data. The Level 3 data are also produced by SDCs. The EMA L3 contains:

– Catalogues (including redshift, ellipticity, shear, etc)
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Figure 6.16. The SN Trigger Pipeline (STP) workflow.

– Dark matter mass distribution
– Shear and galaxy correlation functions and covariance errors
– Additional science catalogues
– Ground based information which was used in the derivation of the data

products

6.3.2 SN Pipeline description

By taking into account the above specifications, the diagrams shown in figure
6.16 and 6.17 the double SN pipeline strategy workflows.

As shown in the figure 6.16 and 6.17, the SFP processing flow would start from
the final Euclid data release (EMA L3), having the possibility to use already reduced
images, as well photometry and spectroscopy with high accuracy, coming from the
EC main pipeline, for each epoch and also for euclidised external data. However,
in case of frequent re-processing of data reduction related to candidates, the SFP
would also require a dedicated reduction process to be implemented outside the
official SGS pipelines, of course by re-using as much as possible their software
modules. Hopefully the dedicated part could only be from the image subtraction
step onwards.

The green block called “Transient Detection” is referred to the different strategy
adopted to extract transient candidates, which is mainly affected also by the Euclid
observing strategy and by the data type available. It is possible to guess different
types of detection, such as:
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Figure 6.17. The SN Final Pipeline (SFP) workflow. The blocks with red text
inside are those different from the Trigger Pipeline and require a final decision. In
fact, this diagram implicitly intends to use L3 products, as outcoming from official
SGS pipelines, as input for transient detection. These blocks may be replaced by
a dedicated reduction pipeline. This issue must be discussed and decided at the
requirement definition stage.
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• A homogeneous detection: a simple comparison between single-band ref-
erence and L1/LQ image. In this case the detection block should include
traditional statistical methods (such as chi-square, threshold etc.);

• A heterogeneous detection: specific methods based on multi-band comparison
between external or L1/LQ and reference images.

Moreover in this transient detection block all available expertise is expected to be
re-used and optimized for Euclid needs. This block could be designed as a modular
workflow, able to perform multiple types of transient analysis in parallel. It could
also be organized to host different SN extraction methods, all converging in a final
pattern matching system.

By considering the above schemes, main role of the SFP is basically consisting
in a fine tuning of the STP and in a re-processing of the reduction steps, using more
accurate data (L3 instead of L1/L2) or requiring a more accurate calibration of raw
data.



Chapter 7

Conclusions?

“It is the end that crowns us, not the fight.”
Robert Herrick.

May be there was no need for a concluding chapter since the various parts of
my work were already summarized at the end of the respective sections. But I feel
that a thesis of almost 250 pages cannot close without a final chapter and therefore I
will try to explain why there are no conclusions, but just a series of starting points.

As already mentioned before, my thesis spans a quite variegate spectrum of
topics: from algorithms to information and communication technologies (ICT),
to observational astronomy and cosmology; the main drivers being the interest in
cosmology and the fascination to be able to cope with the methodological revolution
that is currently taking place in astronomy.

While a few years ago in astronomy there were not enough data, nowadays
new technologies have solved the problem by creating the opposite one: a data
tsunami of unprecedented proportions which requires an extreme use of ICT not
only to produce and store the data but also to understand them. The real scope of
my thesis, therefore was not so much “to produce the best photometric redshift
available in literature, nor to obtain a great classification for globular cluster” but
rather to contribute via specific science cases and publications to the growth and
to the social understanding and acceptance of a new paradigm which I like to call
Astronomy 2.0; a paradigm which finds its implementation in the new discipline of
Astroinformatics.

While the romantic figure of a lonely astronomer that takes and reduces his own
data is being buried, contemporary astronomy requires multidisciplinary groups
where astroinformaticians are needed to communicate with and to integrate all
different souls of an heterogeneous group of expertises: data base experts, data
analysts, data miners, theoreticians etc.

From the technological point of view, what I learned is that on the one end it is
crucial to continuously monitor what up-to-date technology is offering to us, and
that, on the other side, the only way to be truly effective and innovative is to have

225
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the courage and the stamina to abandon the old path and start a new adventure every
time a new technology is appealing enough. This, for instance, is the reason why at
the end of my thesis, we decided to discontinue DAMEWARE and to start a new
project: in the course of my Ph.D. the technologies adopted at the beginning became
obsolete and in order to exploit what is now available, to stick patches on an old
software would not be enough.

From the practical point of view we still have a deep problem in terms of Knowl-
edge Bases, since the catalogues that are available at the moment are still suffering
from the fact that they were produced either during the “dark ages” of Astronomy
1.0 or during the transition period when the requirements of Astronomy 2.0 had
not yet been well defined. In other words most catalogues available nowadays are
still inhomogeneous and built in a haphazard fashion without a physical ontology
behind. I am sure, however, that this problem will be solved in a few years due to a
kind of snowball effect: each new catalogue that will be produced will allow the
production of some better catalogues each of which will allow... in a virtuous circle.

At that point it will become possible to approach a redefinition of the concept of
astronomical classification and to obtain a physical driven classification rather than
eyeball driven classifications which are both not effective and too much subjective,
as it was shown, for instance, in a famous paper by Naim et al. (1995).

For what photometric redshifts are concerned, besides obtaining what we believe
are excellent results for both quasars and galaxies, I was intrigued by the fact that
the new methodology outlined here allows accurate feature selection which can be
used both to optimize computations and to optimize future surveys or even large
queries on massive data sets. These “by-products” were for me a clear indication of
how astroinformatics will shape the new future of Astronomy 2.0. These findings
will perhaps prove crucial for Euclid which will be among the first surveys where
the data quality aspects will have a relevance with no precedents.

In closing my work I should be able to give some answers, but I found more
questions than answers and my supervisors told me that this is an healthy attitude:

• Are we truly at the point-break from astronomy 1.0 to 2.0? and if so what is
still missing?

• Will the community have the courage to leave behind decades of institution-
alised working practice and try something else?

• Are astronomers ready to share each step of their own workflows with the
community, thus allowing not only data interoperability but also the much
more challenging “knowledge interoperability”?

• Are we going towards real programming and communication standards?

• and so on...
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The only real answer I found is that it is not possible to deal with the new
amount of data that new survey are producing as it has been done till now and that
new surveys would be just a huge waste of time and money if astronomers do not
change their mental habits: a new age of discovery is at the door but someone has
to open that door.

I said that this is the only real and long-term answer because all the other an-
swers I found are not definitive (and it would have been surprising otherwise...). I
mean, for instance, that GPUs are a great idea at the moment but I am quite sure
that tomorrow (even before) there will be a new and better idea to pursue!

For what future work is concerned I can just say that not only I do not want to
abandon the scientific problems which I have tackled (such as the redshifts, trying to
produce accurate photometric redshift for new surveys) so far, but I also want new
problems, new algorithms, new technologies and... paraphrasing a famous Rudyard
Kipling poem:

Making each day one heap of all mine winnings
And risk it on one turn of pitch-and-toss,
And if I lose, start again at the beginnings
And never breathe a word about this loss.

That is my plan for the future.
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Appendix A

Setup of Globular Clusters
Experiments

In the following sections the feature are referred to the cardinal number (feature 1:
MAG ISO, etc). For each model we choose the configuration parameters in order to
perform the best results.

A.1 Multi Layer Perceptron trained by Back Propagation
(MLP-BP)

• Input Nodes (equivalent to the number of features considered in the dataset
patterns) max number: 11 (complete patterns); min number: 4 (pruning on
optical features);nominal number: 7 (complete optical dataset);

• Hidden Nodes (depending on the number of features considered in the dataset
patterns). Max number: 23 (with input nodes in [8, 11]); min number: 15
(with input nodes in [4, 7]);

• Output Nodes (based on crispy classification): 2 (1 0 GC, 0 1 not GC);

• Activation Functions (neuron function type, used to provide its output, by
processing inputs). input layer: (no input processing, just propagate it);
hidden layer: nonlinear hyperbolic tangent of input; output layer: linear with
softmax normalization (outputs sums up to 1.0 and converge to posterior
probabilities);

• Learning Rule Parameters. Output Error Type: Cross Entropy; Training
Mode: Batch (weights update after each whole dataset patterns calculation);
Training Rule: Back Propagation with Conjugated Descent Gradient; Error
Loop Threshold: 0.001 (one of the stopping criteria); Number of Iterations:
10000 (one of the stopping criteria);
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A.2 Support Vector Machines (SVM)

• Model: C-Support Vector Classification (C-SVC); Kernel: Radial Basis
Function;

• Gamma (for each experiment we have a multiplicative step). Min number:
2−15; max number: 223; step: 4(multiplicative). C (for each experiment we
have a multiplicative step). Min number: 2−5; max number: 215; step: 4
(multiplicative);

• Error Tolerance: 0,001;

• Cache: 100MB;

• Shrinking: On;

• Probability Estimates: Off;

• Cross Validation: k-fold (k = 5);

• Weights: 1;

A.3 Genetic Algorithm Model Experiment (GAME)

• Model: Genetic algorithm with fitness based on trigonometric polynomial
expansion;

• Topology: population of chromosomes, each of them composed by genes;

• Input features (depending on the number of features considered in the dataset
patterns). Max number: 11 (complete dataset); min number: 4 (pruning on
optical features); nominal number: 7 (complete optical dataset);

• Genetic Population Size (depending on the number of features and polynomial
order). Max number: 67 (with 11 features); min number: 25 (with 4 features);

• population size: (polynomialorder ∗ num f eatures) + 1;

• Genetic Chromosome Size (depending on the polynomial order). Number:
13 (with polynomial order = 6); chromosome size: (2 × polynomialorder) + 1;

• Output (based on crispy classification). Number in KB: 1 (0 if no GC; 1 else);

• Output Error Type: TMSE (Thresholded Mean Square Error) with threshold
0,4;

• Error Loop Threshold: 0,001 (one of the stopping criteria);

• Polynomial Order: 6;
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• Tournament Selection (based on the Wheel Roulette, max probability on the
entire population fitness). Number of Tournament Chromosomes: 2;

• Genetic Operators. Crossover Probability: 0,9; Mutation Probability: 0,2;
Elitism Factor: 2;

• Initial Population Distribution: gaussian standard, with all values generated
into range [-1, +1];

• Number of Iterations: 10000 (one of the stopping criteria);

A.4 Multi Layer Perceptron trained by Quasi Newton (MLPQNA)

• Input Nodes (depending on the number of features considered in the dataset
patterns). Max number: 11 (complete dataset); min number: 4 (pruning on
optical features); nominal number: 7 (complete optical dataset);

• Hidden Nodes (depending on the number of features considered in the dataset
patterns). Max number: 23 (with input nodes in [8, 11]); min number: 15
(with input nodes in [4, 7] );

• Output Nodes (based on crispy classification): number in KB: 1 (0 if no GC;
1 else);

• Activation Functions (neuron function type used to provide its output, by
processing inputs). Input layer: no input processing, just propagate it; hidden
layer: not linear hyperbolic tangent of input; output layer: linear with softmax
normalization (outputs sums up to 1.0 and converge to posterior probabilities).

Learning Rule Parameters

• Output Error Type: Cross Entropy;

• Training Mode: Batch (weights update after each whole dataset patterns
calculation);

• Training Rule: Quasi Newton (inverse hessian approximation by error func-
tion gradients);

• QNA Implementation Rule: based on L-BCFG method (L is for Limited
memory);

• QNA Parameters. Decay: 0,001 (weight decay during gradient approxima-
tion); Restarts: 20 (random restarts for each Approximation Step); Wstep:
0,01 (stopping threshold, min error for each Step); MaxIts: 1500 (max number
of Iterations for each Approx. Step);
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A.5 Multi Layer Perceptron trained by Genetic Algorithms
(MLPGA)

• Input Nodes (depending on the number of features considered in the dataset
patterns). Max number: 11 (complete dataset); min number: 4 (pruning on
optical features ); nominal number: 7 (complete optical dataset);

• Hidden Nodes (depending on the number of features considered in the dataset
patterns) max number: 23 (with input nodes in [8, 11]); min number: 15 (with
input nodes in [4, 7]);

• Output Nodes (based on crispy classification). number in KB: 1 (0 if no GC;
1 else);

• Activation Functions (neuron function type used to provide its output, by
processing inputs). Input layer: no input processing, just propagate it; hid-
den layer: nonlinear hyperbolic tangent of input; output layer: nonlinear
hyperbolic tangent of input;

• Learning Rule Parameters. Output Error Type: MSE; Training Mode: Batch
(weights update after each whole dataset patterns calculation); Training Rule:
Genetic Algorithm with Roulette Wheel selection function and fitness based
on the MSE between target and output of dataset patterns;

• MLPGA Parameters. Genetic Population Size: 25; Genetic Chromosome
Size: 13; Error Loop Threshold: 0,001; Tournament Selection: based on the
Wheel Roulette method (max probability on the entire population fitness);
Number of Tournament Chromosomes: 2; Crossover Probability: 0,9; Mu-
tation Probability: 0,2; Elitism Factor: 2; Initial Population Distribution:
gaussian standard, with all values generated into range [-1, +1]; Number of
Iterations: 10000 (one of the stopping criteria).
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