



# Self-Organizing Feature Maps

# User Manual

### DAME-MAN-NA-0014

Issue: 1.1 Date: September 03, 2013 Author: M. Brescia, M. Guglielmo

Doc. : SOFM\_UserManual\_DAME-MAN-NA-0014-Rel1.1



DAMEWARE SOFM Model User Manual

This document contains proprietary information of DAME project Board. All Rights Reserved.



INDEX

| 1 Introduction                                                   |          |
|------------------------------------------------------------------|----------|
| 2 SOFM Model Theoretical Overview                                |          |
| 3 Use of the web application model                               | 7        |
| 3.1 Use Cases                                                    | 7        |
| 3.2 Input                                                        |          |
| 3.3 GSOM I/O Files                                               |          |
| 3.3.1 Train Use Case                                             |          |
| 3.3.1.1 Input Files                                              |          |
| 3.3.1.1.1 Input Dataset                                          |          |
| 3.3.1.2 Output Files                                             |          |
| 3.3.2 Run Use Case                                               |          |
| 3.3.2.1 Input Files                                              |          |
| 3.3.2.2 Output Files                                             | 9        |
| 3.3.3 Test Use Case                                              | 9        |
| 3.3.3.1 Input Files                                              | 9        |
| 3 3 3 2 Output Files                                             | 9        |
| 3.4 CSOM I/O Files                                               | 10       |
| 3.4.1 Train Use Case                                             |          |
| 3 4 1 1 Input Files                                              |          |
| 3 4 1 1 1 Input Dataset                                          |          |
| 3 4 1 2 Output Files                                             |          |
| 3.4.2 Run Use Case                                               |          |
| 3 4 2 1 Input Files                                              |          |
| 3 4 2 2 Output Files                                             |          |
| 3/1.3 Test Use Case                                              |          |
| 3/131 Input Files                                                |          |
| 3 4 3 2 Output Files                                             |          |
| 2.5 Output files table of CSOM and GSOM models                   |          |
| 2.6 TD A IN Lise case                                            |          |
| 3.6.1 Clustering with CSOM model Train December Specifications   |          |
| 2.6.2 Clustering with CSOM model – fram Farameter Specifications |          |
| 2.7 TEST Use age                                                 | 19<br>22 |
| 3.7 1 Clustering with CSOM Test Parameter Specifications         |          |
| 2.7.2 Clustering with CSOM – Test Parameter Specifications       |          |
| 2.8 DIN Liss and                                                 |          |
| 2.8.1 Clustering with CSOM Dup Dependent Specifications          |          |
| 2.8.2 Clustering with CSOM – Run Parameter Specifications        |          |
| 5.6.2 Clustering with OSOW – Kun Farameter Specifications        | 20<br>רכ |
| 4 Examples                                                       | 21<br>72 |
| 4.1 Usage Example of Clustering_GSOM                             |          |
| 4.1.1 Clustering_GSOM Train Use Case                             |          |
| 4.1.2 Clustering_GSOM Kun Use Case                               |          |
| 4.1.3 Clustering_GSOM Test Use Case                              |          |
| 4.2 Usage Example of Clustering_CSOM                             |          |
| 4.2.1 Clustering_CSOM Train Use Case                             |          |
| 4.2.2 Clustering_CSOM Run Use Case                               |          |
| 4.2.3 Clustering_CSOM Test Use Case                              |          |
| 5 Appendix – References and Acronyms                             |          |



### **TABLE INDEX**

| <i>Tab. 1 – CSOM model output files table</i> | 13 |
|-----------------------------------------------|----|
| Tab. 2 – GSOM model output files table        | 14 |
| Tab. 3 – Abbreviations and acronyms           | 43 |
| Tab. 4 – Reference Documents                  | 44 |
| Tab. 5 – Applicable Documents                 | 45 |

### FIGURE INDEX

| Fig. 1 – the typical SOFM/SOM network                                                 |    |
|---------------------------------------------------------------------------------------|----|
| Fig. 2 – Example of a SOFM simulation for a simple ring-shaped data distribution [R7] | 6  |
| Fig. 3 – The starting point, creation tab of New Workspace                            |    |
| Fig. 4 – Upload Manager Tab: uploading wine.csv file                                  |    |
| Fig. 5 – File Editor Tab                                                              | 29 |
| Fig. 6 – File Manager: after editing wine.csv file                                    | 29 |
| Fig. 7 – The wineTrain experiment creation tab                                        | 29 |
| Fig. 8 – The wineTrain experiment configuration tab                                   | 30 |
| Fig. 9 – The wineTrain experiment output files                                        | 31 |
| Fig. 10 - The file GSOM_Train_network_configuration.log copied                        | 31 |
| Fig. 11 – The wineRun experiment creation tab                                         | 32 |
| Fig. 12 – The wineRun experiment configuration tab                                    | 32 |
| Fig. 13 – The wineRun experiment output files                                         | 33 |
| Fig. 14 – The wineTest experiment creation tab                                        | 33 |
| Fig. 15 – The wineTest experiment configuration tab                                   | 34 |
| Fig. 16 – The wineTest experiment output files                                        | 34 |
| Fig. 17 – Upload Manager: uploading datasettraining.fits file                         | 35 |
| Fig. 18 – The fitsTrain experiment creation tab                                       |    |
| Fig. 19 – The fitsTrain experiment configuration tab                                  | 37 |
| Fig. 20 – The fitsTrain experiment output files                                       | 38 |
| Fig. 21 – File Manager: after uploading of CSOM_Train_Network_configuration.log       | 39 |
| Fig. 22 – The fitsRun experiment creation tab                                         | 39 |
| Fig. 23 – The fitsRun experiment configuration tab                                    | 40 |
| Fig. 24 – The fitsRun experiment output files                                         | 40 |
| Fig. 25 – The fitsTest experiment creation tab                                        | 41 |
| Fig. 26 – The fitsTest experiment configuration tab                                   | 41 |
| Fig. 27 – The fitsTest experiment output files                                        | 42 |



### 1 Introduction

he present document is the user guide of the data mining models GSOM (Gated Self Organizing Maps) and CSOM (Clustering Self Organizing Maps), as implemented and integrated into the DAMEWARE. They are two customized versions of SOFM (Self Organizing Feature Maps) algorithm, dedicated to clustering functionality on FITS images (CSOM) and also on text files (GSOM). Optionally, embedded into the user parameters, there is also the possibility to execute hierarchical clustering, called MLC (Multi Layer Clustering), in which different clustering models can be layered to realize a multiple gated network.

This manual is one of the specific guides (one for each data mining model available in the webapp) having the main scope to help user to understand theoretical aspects of the model, to make decisions about its practical use in problem solving cases and to use it to perform experiments through the webapp, by also being able to select the right functionality associated to the model, based upon the specific problem and related data to be explored, to select the use cases, to configure internal parameters, to launch experiments and to evaluate results.

The documentation package consists also of a general reference manual on the webapp (useful also to understand what we intend for association between functionality and data mining model) and a GUI user guide, providing detailed description on how to use all GUI features and options.

So far, we strongly suggest to read these two manuals and to take a little bit of practical experience with the webapp interface before to explore specific model features, by reading this and the other model guides.

All the cited documentation package is available from the address

http://dame.dsf.unina.it/dameware.html , where there is also the direct gateway to the beta webapp.

As general suggestion, the only effort required to the end user is to have a bit of faith in Artificial Intelligence and a little amount of patience to learn basic principles of its models and strategies.

By merging for fun two famous commercial taglines we say: "Think different, Just do it!"

(casually this is an example of *data* (*text*) *mining*...!)



### 2 SOFM Model Theoretical Overview

This paragraph is intended to furnish a theoretical overview of the SOFM model (hereinafter terms SOFM and SOM will be considered synonyms), that is the reference machine learning algorithm whose custom implementation has been adopted in the CSOM e GSOM models plugged into the DAMEWARE web application.

A self-organizing map (SOM) or self-organizing feature map (SOFM) is a type of artificial neural network that is trained using unsupervised learning to produce a low-dimensional (typically two-dimensional), discretized representation of the input space of the training samples, called a map. Self-organizing maps are different from other artificial neural networks in the sense that they use a neighborhood function to preserve the topological properties of the input space.

Main difference between SOM and SOFM models is that the latter requires to specify number of clusters to be found as input. It is a sort of driven training, where the output neuron layer try to distribute clusters in the resulting map. SOM original algorithm does not require such information and proceeds by itself with the cluster assignment.

This model stems from Kohonen [R5] and builds upon earlier work of Willshaw and von der Malsburg [R6]. The model is similar to the (much later developed) neural gas model since a decaying neighborhood range and adaptation strength are used. An important difference, however, is the topology which is constrained to be a two-dimensional grid and does not change during self-organization. This makes SOMs useful for visualizing low-dimensional views of high-dimensional data.



Fig. 1 – the typical SOFM/SOM network

Like most artificial neural networks, SOMs operate in two modes: training and mapping. Training builds the map using input examples. It is a competitive process, also called vector quantization. Mapping automatically classifies a new input vector.

A typical Kohonen SOM architecture consists of an input layer connected to a output layer (Twodimensional Kohonen layer) via a Kohonen Connector consisting of Kohonen Synapses. Each neuron in a Kohonen Layer is associated with a unique set of co-ordinates in two-dimensional space, and hence is referred to as a Position Neuron. The input layer with 'n' input neurons is fed with n-dimensional input data one by one. The output layer organizes itself to represent the inputs. Hence the name 'self-organizing map'.

The usual arrangement of nodes is a regular spacing in a hexagonal or rectangular grid. The self-organizing map describes a mapping from a higher dimensional input space to a lower dimensional map space. The procedure for placing a vector from data space onto the map is to first find the node with the closest weight vector to the vector taken from data space. Once the closest node is located it is assigned the values from the vector taken from the data space.



While it is typical to consider this type of network structure as related to feedforward networks where the nodes are visualized as being attached, this type of architecture is fundamentally different in arrangement and motivation.

Useful extensions include using toroidal grids where opposite edges are connected and using large numbers of nodes. It has been shown that while self-organizing maps with a small number of nodes behave in a way that is similar to K-means, larger self-organizing maps rearrange data in a way that is fundamentally topological in character.

The objective of SOM training is to ensure that different parts of the network respond similarly to similar input vectors. So, the training mainly involves analyzing the behavior of the network for a training sample and adjusting the weights of synapses to ensure that the network exhibits a similar behavior for a similar input. The training procedure involves following steps.

- Initialize the weights to small random values;
- *Choose a random training sample, assign the input vector to the input neurons and run the network;*
- The output of a neuron in output layer represents the similarity between its weight vector (source synapse weights) and the input vector. The output neuron which has the highest output value is declared as the winner neuron for current input;
- *Calculate the distance of each output neuron from the winner using a Neighborhood function;*
- Update the weights of synapses using following formulae. (This adjusts the weights corresponding to winner and its neighbors such that, a neuron close to the current winner wins for a similar input):
  - Similarity = difference between source neurons output and the synapse weight;
  - Weight change = (learning\_rate \* neighborhood value of target neuron) \* similarity;
- Similarly, train all samples in a random order. This completes one **training cycle** (or Training Epoch);
- Repeat the steps to complete the specified number of training epochs.

The trained SOM maps any input vector to a winner neuron, which can be interpreted as the position of vector in two-dimensional space [R7].



Fig. 2 – Example of a SOFM simulation for a simple ring-shaped data distribution [R7]

DAMEWARE SOFM Model User Manual



### **3** Use of the web application model

The SOM is one of the most common unsupervised neural architectures used in many application fields. It is especially related to clustering problems, and in DAME it is designed to be associated with such functionality domain. The description of this functionality is reported in the Reference Manual [A18], available from webapp menu or from the beta intro web page.

In the following are described practical information to configure the network architecture and the learning algorithm in order to launch and execute science cases and experiments.

There are two models available in the webapp. Both of them were extracted from an astronomical pipeline for image segmentation, called NEXT-II, designed and developed by DAME team (cfr. <u>http://dame.dsf.unina.it/next.html</u>). The modules extracted have been plugged into the DAMEWARE by using an internal software integration wrapping system and available as two clustering methods from the GUI.

The two models are:

- CSOM: specialized for clustering of FITS images using the tool NEXTII (library implemented in C++);
- GSOM: gated model for clustering on generic type of datasets (not only FITS images, but also FITS tabular or CSV data files);

### 3.1 Use Cases

For the user the two models, CSOM and GSOM, offer three use cases:

- Train
- Test
- Run



### 3.2 Input

We also remark that massive datasets to be used in the various use cases are (and sometimes must be) different in terms of internal file content representation. Remind that in all DAME models it is possible to use one of the following data types:

- <u>ASCII</u> (extension .dat or .txt): simple text file containing rows (patterns) and columns (features) separated by spaces, normally without header;
- <u>CSV</u> (extension .csv): Comma Separated Values files, where columns are separated by commas;
- <u>FITS</u> (extension .fits): image or tabular fits files;
- <u>VOTABLE</u> (extension .votable): formatted files containing special fields separated by keywords coming from XML language, with more special keywords defined by VO data standards;

Depending on different use cases and experiments, the user should be able to perform a setup of many parameters and input/output files, without need to re-compile the code.

In order to implement this requirement, a set of input/output files has been designed.

### 3.3 GSOM I/O Files

### 3.3.1 Train Use Case

### 3.3.1.1 Input Files

As input to the program (depending on specific use case) the user must provide following setup files:

• **input dataset** (input data).

### 3.3.1.1.1 Input Dataset

The input dataset represents the input patterns to be processed for both training and/or run phases. These data must be submitted as ASCII, CSV, DAT TXT and more for GSOM model. The input file contains patterns with columns separated by spaces. Each pattern must be filled in as a row vector. All patterns must be of the same size.

### 3.3.1.2 Output Files

As output from the program, for GSOM training, provides following files:

- **GSOM\_Train\_weights.log** : this file contains the weights associated to the neurons of the net;
- **GSOM\_Train\_network\_configuration.log**: this file is useful for run use case and contains all the parameter of configured network;
  - ✓ row 1: status boolean keys associated as follow: configurationWait, configuring, firstTrainingWait, training, trained;
  - ✓ row 2: values of *layersNumber* and *input pattern length*;
  - ✓ row 3: type of *ClusteringNN model* used;
  - ✓ row 4: status boolean keys associated as follow: configurationWait, configuring, firstTrainingWait, training, trained;
  - ✓ row 5: values of input pattern length and *number of clusters used* for train;
  - ✓ **row 6**: values of *initial and final learning rate* and *number of iterations*;

DAMEWARE SOFM Model User Manual



- ✓ row 7: values of *initial and final variance*, and *rows and columns* number of map of network;
- ✓ the other row: alternately, the file specifies the *pattern length* and the *weight vector* for each neuron of network;
- **GSOM\_Train\_status.log**: this file contains all parameters of configured experiments and error in case of failure;
- **GSOM\_Train\_params.xml**: this file contains all configuration parameters of experiment.

### 3.3.2 Run Use Case

### 3.3.2.1 Input Files

As input to the program the user must provide following setup files:

- **input dataset** (input data): the same type of file used on train case;
- **configuration file of network**: the output "GSOM\_Train\_network\_configuration.log " obtained by train use case and added to the workspace of experiment.

### 3.3.2.2 Output Files

As output from GSOM **run** use case, the program provides following files:

- **GSOM\_Run\_weights.log** : this file contains the weights associated to the neurons of the net; the file settings are the same of train use case;
- **GSOM\_Ruin\_network\_configuration.log**: this file is useful for run use case and contains all the parameter of configured network ; the file settings are the same of train use case;
- **GSOM\_Run\_status.log**: this file contains all parameters of experiment and error in case of failure; the file settings are the same of train use case;
- **GSOM\_Run\_ output\_results.log**: this file contains the really output of the experiment:
  - ✓ **Column 1**: label of *winner cluster* for the input pattern;
  - ✓ **Column 2**: index of input pattern;
  - ✓ **Column 3**: input pattern length;
  - ✓ **Other columns:** values of input pattern;
- **GSOM\_Run\_plot\_clusters.jpeg**: image obtained by "GSOM\_Run\_output\_results.log"; **GSOM\_Run\_clusters\_count.log**: this file contains, for each cluster, the number of pattern associated during the clustering and the percentage of association on respect to total number of patterns;
  - $\checkmark$  Column 1 : label of cluster;
  - ✓ **Column 2** : total number of pattern associated for the cluster;
  - ✓ **Column 3** : percentage of association;
- **GSOM\_Run\_params.xml**: this file contains all configuration parameters for the experiment;

### 3.3.3 Test Use Case

### 3.3.3.1 Input Files

As input to the program the user must provide following setup files:

- **input dataset** (input data): the same type of file used on train case;
- **configuration file of network**: the output "GSOM\_Train\_network\_configuration.log" or "GSOM\_Run\_network\_configuration.log" obtained by train or run use case and added to the workspace of experiment.

### 3.3.3.2 Output Files

As output from GSOM test use case, the program provides following files:

• **GSOM\_Test\_network\_configuration.log**: this file is useful for run use case and contains all the parameter of configured network ; the file settings are the same of train use case;



- **GSOM\_Test\_status.log**: this file contains all parameters of experiment and error in case of failure; the file settings are the same of train use case;
- **GSOM\_Test\_weights\_I\_dataset.log** : this file contains the weights associated to the neurons of the net used for the first dataset; the file settings are the same of train use case;
- **GSOM\_Test\_weights\_II\_dataset.log** : this file contains the weights associated to the neurons of the net used for the second dataset; the file settings are the same of train use case;
- **GSOM\_Test\_\_output\_results\_I\_dataset.log**: this file contains the output of the experiment on the first dataset;
- **GSOM\_Test\_\_output\_results\_II\_dataset.log**: this file contains the output of the experiment on the second dataset;
- **GSOM\_Test\_plot\_clusters\_I\_dataset.jpeg**: image obtained by "GSOM\_Run\_output\_results\_I\_dataset.log
- **GSOM\_Test\_plot\_clusters\_II\_dataset.jpeg**: image obtained by "GSOM\_Run\_output\_results\_II\_dataset.log";
- **GSOM\_Test\_clusters\_count\_I\_dataset.log**: this file contains, for each cluster, the number of pattern associated during the clustering and the percentage of association on respect to total number of patterns of first dataset;
  - ✓ **Column 1** : label of cluster;
  - ✓ **Column 2** : total number of pattern associated for the cluster;
  - ✓ **Column 3** : percentage of association;
- **GSOM\_Test\_clusters\_count\_II\_dataset.log**: this file contains, for each cluster, the number of pattern associated during the clustering and the percentage of association on respect to total number of patterns of second dataset;
  - ✓ **Column 1** : label of cluster;
  - ✓ **Column 2** : total number of pattern associated for the cluster;
  - ✓ **Column 3** : percentage of association;
- **GSOM\_Test\_overlap\_dataset.dat**: this file contains patterns of overlapping between first dataset and second dataset; the two dataset are obtained by splitting the input dataset;
- **GSOM\_statistical\_output**: this file contains the following results:
  - ✓ **Column 1:** Label of cluster;
  - ✓ **Column 2:** occurrence of cluster on clustering first dataset;
  - ✓ **Column 3:** occurrence of cluster on clustering second dataset;
  - ✓ **Column 4:** percentage of association.

### 3.4 CSOM I/O Files

### 3.4.1 Train Use Case

### 3.4.1.1 Input Files

As input to the program (depending on specific use case) the user must provide following setup files:

• **input dataset** (input data).

### 3.4.1.1.1 Input Dataset

The input dataset represents the input patterns to be processed for both training and/or run phases. These data must be submitted FITS for CSOM model. The input file contains a fits astronomical image or table.

### 3.4.1.2 Output Files

As output from the program, for CSOM training, provides following files:

• **CSOM\_Train\_weights.log** : this file contains the weights associated to the neurons of the net;



- **CSOM\_Train\_network\_configuration.log**: this file is useful for run use case and contains all the parameter of configured network;
  - ✓ row 1: status boolean keys associated as follow: configurationWait, configuring, firstTrainingWait, training, trained;
  - ✓ **row 2**: values of *layersNumber* and *input pattern length*;
  - ✓ **row 3**: type of *ClusteringNN model* used;
  - ✓ row 4: status boolean keys associated as follow: configurationWait, configuring, firstTrainingWait, training, trained;
  - ✓ row 5: values of input pattern length and *number of clusters used* for train;
  - ✓ **row 6**: values of *initial and final learning rate* and *number of iterations*;
  - ✓ row 7: values of *initial and final variance*, and *rows and columns* number of map of network;
  - ✓ the other row: alternately, the file specifies the *pattern length* and the *weight vector* for each neuron of network;
- **CSOM\_Train\_status.log**: this file contains all parameters of configured experiments and error in case of failure;
- **CSOM\_Train\_params.xml**: this file contains all configuration parameters of experiment.

### 3.4.2 Run Use Case

### 3.4.2.1 Input Files

As input to the program the user must provide following setup files:

- **input dataset** (input data): the same type of file used on train case;
- **configuration file of network**: the output "CSOM\_Train\_network\_configuration.log " obtained by train use case and added to the workspace of experiment.

### 3.4.2.2 Output Files

As output from CSOM run use case, the program provides following files:

- **GSOM\_Run\_weights.log** : this file contains the weights associated to the neurons of the net; the file settings are the same of train use case;
- **CSOM\_Ruin\_network\_configuration.log**: this file is useful for run use case and contains all the parameter of configured network ; the file settings are the same of train use case;
- **CSOM\_Run\_status.log**: this file contains all parameters of experiment and error in case of failure; the file settings are the same of train use case;
- **CSOM\_Run\_ output\_results.log**: this file contains the really output of the experiment:
  - ✓ **Column 1**: label of *winner cluster* for the input pattern;
  - ✓ **Column 2**: index of input pattern;
  - ✓ **Column 3**: input pattern length;
  - ✓ **Other columns:** values of input pattern;
- CSOM\_Run\_plot\_clusters.jpeg: image obtained by "CSOM\_Run\_output\_results.log";
- **CSOM\_Run\_clusters\_count.log**: this file contains, for each cluster, the number of pattern associated during the clustering and the percentage of association on respect to total number of patterns;
  - ✓ **Column 1** : label of cluster;
  - $\checkmark$  Column 2 : total number of pattern associated for the cluster;
  - ✓ **Column 3** : percentage of association;
- **CSOM\_Run\_params.xml**: this file contains all configuration parameters for the experiment;



### 3.4.3 Test Use Case

### 3.4.3.1 Input Files

As input to the program the user must provide following setup files:

- **input dataset** (input data): the same type of file used on train case;
- configuration file of network: the output "CSOM\_Train\_network\_configuration.log" or "CSOM\_Run\_network\_configuration.log" obtained by train or run use case and added to the workspace of experiment.

### 3.4.3.2 Output Files

As output from CSOM test use case, the program provides following files:

- **CSOM\_Test\_network\_configuration.log**: this file is useful for run use case and contains all the parameter of configured network ; the file settings are the same of train use case;
- **CSOM\_Test\_status.log**: this file contains all parameters of experiment and error in case of failure; the file settings are the same of train use case;
- **CSOM\_Test\_weights\_I\_dataset.log** : this file contains the weights associated to the neurons of the net used for the first dataset; the file settings are the same of train use case;
- **CSOM\_Test\_weights\_II\_dataset.log** : this file contains the weights associated to the neurons of the net used for the second dataset; the file settings are the same of train use case;
- **CSOM\_Test\_\_output\_results\_I\_dataset.log**: this file contains the output of the experiment on the first dataset;
- **CSOM\_Test\_\_output\_results\_II\_dataset.log**: this file contains the output of the experiment on the second dataset;
- **CSOM\_Test\_plot\_clusters\_I\_dataset.jpeg**: image obtained by "CSOM\_Run\_output\_results\_I\_dataset.log;
- **CSOM\_Test\_plot\_clusters\_II\_dataset.jpeg**: image obtained by "CSOM\_Run\_output\_results\_II\_dataset.log";
- **CSOM\_Test\_clusters\_count\_I\_dataset.log**: this file contains, for each cluster, the number of pattern associated during the clustering and the percentage of association on respect to total number of patterns of first dataset;
  - ✓ **Column 1** : label of cluster;
  - ✓ **Column 2** : total number of pattern associated for the cluster;
  - ✓ **Column 3** : percentage of association;
- **CSOM\_Test\_clusters\_count\_II\_dataset.log**: this file contains, for each cluster, the number of pattern associated during the clustering and the percentage of association on respect to total number of patterns of second dataset;
  - ✓ **Column 1** : label of cluster;
  - ✓ **Column 2** : total number of pattern associated for the cluster;
  - ✓ **Column 3** : percentage of association;
- **CSOM\_Test\_overlap\_dataset.dat**: this file contains patterns of overlapping between first dataset and second dataset; the two dataset are obtained by splitting the input dataset;
- **CSOM\_statistical\_output.log**: this file contains the following results:
  - ✓ **Column 1:** Label of cluster;
  - ✓ **Column 2:** occurrence of cluster on clustering first dataset;
  - ✓ **Column 3:** occurrence of cluster on clustering second dataset;
  - ✓ **Column 4:** percentage of association.



### 3.5 Output files table of CSOM and GSOM models

| Use Case | Output Files<br>CSOM Model              |
|----------|-----------------------------------------|
| TRAIN    | CSOM_Train_status.log                   |
|          | CSOM_Train_weigths.log                  |
|          | CSOM_Train_network_configuration.log    |
| RUN      | CSOM_Run_ status.log                    |
|          | CSOM_Run_network_configuration.log      |
|          | CSOM_Run_weigths.log                    |
|          | CSOM_ Run_output_results.log            |
|          | CSOM_ Run_clusters_count.log            |
|          | CSOM_ Run_plot_clusters.jpeg            |
| TEST     | CSOM_Test_ status.log                   |
|          | CSOM_Test_network_configuration.log     |
|          | CSOM_Test_statistical_output.log        |
|          | CSOM_Test_overlap_dataset.dat           |
|          | CSOM_Test_weigths_I_dataset.log         |
|          | CSOM_Test_weigths_II_dataset.log        |
|          | CSOM_Test_output_results_I_dataset.log  |
|          | CSOM_Test_output_results_II_dataset.log |
|          | CSOM_Test_clusters_count_I_dataset.log  |
|          | CSOM_Test_clusters_count_II_dataset.log |
|          | CSOM_Test_plot_clusters_I_dataset.jpeg  |
|          | CSOM_Test_plot_clusters_II_dataset.jpeg |

### Tab. 1 – CSOM model output files table



| Use Case | Output Files<br>GSOM Model              |
|----------|-----------------------------------------|
| TRAIN    | GSOM_Train_status.log                   |
|          | GSOM_Train_weigths.log                  |
|          | GSOM_Train_network_configuration.log    |
| RUN      | GSOM_Run_ status.log                    |
|          | GSOM_Run_network_configuration.log      |
|          | GSOM_Run_weigths.log                    |
|          | GSOM_Run_output_results.log             |
|          | GSOM_Run_clusters_count.log             |
|          | GSOM_Run_plot_clusters.jpeg             |
| TEST     | GSOM_Test_ status.log                   |
|          | GSOM_Test_network_configuration.log     |
|          | GSOM_Test_statistical_output.log        |
|          | GSOM_Test_overlap_dataset.dat           |
|          | GSOM_Test_weigths_I_dataset.log         |
|          | GSOM_Test_weigths_II_dataset.log        |
|          | GSOM_Test_output_results_I_dataset.log  |
|          | GSOM_Test_output_results_II_dataset.log |
|          | GSOM_Test_clusters_count_I_dataset.log  |
|          | GSOM_Test_clusters_count_II_dataset.log |
|          | GSOM_Test_plot_clusters_I_dataset.jpeg  |
|          | GSOM_Test_plot_clusters_II_dataset.jpeg |

Tab. 2 – GSOM model output files table



### 3.6 TRAIN Use case

In the use case named "<u>**Train**</u>", the software provides the possibility to train the SOFM model of NEXTII library. The user will be able to set training parameters, set training dataset, manipulate the training dataset and execute the training experiments.

There are several parameters to be set to achieve training, dealing with network topology and learning algorithm. In the experiment configuration there is also the Help button, redirecting to a web page dedicated to support the user with deep information about all parameters and their default values.

We remark that all parameters labeled by an asterisk are considered required. In all other cases the fields can be left empty (default values are used).

### 3.6.1 Clustering with CSOM model – Train Parameter Specifications

In the case of Clustering\_CSOM with Train use case, the help page is at the address: <a href="http://dame.dsf.unina.it/clustering\_csom.html#class\_train">http://dame.dsf.unina.it/clustering\_csom.html#class\_train</a>

### • Input Dataset File

### This parameter is a field required!

This is the dataset file to be used as input for the learning phase of the model. It typically must not include target columns, where each row is an entire pattern (or sample of data). The format (hence its extension) must FITS-IMAGE.

### • Number of clusters/neurons (I layer)

### This parameter is a field required!

This is the number of neurons of the first layer of the Multi Layer network. As suggestion this should be selected as an integer equal to or greater than two neurons. Note that number of neurons corresponds to the number of searched clusters.

### • Number of Iterations

This is the number of training iterations. As suggestion this should be selected as an integer greater than zero.

If left empty, its default value is 1000.

### • Diameter

It is the pixel neighborhood diameter, As suggestion this should be selected as an integer greater than two.

DAMEWARE SOFM Model User Manual



If left empty, its default value is 3.

### • Number of Layers

This is the number of layers in case of choice of hierarchical Multi layer clustering model. As suggestion this should be selected into integer range between 1 and 3.

If left empty, its default value is 1 (i.e. no multi layer clustering, but simple SOFM model).

### • Initial variance (I layer)

This is the initial variance of first layer of hierarchical Multi layer clustering model. As suggestion this should be selected as real number greater than 0 used on neighborhood function.

If left empty, its default value is 4.0.

### • Final variance (I layer)

This is the final variance of first layer of hierarchical Multi layer clustering model. As suggestion this should be selected as Real number between 0 and value of initial variance of the first layer.

If left empty, its value default is 0.001.

### • Initial learning rate (I layer)

This is the initial learning rate of first layer of hierarchical Multi layer clustering model. As suggestion this should be selected as real number between 0 and 1.

If left empty, its default value is 0.7.

### • Final learning rate (I layer)

This is the final learning rate of first layer of hierarchical Multi layer clustering model. As suggestion this should be selected as real number between 0 and 1 (including 0) **STRICTLY LESS** than value of initial learning rate of the first layer.

If left empty, its default value is 0.005.

### • Number of clusters/neurons (II Layer)

This is the number of clusters/Neurons of second Layer, specified only in the case of Multi layer clustering.

DAMEWARE SOFM Model User Manual



As suggestion this should be selected as integer number greater than 2 less than number of neurons of first layer and greater than number of neurons of third layer (if specified).

However, this number is set to default value in the two following case:

- 1. the number of layers is equal to 2 and number of neurons of second layer is not specified: in this case, its default value is 8;
- 2. the number of layers is equal to 2 and number of neurons of second layer is greater than number specified for first layer: in this case, there are two solutions:
  - a. if number neurons of first layer is STRICTLY greater than 2, number of neurons of second layer is obtained by decreasing number of neurons in the first layer;
  - b. if number neurons of first layer is equal to 2 (minimum required), uses the following default values:
    - i. number neurons of first layer : 10;
    - ii. number neurons of second layer : 8.

### • Initial variance (II Layer)

This is the initial variance of first layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number greater than 0 used on neighborhood function.

If left empty, its default value is 3.0.

### • Final variance (II Layer)

This is the final variance of second layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and value of initial variance of the second layer.

If left empty, its default value is 0.001.

### • Initial learning rate (II Layer)

This is the initial learning rate of second layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and 1.

If left empty, its default value is 0.7.

### • Final learning rate (II Layer)

This is the final learning rate of second layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and 1 (including 0) **STRICTLY LESS** than value of initial learning rate of the second layer.



If left empty, its default value is 0.005.

### • Number of clusters/neurons (III layer)

This is the number of clusters/Neurons of third Layer, specified only in the case of Multi layer clustering.

As suggestion this should be selected as integer number greater than 2 less than number of neurons of second layer.

However, this number is set to default value in the two following case:

- 1. the number of layers is equal to 3 and number of third layer is not specified: in this case, its default value is 4;
- 2. the number of layers is equal to 3 and <u>number of neurons of third layer is greater</u> than number specified for second layer or <u>number of neurons of third layer is</u> greater than number specified for first layer or <u>number of neurons of second layer</u> is greater than number specified for first layer : in this case, there are two solutions:
  - a. if number neurons of first layer is STRICTLY greater than 4, number of neurons of second layer is obtained by decreasing number of neurons in the first layer and number of neurons of third layer is obtained by decreasing number of neurons in second layer;
  - b. if number neurons of first layer is equal to 2 (minimum required), uses the following default values:
    - i. number neurons of first layer : 10;
    - ii. number neurons of second layer : 8;
    - iii. number neurons of third layer : 4.

### • Initial variance (III Layer)

This is the initial variance of third layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number greater than 0 used on neighborhood function.

If left empty, its default value is 2.0.

### • Final variance (III Layer)

This is the final variance of third layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and value of initial variance of the third layer.

If left empty, its default value is 0.001.



### • Initial learning rate (III Layer)

This is the initial learning rate of third layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and 1.

If left empty, its default value is 0.7.

### • Final learning rate (III Layer)

This is the final learning rate of third layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and 1 (including 0) **STRICTLY LESS** than value of initial learning rate of the third layer.

If left empty, its default value is 0.005.

### 3.6.2 Clustering with GSOM – Train Parameter Specifications

In the case of Clustering\_GSOM with Train use case, the help page is at the address: <a href="http://dame.dsf.unina.it/clustering\_gsom.html#class\_train">http://dame.dsf.unina.it/clustering\_gsom.html#class\_train</a>

### • Input Dataset File

### This parameter is a field required!

This is the dataset file to be used as input for the learning phase of the model. It typically must not include target columns, where each row is an entire pattern (or sample of data). The format (hence its extension) must be FITS-TABLE, ASCII and CSV.

### • Number of clusters/neurons (I layer)

### This parameter is a field required!

This is the number of neurons of the first layer of the Multi Layer network. As suggestion this should be selected as an integer equal to or greater than two neurons. Note that number of neurons corresponds to the number of searched clusters.

#### • Number of Iterations

This is the number of training iterations. As suggestion this should be selected as an integer greater than zero.

If left empty, its default value is 1000.



### • Diameter

It is the pixel neighborhood diameter, As suggestion this should be selected as an integer greater than two.

If left empty, its default value is 3.

### • Number of Layers

This is the number of layers in case of choice of hierarchical Multi layer clustering model. As suggestion this should be selected into integer range between 1 and 3.

If left empty, its default value is 1 (i.e. no multi layer clustering, but simple SOFM model).

### • Initial variance (I layer)

This is the initial variance of first layer of hierarchical Multi layer clustering model. As suggestion this should be selected as real number greater than 0 used on neighborhood function.

If left empty, its default value is 4.0.

### • Final variance (I layer)

This is the final variance of first layer of hierarchical Multi layer clustering model. As suggestion this should be selected as Real number between 0 and value of initial variance of the first layer.

If left empty, its value default is 0.001.

### • Initial learning rate (I layer)

This is the initial learning rate of first layer of hierarchical Multi layer clustering model. As suggestion this should be selected as real number between 0 and 1.

If left empty, its default value is 0.7.

### • Final learning rate (I layer)

This is the final learning rate of first layer of hierarchical Multi layer clustering model. As suggestion this should be selected as real number between 0 and 1 (including 0) **STRICTLY LESS** than value of initial learning rate of the first layer.

If left empty, its default value is 0.005.



### • Number of clusters/neurons (II Layer)

This is the number of clusters/Neurons of second Layer, specified only in the case of Multi layer clustering.

As suggestion this should be selected as integer number greater than 2 less than number of neurons of first layer and greater than number of neurons of third layer (if specified).

However, this number is set to default value in the two following case:

- 1. the number of layers is equal to 2 and number of neurons of second layer is not specified: in this case, its default value is 8;
- 2. the number of layers is equal to 2 and number of neurons of second layer is greater than number specified for first layer: in this case, there are two solutions:
  - a. if number neurons of first layer is STRICTLY greater than 2, number of neurons of second layer is obtained by decreasing number of neurons in the first layer;
  - b. if number neurons of first layer is equal to 2 (minimum required), uses the following default values:
    - i. number neurons of first layer : 10;
    - ii. number neurons of second layer : 8.

### • Initial variance (II Layer)

This is the initial variance of first layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number greater than 0 used on neighborhood function.

If left empty, its default value is 3.0.

### • Final variance (II Layer)

This is the final variance of second layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and value of initial variance of the second layer.

If left empty, its default value is 0.001.

### • Initial learning rate (II Layer)

This is the initial learning rate of second layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and 1.

If left empty, its default value is 0.7.



### • Final learning rate (II Layer)

This is the final learning rate of second layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and 1 (including 0) **STRICTLY LESS** than value of initial learning rate of the second layer.

If left empty, its default value is 0.005.

#### • Number of clusters/neurons (III layer)

This is the number of clusters/Neurons of third Layer, specified only in the case of Multi layer clustering.

As suggestion this should be selected as integer number greater than 2 less than number of neurons of second layer.

However, this number is set to default value in the two following case:

- 1. the number of layers is equal to 3 and number of third layer is not specified: in this case, its default value is 4;
- 2. the number of layers is equal to 3 and <u>number of neurons of third layer is greater</u> than number specified for second layer or <u>number of neurons of third layer is</u> greater than number specified for first layer or <u>number of neurons of second layer</u> is greater than number specified for first layer : in this case, there are two solutions:
  - a. if number neurons of first layer is STRICTLY greater than 4, number of neurons of second layer is obtained by decreasing number of neurons in the first layer and number of neurons of third layer is obtained by decreasing number of neurons in second layer;
  - b. if number neurons of first layer is equal to 2 (minimum required), uses the following default values:
    - i. number neurons of first layer : 10;
    - ii. number neurons of second layer : 8;
    - iii. number neurons of third layer : 4.

#### • Initial variance (III Layer)

This is the initial variance of third layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number greater than 0 used on neighborhood function.

If left empty, its default value is 2.0.



### • Final variance (III Layer)

This is the final variance of third layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and value of initial variance of the third layer.

If left empty, its default value is 0.001.

### • Initial learning rate (III Layer)

This is the initial learning rate of third layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and 1.

If left empty, its default value is 0.7.

### • Final learning rate (III Layer)

This is the final learning rate of third layer, specified only in the case of Multi layer clustering. As suggestion this should be selected as real number between 0 and 1 (including 0) **STRICTLY LESS** than value of initial learning rate of the third layer.

If left empty, its default value is 0.005.

### 3.7 TEST Use case

In the use case named "<u>Test</u>", the software provides the possibility to test the stability of SOFM model. As known, in the unsupervised case, it cannot be provided the training validation, in the same way as intended and formalized in the supervised case, but a statistical evaluation about the stability of clustering in different training sessions can be approached, i.e. by collecting two separate training datasets, having a chosen overlap percentage and comparing the training results between them. This use case is offered as an option to the training use case. If the user select it, he may choose to add a column to the original dataset. This column will have as label the train set cluster membership.

The user will be able to use already trained CSOM and GSOM models, their weight configurations to execute the testing experiments.

In the experiment configuration there is also the Help button, redirecting to a web page dedicated to support the user with deep information about all parameters and their default values.

We remark that all parameters labeled by an asterisk are considered required. In all other cases the fields can be left empty (default values are used).



### 3.7.1 Clustering with CSOM – Test Parameter Specifications

In the case of Clustering\_CSOM with Test use case, the help page is at the address:

http://dame.dsf.unina.it/clustering csom.html#class test

#### • Input File Dataset

#### This parameter is a field required!

This is the dataset file to be used as input for the testing. It typically must not include target columns, where each row is an entire pattern (or sample of data). The format (hence its extension) must FITS-IMAGE. For example, it could be the same dataset file used as the training input file.

#### • Configuration file of trained net

#### This parameter is a field required!

This is a file generated by the model during training phase. It contains the resulting network topology as stored at the end of a training session. Usually this file should not be edited or modified by users, just to preserve its content as generated by the model itself.

#### • Splitting percentage of input dataset

This is a real number representing the splitting percentage of input dataset. As suggestion this should be selected in a range between 1 and 100.

If left empty, its default value is 65.0 (%).

### **3.7.2** Clustering with GSOM – Test Parameter Specifications

In the case of Classification\_GSOM with Test use case, the help page is at the address: <a href="http://dame.dsf.unina.it/clustering\_gsom.html#class\_test">http://dame.dsf.unina.it/clustering\_gsom.html#class\_test</a>

#### • Input File Dataset

#### This parameter is a field required!

This is the dataset file to be used as input for the learning phase of the model. It typically must not include target columns, where each row is an entire pattern (or sample of data). The format (hence its extension) must be FITS-TABLE, ASCII and CSV



### • Configuration file of trained net

### This parameter is a field required!

This is a file generated by the model during training phase. It contains the resulting network topology as stored at the end of a training session. Usually this file should not be edited or modified by users, just to preserve its content as generated by the model itself.

### • Splitting percentage of input dataset

This is a real number representing the splitting percentage of input dataset. As suggestion this should be selected in a range between 1 and 100.

If left empty, its default value is 65.0 (%).



### 3.8 RUN Use case

In the use case named "<u>**Run**</u>", the software provides the possibility to execute clustering with SOFM models. The user will be able to use already trained CSOM and GSOM models to execute the normal experiments.

In the experiment configuration there is also the Help button, redirecting to a web page dedicated to support the user with deep information about all parameters and their default values.

We remark that all parameters labeled by an asterisk are considered required. In all other cases the fields can be left empty (default values are used).

### 3.8.1 Clustering with CSOM – Run Parameter Specifications

In the case of Clustering\_CSOM with Run use case, the help page is at the address: <a href="http://dame.dsf.unina.it/clustering\_csom.html#class\_run">http://dame.dsf.unina.it/clustering\_csom.html#class\_run</a>

#### • Input File Dataset

#### This parameter is a field required!

This is the dataset file to be used as input for the testing. It typically must not include target columns, where each row is an entire pattern (or sample of data). The format (hence its extension) must FITS-IMAGE. For example, it could be the same dataset file used as the training input file.

### • Configuration file of trained net

### This parameter is a field required!

This is a file generated by the model during training phase. It contains the resulting network topology as stored at the end of a training session. Usually this file should not be edited or modified by users, just to preserve its content as generated by the model itself.

### **3.8.2** Clustering with GSOM – Run Parameter Specifications

In the case of Clustering\_GSOM with Run use case, the help page is at the address: <a href="http://dame.dsf.unina.it/clustering\_gsom.html#class\_run">http://dame.dsf.unina.it/clustering\_gsom.html#class\_run</a>



### • Input File Dataset

### This parameter is a field required!

This is the dataset file to be used as input for the learning phase of the model. It typically must not include target columns, where each row is an entire pattern (or sample of data). The format (hence its extension) must be FITS-TABLE, ASCII and CSV

### • Configuration file of trained net

### This parameter is a field required!

This is a file generated by the model during training phase. It contains the resulting network topology as stored at the end of a training session. Usually this file should not be edited or modified by users, just to preserve its content as generated by the model itself

### 4 Examples

This section is dedicated to show some practical examples of the correct use of the web application.

Not all aspects and available options are reported, but a significant sample of features useful for beginners of DAME suite and with a poor experience about data mining methodologies with machine learning algorithms. In order to do so, very simple and trivial problems will be described.

Further complex examples will be integrated here in the next releases of the documentation.

### 4.1 Usage Example of Clustering\_GSOM

The problem can be stated as follows: we want to execute experiment on WINE.CSV file<sup>1</sup>. These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

The attributes are :

- o Alcohol
- o Malic acid
- o Ash
- o Alcalinity of ash
- o Magnesium
- o Total phenols
- o Flavanoids
- o Nonflavanoid phenols
- o Proanthocyanins
- o Color intensity
- o Hue
- o OD280/OD315 of diluted wines
- o Proline

<sup>&</sup>lt;sup>1</sup> To see more information about wine.csv dataset, see the link: <u>http://archive.ics.uci.edu/ml/datasets/Wine</u>



All attributes are continuous but NOTE that first column on wine dataset is a class identifier (1-3). In other words each class identify a cultivars.

Clustering can be considered the most important *unsupervised learning* problem; so, as every other problem of this kind, it deals with finding a *structure* in a collection of unlabeled data.

A *cluster* is therefore a collection of objects which are "similar" between them and are "dissimilar" to the objects belonging to other clusters. In this case, the clusters can be associated to the different cultivars and so, the problem is to associate the pattern of wine dataset to this clusters.

The starting point of experiment is to create a new workspace, named **MLCSOMExp**, to populate it with the file **wine.csv**: CSV dataset file used on GSOM experiment.

| <u></u> |
|---------|
|         |
|         |
|         |
|         |

Fig. 3 – The starting point, creation tab of New Workspace

First of all, after uploading of the file, you need to make the wine dataset useful in a clustering experiment.

| DAME Application - User: r | marisagg9073@gmail.com          |                                                                            |                                         |                 |
|----------------------------|---------------------------------|----------------------------------------------------------------------------|-----------------------------------------|-----------------|
|                            | App Manuals -                   | Model Manuals 🔻                                                            | Cloud Services -                        | Science Cases 🔻 |
| RESOURCE MANAGER           | Upload in MLCSOMExp Workspace 🖾 |                                                                            |                                         |                 |
| Workspace: MLCSOMExp       | Upload<br>from: Hard Disk       | CSV V<br>Scegli file wine.csv<br>Upload File<br>Note<br>File Su<br>File Up | bmitted<br>koaded: wine.csv stze: 10 kb |                 |

Fig. 4 – Upload Manager Tab: uploading wine.csv file

So, you must delete the first "target" column. This can be done through the application using the File Editor, as shown:

DAMEWARE SOFM Model User Manual



|                                        | App Manuals 👻 Model Manuals 👻                                                                        | Cloud Services                                              | *      | Science Cases 💌     | Documents 🔻 |
|----------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------|---------------------|-------------|
| RESOURCE MANAGER Upload in I           | MLCSOMExp Workspace 🖸 File Editor 🗵                                                                  |                                                             |        |                     |             |
| Norkspace: MLCSOMExp<br>File: wine.csv |                                                                                                      | Configuration                                               |        |                     |             |
| X Operation                            | Description                                                                                          | Column L Column                                             | Tyne   | Output              | Ok          |
| Feature Selection                      | It creates a new file, containing only the selected<br>columns.                                      | 1 col1                                                      | Short  | File wine<br>Name : |             |
|                                        | It creates a new file, containing the new ordering                                                   | ☑ 2 col2                                                    | Float  |                     |             |
| Columns Ordering                       | of columns, as specified in the column fields.<br>Use Drag & Drop                                    | ☑ 3 col3                                                    | Float  |                     |             |
| Sort Rows by Column                    | It creates a new file, containing the sorted rows,                                                   |                                                             | Float  |                     |             |
| Random Column Shuffle                  | It creates a new file, containing randomly                                                           | ☑         0         COID           ☑         6         COID | Short  |                     |             |
|                                        | It creates a new file containing randomly                                                            |                                                             | Float  |                     |             |
| Random Row Shuffle                     | shuffled rows.                                                                                       | ✓ 8 col8                                                    | Float  |                     |             |
|                                        | It creates as many new files as desired, each                                                        | <b>⊻</b> 9 coł9                                             | Float  |                     |             |
| Split by Rows                          | containing the specified percentage of rows. The<br>rows distribution can be randomly extracted.     | V 10 col10                                                  | Float  |                     |             |
|                                        | ***Use only numerical Dataset***                                                                     | 11 col11                                                    | Double |                     |             |
| Dataset Scale                          | It creates a new file, containing all data scaled in the selected range (L1 +11 or (0 +11))          | 12 col12                                                    | Float  |                     |             |
|                                        | It creates a new file, containing a single column                                                    | ✓ 13 col13                                                  | Float  |                     |             |
| Single Column Scale                    | data scaled in the selected range ([-1, +1] or [0, +1]), leaving unmodified the other columns in the | ☑ 14 col14                                                  | Short  |                     |             |

Fig. 5 – File Editor Tab

You must select useful columns, name for the new file and save it. The new name file will be: columnSubset\_<name>.<format-file>. So, in this case we have a new file named **columnSubset\_wine.csv**.

| orkspace:<br>CSOMExp |        |                       |      |             |
|----------------------|--------|-----------------------|------|-------------|
| 🔂 Download           | 🛃 Edit | file                  | Туре | Last Access |
| 5                    |        | columnSubset_wine.csv | CSV  | 2011-07-28  |
| 8                    |        | wine.csv              | CSV  | 2011-07-28  |

Fig. 6 – File Manager: after editing wine.csv file

### 4.1.1 Clustering\_GSOM Train Use Case

Let suppose we create an experiment, named wineTrain, and we want configure it.

| en ander se se ander se an | a.<br>1911 |  |
|----------------------------------------------------------------------------------------------------------------|------------|--|
| Experiment Nam                                                                                                 |            |  |
| wineTrain                                                                                                      |            |  |
|                                                                                                                |            |  |
| OK                                                                                                             | Capcel     |  |

Fig. 7 – The wineTrain experiment creation tab

DAMEWARE SOFM Model User Manual

This document contains proprietary information of DAME project Board. All Rights Reserved.



After creation, the new configuration tab is open. Here we select Clustering\_GSOM as couple functionality-model of the current experiment and we select also Train use case.

| IE Application - User: marisagg9073@gmail.com                       |                                        |                          |
|---------------------------------------------------------------------|----------------------------------------|--------------------------|
| App Manuals -                                                       | Model Manuals 💌                        | Cloud Services -         |
| SOURCE MANAGER Uplead in MLCSOMExp Workspace                        | Experiment Setup                       |                          |
| prkspace: MLCSOMExp Select a Running T<br>periment: wineTrain Mode: | rain                                   |                          |
| Select a Clustering_GSOM                                            | Input file dataset*                    | /columnSubset_wine.csv_v |
|                                                                     | Number of clusters/neurons (           |                          |
| HELP                                                                | layer)*<br>Number of iterations        | 1 <b>1</b>               |
|                                                                     | Diameter                               |                          |
|                                                                     | Number of layers                       |                          |
|                                                                     | Initial variance (I layer)             |                          |
|                                                                     | Final variance (I layer)               | I                        |
|                                                                     | Initial learning rate (I layer)        |                          |
|                                                                     | Final learning rate (I layer)          |                          |
|                                                                     | Number of clusters/Neurons (II Layer)  |                          |
|                                                                     | Initial variance (II Layer)            | I                        |
|                                                                     | Final variance (II Layer)              | ŧ                        |
|                                                                     | Initial learning rate (II Layer)       |                          |
|                                                                     | Final learning Rate (II Layer)         |                          |
|                                                                     | Number of clusters/neurons (III layer) | I                        |
|                                                                     | Initial variance (III layer)           | -                        |
|                                                                     | Final Variance (III layer)             |                          |
|                                                                     | Initial learning Rate (III layer)      |                          |
|                                                                     | Final learning Rate (III layer)        | I                        |
|                                                                     |                                        | Submit                   |

Fig. 8 – The wineTrain experiment configuration tab

Now we have to configure parameters for experiment. In particular, we will leave empty the not required fields (label without asterisk). The meaning of the parameters for this use case are described on section 3.6.1 of this document.

As alternative, you can click on the Help button to obtain detailed parameter description and their default value directly from the web application.



We give **columnSubset\_wine.csv** as input dataset specifying 3 as number of clusters, because of the number of cultivars.

Once you have entered any required field, you can click on **submit** button and wait to the end of experiment.

The content of output files, obtained at the end of experiment (available when the experiment status is "ended") is shown in the following images. The meaning of the files is described on section 3.3.1.2

| C | SOMExp            |          |                                      |             | 1                                        |          |
|---|-------------------|----------|--------------------------------------|-------------|------------------------------------------|----------|
|   | Experiment Status |          | Status                               | Last Access |                                          | 🔀 Delete |
| 4 | wineTrain         |          | ended                                |             | 2011-07-28                               | ×        |
|   | Download          | RaddinWS | File                                 | Туре        | Description                              |          |
|   | <b>13</b>         |          | GSOM_Train_weights.log               | log         | Output weigths of the net after training |          |
|   | 8                 | -        | GSOM_Train_network_configuration.log | log         | Configuration output file of the net     |          |
|   | <b>1</b>          |          | GSOM_Train_status.log                | log         | Status and error of experiment           |          |
|   | 14                | 10       | GSOM_Train_params.xml                | xml         | Experiment Configuration File            |          |

Fig. 9 – The wineTrain experiment output files

### 4.1.2 Clustering\_GSOM Run Use Case

To execute a run experiment, you must put on input file area (**File Manager**) of the workspace the configuration file obtained as result of a training experiment. So, in this case we add the file named **GSOM\_Train\_Network\_configuration.log**. This because it represent the stored configuration of the network, trained on input dataset file.

| orkspace:<br>.CSOMExp |        |                                      |      |             |        |
|-----------------------|--------|--------------------------------------|------|-------------|--------|
| Download              | 🍻 Edit | File                                 | Туре | Last Access | 🗶 Dele |
| <b></b>               | ۵      | columnSubset_wine.csv                | csv  | 2011-07-28  | ×      |
| <b>B</b>              | 6      | GSOM_Train_network_configuration.log | log  | 2011-07-28  | ×      |
|                       | 4      | wine.csv                             | CSV  | 2011-07-28  | ×      |
| My Experiments        | 9      |                                      |      |             |        |

Fig. 10 - The file GSOM\_Train\_network\_configuration.log copied

### in the WS File Manager for Run experiment



So far, we proceed to create a new experiment, named wineRun, to execute clustering.

| New Experimen  | t      | X |
|----------------|--------|---|
| Experiment Nam | 16:    |   |
| wineRun        |        |   |
| ОК             | Cancel |   |

Fig. 11 – The wineRun experiment creation tab

We will re-use the same input dataset (column\_subset\_wine.csv) and also select configuration file (GSOM\_Train\_Network\_configuration.log).

| DAME Application - User: marisa             | gg9073@gmail.com              |                                      |                          |     |
|---------------------------------------------|-------------------------------|--------------------------------------|--------------------------|-----|
|                                             | App Manuals -                 | Model Manuals 🔻                      | Cloud Services -         | Sci |
| RESOURCE MANAGER Exper                      | riment Setup 🖸                |                                      |                          |     |
| Workspace: MLCSOMExp<br>Experiment: wineRun | Select a Running<br>Mode: Run | ×                                    |                          |     |
| Select a Clustering_GSOM                    | * = Field is Required         | Input dataset file* :                | /columnSubset_wine.csv v |     |
|                                             |                               | Configuration file of trained net* : | /GSOM_Train_network_c v  |     |
|                                             | HELP                          |                                      | Submit                   |     |

Fig. 12 – The wineRun experiment configuration tab

Once you have entered any required field, you can click on submit button and wait to the end of experiment.

The content of output files, obtained at the end of experiment (available when the experiment status is "ended") is shown in the following images. The meaning of the files is described on section 3.3.2.2



| lork | space;<br>SOMExp |           |                                    |      |                                            |          |
|------|------------------|-----------|------------------------------------|------|--------------------------------------------|----------|
|      | Experiment       |           | Status                             | 1,   | ast Access                                 | 🗙 Delete |
| H    | wineRun          |           | ended                              | 2    | 911-07-28                                  | ×        |
|      | 🔂 Download       | 👉 AddinWS | Eile File                          | Туре | Description                                |          |
|      | B                |           | GSOM_Run_output_results.log        | log  | Clustering Results                         | *        |
|      | B                |           | GSOM_Run_plot_clusters.jpeg        | jpeg | Plot of clusters                           |          |
|      | 8                |           | GSOM_Run_weigths.log               | log  | Output weigths of the net after clustering |          |
|      | B                |           | GSOM_Run_network_configuration.log | log  | Configuration output file of the net       |          |
|      | B                |           | GSOM_Run_status.log                | log  | Status and error of experiment             |          |

Fig. 13 – The wineRun experiment output files

### 4.1.3 Clustering\_GSOM Test Use Case

To execute a test experiment, you must put on input file area (File Manager) of the workspace the configuration file obtained as result of a training experiment. So, in this case we use the file **GSOM\_Train\_Network\_configuration.log**, already used on run use case.

So far, we proceed to create a new experiment, named **wineTest**, to execute test use case.

| nt     | ×         |
|--------|-----------|
| me:    |           |
|        |           |
| Cancel |           |
|        | nt<br>me: |

Fig. 14 – The wineTest experiment creation tab

We will re-use the same input dataset (column\_subset\_wine.csv) and also select configuration file (GSOM\_Train\_Network\_configuration.log).



| AME Application - User: marisagg9073@gmail.com                                                                               |                                                               |                                                     |       |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|-------|
| App Manuals -                                                                                                                | Model Manuals -                                               | Cloud Services -                                    | Scien |
| RESOURCE MANAGER     Experiment Setup       Workspace: MLCSOMExp     Select a Running       Experiment: wineTest     Mode: : | t 👻                                                           |                                                     |       |
| Select a<br>Functionality : Clustering_GSOM                                                                                  | Input file dataset* :<br>Configuration file of trained net* : | /columnSubset_wine.csv v<br>/GSOM_Train_network_c v |       |
|                                                                                                                              | opinuing percentage, or input valueser.                       | Submit                                              |       |

Fig. 15 – The wineTest experiment configuration tab

Once you have entered any required field, you can click on **submit** button and wait to the end of experiment.

The content of output files, obtained at the end of experiment (available when the experiment status is "ended") is shown in the following images. The meaning of the files is described on section 3.3.3.2.

| CS | space:<br>SOMExp |         |                                         |      |                                                 | -        |
|----|------------------|---------|-----------------------------------------|------|-------------------------------------------------|----------|
|    | Experiment       |         | Status                                  |      | Lasi Access                                     | X Delete |
| Þ  | wineTrain        |         | ended                                   |      | 2011-07-28                                      | ×        |
| Þ. | wineRun          |         | ended                                   |      | 2011-07-28                                      | ×        |
| 40 | wineTest         |         | ended                                   |      | 2011-07-28                                      | ×        |
|    | 📑 Download       | AddinWS | File                                    | Туре | Description                                     |          |
|    | <b></b>          |         | GSOM_Test_output_results_ll_dataset.log | log  | Output result on second subset                  |          |
|    | 5                | -       | GSOM_Test_overlap_dataset.dat           | dat  | File dataset of overlap                         |          |
|    | 5                |         | GSOM_Test_weigths_II_dataset.log        | log  | Output weigths after the train on second subset |          |
|    | 5                | -       | GSOM_Test_weigths_I_dataset.log         | log  | Output weigths after the train on first subset  |          |
|    | 5                |         | GSOM_Test_statistical_output.log        | log  | Statistical output                              |          |

Fig. 16 – The wineTest experiment output files



### 4.2 Usage Example of Clustering\_CSOM

The model CSOM is specialised to work on FITS files (Flexible ...). So, we will show an example of experiment on dataset\_training.fits, available for upload on the website <a href="http://dame.dsf.unina.it/beta\_info.html">http://dame.dsf.unina.it/beta\_info.html</a>, under the heading "**Test Resources**".

First of all, you must upload the file on **MLCSOMExp** workspace.

| OAME Application - User: marisag | gg9073@gmail.com         |                                                                                        |                                                           |                 |
|----------------------------------|--------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------|
|                                  | App Manuals -            | Model Manuals 🔻                                                                        | Cloud Services -                                          | Science Cases ▼ |
| RESOURCE MANAGER Uploa           | d in MLCSOMExp Workspace | ×                                                                                      |                                                           |                 |
| Workspace: MLCSOMExp             | Upload from::            | <ul> <li>✓ fits-table ▼</li> <li>Scegli file datasettr</li> <li>Upload File</li> </ul> | raining.fits                                              |                 |
|                                  |                          | Note                                                                                   |                                                           | X               |
|                                  |                          | File U                                                                                 | ubmitted<br>/ploaded: datasettraining.fits.size; 12<br>OK | 09 kb           |

Fig. 17 – Upload Manager: uploading datasettraining.fits file



### 4.2.1 Clustering\_CSOM Train Use Case

Once uploaded input file dataset on workspace, you can create a new experiment, named fitsTrain.

| Experiment Nam | ie:    |  |
|----------------|--------|--|
| fitsTrain      |        |  |
| OK             | Cancol |  |

Fig. 18 – The fitsTrain experiment creation tab

After creation, the new configuration tab is open. Here we select Clustering\_CSOM as couple functionalitymodel of the current experiment and we select also Train use case.

Now we have to configure parameters for experiment. In particular, we will leave empty the not required fields (label without asterisk). The meaning of the parameters for this use case are described on section 3.6.1 of this document.

As alternative, you can click on the Help button to obtain detailed parameter description and their default value directly from the web application.

We give **dataset\_training.fits** as input dataset specifying 5 as number of clusters (see ).

Once you have entered any required field, you can click on **submit** button and wait to the end of experiment.

The content of output files, obtained at the end of experiment (available when the experiment status is "ended") is shown in (). The meaning of the files is described on section 3.4.1.2.



| DAME Application - User: marisagg9073@        | gmail.com                       |                                          |                       |   |
|-----------------------------------------------|---------------------------------|------------------------------------------|-----------------------|---|
|                                               | Manuals 🔻                       | Model Manuals 🔻                          | Cloud Services -      |   |
| RESOURCE MANAGER Experiment Set               | tup 🖾                           |                                          |                       |   |
| Workspace: MLCSOMExp<br>Experiment: fitsTrain | Select a Running<br>Mode: Train | M                                        |                       |   |
| Functionality : Clustering_CSOM               | * = Field is Required           | Input file dataset* :                    | /datasettraining.fits | * |
|                                               |                                 | Number of clusters/neurons (I            | 5                     |   |
|                                               | HELP                            | Number of iterations :                   | [                     | _ |
|                                               |                                 | Diameter :                               |                       | - |
|                                               |                                 | Number of layers :                       |                       |   |
|                                               |                                 | Initial variance (I layer) :             |                       |   |
|                                               |                                 | Final variance (I layer) ;               | ·                     |   |
|                                               |                                 | Initial learning rate (I layer) :        |                       | - |
|                                               |                                 | Final learning rate (I layer) :          |                       |   |
|                                               | N                               | umber of clusters/Neurons (II Layer) :   |                       |   |
|                                               |                                 | Initial variance (II Layer) :            | <u>.</u>              |   |
|                                               |                                 | Final variance (II Layer) :              |                       |   |
|                                               |                                 | Initial learning rate (II Layer) :       | 1                     |   |
|                                               |                                 | Final learning Rate (II Layer) :         | [                     | 1 |
|                                               | ħ                               | lumber of clusters/neurons (III layer) : |                       |   |
|                                               |                                 | Initial variance (III layer) :           |                       |   |
|                                               |                                 | Final Variance (III layer) :             |                       |   |
|                                               |                                 | Initial learning Rate (III layer) :      |                       |   |
|                                               |                                 | Final learning Rate (III layer) :        |                       |   |
|                                               |                                 |                                          | Submit                |   |
|                                               |                                 |                                          |                       | 1 |

Fig. 19 – The fitsTrain experiment configuration tab



| rks<br>CS( | pace:<br>OMExp |           |                                      |         |                                  |              |
|------------|----------------|-----------|--------------------------------------|---------|----------------------------------|--------------|
|            | Experiment     |           | Status                               | Last Ac | cess                             | 🗙 Delete     |
|            |                |           | 1                                    |         |                                  | 2000         |
| 6N         | wineRun        |           | ended                                | 2011-07 | 7-28                             | ×            |
| -53        | wineTest       |           | ended                                | 2011-07 | 7-28                             | ×            |
| nis:       | fitsTrain      |           | ended                                | 2011-0  | 7-28                             | ×            |
|            | Download       | E AddinWS | Tie File                             | Туре    | Description                      |              |
|            |                | <b>1</b>  | CSOM_Train_weights.log               | log     | Output weigths of the net at     | ter training |
|            | B              |           | CSOM_Train_network_configuration.log | log     | Configuration output file of the | he net       |
|            | 8              | 55        | CSOM_Train_status.log                | log     | Status and error of experim      | ent          |
|            | B              | 100       | CSOM_Train_status.log                | xml     | Experiment Configuration F       | ile          |
|            |                |           |                                      |         |                                  |              |
|            |                |           |                                      |         |                                  |              |

**Fig. 20** – The fitsTrain experiment output files

### 4.2.2 Clustering\_CSOM Run Use Case

To excute a run experiment, you must put on input file area (**File Manager**) of the workspace the configuration file obtained as result of a training experiment. So, in this case we add the file named **CSOM\_Train\_Network\_configuration.log**. This because it represent the stored configuration of the network, trained on input dataset file.



|                 |      |                                    |        | Vorkspace:<br>ILCSOMExp                   |
|-----------------|------|------------------------------------|--------|-------------------------------------------|
| t Access 🛛 🗶 De | Туре | 11 File                            | 🗼 Edit | Download                                  |
| 1-07-28         | CSV  | columnSubset_wine.csv              | 1      | 6                                         |
| 1-07-28         | log  | CSOM_Train_network_configuration.k |        | в                                         |
| 1-07-28         | fits | datasettraining fits               | \$     | 6                                         |
| 1-07-28         | log  | GSOM_Train_network_configuration.) | ۵      | B                                         |
| 1-07-28         | CSV  | wine.csv                           | 1      | A                                         |
|                 |      |                                    |        | My Experiments                            |
|                 | CSV  | wine.csv                           |        | My Experiments<br>Vorkspace:<br>NLCSOMExp |

#### Fig. 21 – File Manager: after uploading of CSOM\_Train\_Network\_configuration.log

So far, we proceed to create a new experiment, named fitsRun, to execute clustering.

| New Experimen  | t      | × |
|----------------|--------|---|
| Experiment Nam | ie):   |   |
| fitsRun        |        |   |
| OK             | Cancel |   |

Fig. 22 – The fitsRun experiment creation tab

We will re-use the same input dataset (**datasettraining.fits**) and also select configuration file (**CSOM\_Train\_Network\_configuration.log**). ()

Once you have entered any required field, you can click on submit button and wait to the end of experiment.

The content of output files, obtained at the end of experiment (available when the experiment status is "ended") is shown in the following images. The meaning of the files is described on section 3.4.2.2.



DAME Application - User: marisagg9073@gmail.com App Manuals -Model Manuals -Cloud Services -RESOURCE MANAGER Experiment Setup Select a Running Run Workspace: MLCSOMExp ۷ Experiment: fitsRun Mode: : Select a Clustering\_CSOM ٧ Functionality : Input dataset file': /datasettraining.fits = Field is Required Configuration file of trained net\* : /CSOM\_Train\_network\_c ŵ REL Submit

Fig. 23 – The fitsRun experiment configuration tab

| Y ]          | My Experiment    | 5           |                                    |        |                                  |               |    |    |
|--------------|------------------|-------------|------------------------------------|--------|----------------------------------|---------------|----|----|
| Nork<br>MLC: | space:<br>SOMExp |             |                                    |        |                                  |               |    |    |
|              | Experiment       |             | Status                             | Last A | ccess                            | X Dek         | te |    |
| Þ            | wineTest         |             | ended                              | 2011-0 | 7-28                             | ×             |    |    |
| Þ            | fitsTrain        |             | ended                              | 2011-0 | 7-28                             | ×             |    | 1  |
| ú            | fitsRun          |             | ended                              | 2011-0 | 7-28                             | ×             |    |    |
|              | Download         | AddinWS     | File                               | Туре   | Description                      |               |    | Ϊ. |
|              | 3                | <b>E</b>    | CSOM_Run_output_results.log        | log    | Clustering Results               |               |    |    |
|              | 15               | <b>C</b>    | CSOM_Run_network_configuration.log | log    | Configuration output file of the | he net        |    | H  |
|              | 3                | <b>1</b>    | CSOM_Run_plot_clusters.jpeg        | jpeg   | Plot of clusters                 |               |    |    |
|              | 15               | <b>C</b>    | CSOM_Run_weigths.log               | log    | Output weigths of the net af     | ter clusterin | n  |    |
|              | 5                | <b>i</b> te | CSOM_Run_status.log                | log    | Status and error of experim      | ent           | -  |    |

Fig. 24 – The fitsRun experiment output files

DAMEWARE SOFM Model User Manual



### 4.2.3 Clustering\_CSOM Test Use Case

To execute a test experiment, you must put on input file area (**File Manager**) of the workspace the configuration file obtained as result of a training experiment. So, in this case we use the file **CSOM\_Train\_Network\_configuration.log**, already used on run use case.

So far, we proceed to create a new experiment, named fitsTest, to execute test use case.

| New Experiment  |        | × |
|-----------------|--------|---|
| Experiment Name | e:     |   |
| fitsTest        |        |   |
| OK              | Cancel |   |

Fig. 25 – The fitsTest experiment creation tab

We will re-use the same input dataset (datasettraining.fits) and also select configuration file (CSOM\_Train\_Network\_configuration.log).

| DAME Application - User: marisagg9073@gr                                         | nail.com                      |                                                               |                                                |       |
|----------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|------------------------------------------------|-------|
| App I                                                                            | Manuals 🔻                     | Model Manuals 🔻                                               | Cloud Services •                               | Scier |
| RESOURCE MANAGER Experiment Setu<br>Workspace: MLCSOMExp<br>Experiment: fitsTest | P El Select a Running Mode: : | t 🛩                                                           |                                                |       |
| Select a Clustering_CSOM                                                         | * = Field Is Required         | Input file dataset* :<br>Configuration file of trained net* : | /datasettraining.fits<br>/CSOM_Train_network_c | *     |
|                                                                                  | HELP                          | Splitting percentage of input dataset :                       | Submit                                         |       |

Fig. 26 – The fitsTest experiment configuration tab



Once you have entered any required field, you can click on **submit** button and wait to the end of experiment.

The content of output files, obtained at the end of experiment (available when the experiment status is "ended") is shown in the following images. The meaning of the files is described on section 3.4.3.23.3.2

| LC | soMExp     |         |                                     |         |                                         |       |
|----|------------|---------|-------------------------------------|---------|-----------------------------------------|-------|
|    | Experiment |         | Status                              | Last Ac | ccess 🗙 D                               | elete |
| Þ  | fitsRun    |         | ended                               | 2011-0  | 7-28                                    | 1     |
| 2  | fitsTest   |         | ended                               | 2011-0  | 7-28                                    | 8     |
|    | Download   | AddinWS | E Fie                               | Туре    | Description                             | I     |
|    | <b>E</b>   | 10      | CSOM_Test_output_results_II_dataset | log     | Output result on second subset          |       |
|    | 8          | 10      | CSOM_Test_overlap_dataset.dat       | dat     | File dataset of overlap                 |       |
|    | <b>E</b>   | 10      | CSOM_Test_weigths_II_dataset.log    | log     | Output weigths after the train on seco  | XIX   |
|    | 6          | 10      | CSOM_Test_weigths_I_dataset.log     | log     | Output weigths after the train on first | ธน    |
|    | <b></b>    |         | CSOM_Test_network_configuration.log | log     | Configuration output file of the net    |       |

Fig. 27 – The fitsTest experiment output files



### 5 Appendix – References and Acronyms

### **Abbreviations & Acronyms**

| A & A    | Meaning                                               | A & A | Meaning                                          |
|----------|-------------------------------------------------------|-------|--------------------------------------------------|
| AI       | Artificial Intelligence                               | KDD   | Knowledge Discovery in Databases                 |
| ANN      | Artificial Neural Network                             | IEEE  | Institute of Electrical and Electronic Engineers |
| ARFF     | Attribute Relation File Format                        | INAF  | Istituto Nazionale di Astrofisica                |
| ASCII    | American Standard Code for<br>Information Interchange | JPEG  | Joint Photographic Experts Group                 |
| ВоК      | Base of Knowledge                                     | LAR   | Layered Application Architecture                 |
| BP       | Back Propagation                                      | MDS   | Massive Data Sets                                |
| BLL      | Business Logic Layer                                  | MLC   | Multi Layer Clustering                           |
| CE       | Cross Entropy                                         | MLP   | Multi Layer Perceptron                           |
| CSOM     | Clustering SOM                                        | MSE   | Mean Square Error                                |
| CSV      | Comma Separated Values                                | NN    | Neural Network                                   |
| DAL      | Data Access Layer                                     | OAC   | Osservatorio Astronomico di<br>Capodimonte       |
| DAME     | DAta Mining & Exploration                             | PC    | Personal Computer                                |
| DAMEWARE | DAME Web Application REsource                         | PI    | Principal Investigator                           |
| DAPL     | Data Access & Process Layer                           | REDB  | Registry & Database                              |
| DL       | Data Layer                                            | RIA   | Rich Internet Application                        |
| DM       | Data Mining                                           | SDSS  | Sloan Digital Sky Survey                         |
| DMM      | Data Mining Model                                     | SL    | Service Layer                                    |
| DMS      | Data Mining Suite                                     | SOFM  | Self Organizing Feature Map                      |
| FITS     | Flexible Image Transport System                       | SOM   | Self Organizing Map                              |
| FL       | Frontend Layer                                        | SW    | Software                                         |
| FW       | FrameWork                                             | UI    | User Interface                                   |
| GRID     | Global Resource Information Database                  | URI   | Uniform Resource Indicator                       |
| GSOM     | Gated SOM                                             | VO    | Virtual Observatory                              |
| GUI      | Graphical User Interface                              | XML   | eXtensible Markup Language                       |
| HW       | Hardware                                              |       |                                                  |

#### Tab. 3 – Abbreviations and acronyms



### **Reference & Applicable Documents**

| ID  | Title / Code                                                                                                                                                  | Author                                          | Date |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------|
| R1  | "The Use of Multiple Measurements in Taxonomic                                                                                                                | Ronald Fisher                                   | 1936 |
|     | Problems", in Annals of Eugenics, 7, p. 179188                                                                                                                |                                                 |      |
| R2  | <i>Neural Networks for Pattern Recognition.</i> Oxford University Press, GB                                                                                   | Bishop, C. M.                                   | 1995 |
| R3  | Neural Computation                                                                                                                                            | Bishop, C. M., Svensen, M. & Williams, C. K. I. | 1998 |
| R4  | Data Mining Introductory and Advanced Topics, Prentice-<br>Hall                                                                                               | Dunham, M.                                      | 2002 |
| R5  | Self-organized formation of topologically correct feature<br>maps.<br><i>Biological Cybernetics</i> , 43:-69                                                  | T. Kohonen                                      | 1982 |
| R6  | How patterned neural connections can be set up by self-<br>organization.<br>In <i>Proceedings of the Royal Society London</i> , volume<br>B194, pages 431-445 | D. J. Willshaw and C. von der Malsburg          | 1976 |
| R7  | Growing cell structures - a self-organizing network for<br>unsupervised and supervised learning.<br><i>Neural Networks</i> , 7(9):-1460                       | B. Fritzke                                      | 1994 |
| R8  | <i>The Fourth Paradigm.</i> Microsoft research, Redmond Washington, USA                                                                                       | Hey, T. et al.                                  | 2009 |
| R9  | Artificial Intelligence, A modern Approach. Second ed. (Prentice Hall)                                                                                        | Russell, S., Norvig, P.                         | 2003 |
| R10 | Neural Networks - A comprehensive Foundation, Second Edition, Prentice Hall                                                                                   | Haykin, S.,                                     | 1999 |
| R11 | A practical application of simulated annealing to clustering. Pattern Recognition 25(4): 401-412                                                              | Donald E. Brown D.E., Huntley, C. L.:           | 1991 |

#### **Tab. 4 – Reference Documents**



| ID  | Title / Code                                           | Author              | Date       |
|-----|--------------------------------------------------------|---------------------|------------|
| A1  | SuiteDesign_VONEURAL-PDD-NA-0001-Rel2.0                | DAME Working Group  | 15/10/2008 |
| A2  | project_plan_VONEURAL-PLA-NA-0001-Rel2.0               | Brescia             | 19/02/2008 |
| A3  | statement_of_work_VONEURAL-SOW-NA-0001-Rel1.0          | Brescia             | 30/05/2007 |
| A4  | MLP_user_manual_VONEURAL-MAN-NA-0001-Rel1.0            | DAME Working Group  | 12/10/2007 |
| A5  | pipeline_test_VONEURAL-PRO-NA-0001-Rel.1.0             | D'Abrusco           | 17/07/2007 |
| A6  | scientific_example_VONEURAL-PRO-NA-0002-Rel.1.1        | D'Abrusco/Cavuoti   | 06/10/2007 |
| A7  | frontend_VONEURAL-SDD-NA-0004-Rel1.4                   | Manna               | 18/03/2009 |
| A8  | FW_VONEURAL-SDD-NA-0005-Rel2.0                         | Fiore               | 14/04/2010 |
| A9  | REDB_VONEURAL-SDD-NA-0006-Rel1.5                       | Nocella             | 29/03/2010 |
| A10 | driver_VONEURAL-SDD-NA-0007-Rel0.6                     | d'Angelo            | 03/06/2009 |
| A11 | dm-model_VONEURAL-SDD-NA-0008-Rel2.0                   | Cavuoti/Di Guido    | 22/03/2010 |
| A12 | ConfusionMatrixLib_VONEURAL-SPE-NA-0001-Rel1.0         | Cavuoti             | 07/07/2007 |
| A13 | softmax_entropy_VONEURAL-SPE-NA-0004-Rel1.0            | Skordovski          | 02/10/2007 |
| A14 | VONeuralMLP2.0_VONEURAL-SPE-NA-0007-Rel1.0             | Skordovski          | 20/02/2008 |
| A15 | dm_model_VONEURAL-SRS-NA-0005-Rel0.4                   | Cavuoti             | 05/01/2009 |
| A16 | FANN_MLP_VONEURAL-TRE-NA-0011-Rel1.0                   | Skordovski, Laurino | 30/11/2008 |
| A17 | DMPlugins_DAME-TRE-NA-0016-Rel0.3                      | Di Guido, Brescia   | 14/04/2010 |
| A18 | BetaRelease_ReferenceGuide_DAME-MAN-NA-0009-<br>Rel1.0 | Brescia             | 28/10/2010 |
| A19 | BetaRelease_GUI_UserManual_DAME-MAN-NA-0010-<br>Rel1.0 | Brescia             | 03/12/2010 |
| A20 | MLCSOM_VONEURAL-SDD-NA-0017-Rel1.0                     | Guglielmo           | 29/06/2011 |

**Tab. 5 – Applicable Documents** 



## \_0Oo\_\_

DAMEWARE SOFM Model User Manual





DAME Program "we make science discovery happen"



DAMEWARE SOFM Model User Manual