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1

Introduction

A paradigm shift is now taking place in astronomy and space science. Astronomy has

suddenly become an immensely data-rich field, with numerous digital sky surveys across a

range of wavelengths, with many terabytes of pixels and with billions of detected sources,

often with tens of measured parameters for each object. Conservative predictions lead

to expect that in less then five years, much more than 10 TB of data will be acquired

worldwide every night and, due to the ongoing efforts for the implementation of the In-

ternational Virtual Observatory (IVO)1, most of these data will become available to the

astronomical community worldwide via the network [22]. These huge and heterogeneous

data sets will open possibilities which so far were just unthinkable, but it is already clear

that their full and effective scientific exploitation will require the implementation of auto-

matic tools capable to perform a large fraction of the routine data reduction, data mining

and data analysis work, posing considerable technical and even deeper, methodological

challenges, since traditional astronomical data analysis methods are inadequate to cope

with this sudden increase in the data volume and especially in the data complexity (ten or

hundreds of dimensions of the parameter space) [23]. These challenges, therefore, require

strong interdisciplinary activities. Astronomers, for example, already begun to collaborate

with statisticians [37], [52]. Non parametric statistical methods, in fact, have great poten-

tial for astrophysical data analysis. They provide a way to make inference about complex

structures from massive data sets without overlay restrictive assumptions or intractable

computations. However, these challenges especially require substantive collaborations and

partnerships between researchers in astronomy and computer science, promising to bring

relevant advances to both fields. In the last few years, indeed, there has been an increased

interest toward astronomical applications of machine learning methodologies, and Neural

Networks in particular, even though, in spite of a great variety of problems addressed, most

astronomical applications still make use of an handful of neural models only [62],[1],[38].

This thesis is devoted to this fascinating field, carrying on the works [47], [49], [48] started

a couple of years ago, and focusing on unsupervised methodologies for probability density

estimation.

1From the fusion of the European Astrophysical Virtual Observatory (AVO) and of the American

National Astrophysical Observatory (NVO), http://www.ivoa.net/.
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In the field of pattern recognition any method that incorporates information from training

samples employs learning. Learning refers to some form of algorithm for reducing the

error on a set of training data. Learning comes in several general forms, and mainly as:

a) supervised learning, in which a ”teacher” provides a category label or cost for each

pattern in a training set, and seeks to reduce the sum of the costs for these patterns;

b) unsupervised learning, where there is not any explicit teacher, and the systems form

clusters or natural groupings of the input patterns. There are at least five main reasons

to be interested in unsupervised procedures:

1. collecting and labelling a large set of sample patterns, as it would be required by the

implementation of a training set, can be surprisingly costly. If a learning algorithm

can be crudely designed on a small set of labelled samples, and then tuned up by

allowing it to run without supervision on a large, unlabelled set, much time and

trouble can be saved;

2. one might wish to proceed in the reverse direction: training with a large amount of

(less expensive) unlabelled data, and only then use supervision to label the groupings

found. This may be appropriate for large data mining applications;

3. in many applications, the characteristics of the patterns can change slowly with

time. If these changes can be tracked by a learning system in an unsupervised

mode, improved performance can be achieved;

4. we can use unsupervised methods to find features that will be useful for the catego-

rization;

5. in the early stages of investigation it may be valuable to perform exploratory data

analysis and thereby gain some insights into the nature or structure of the data. The

discovery of distinct subclasses, clusters or groups of patterns whose members are

more similar to each other than they are to other patterns, significantly alters our

approach to designing the learning system.

Many pattern recognition tasks, such as classification, regression, novelty detection can

be viewed in terms of probability density estimation. A powerful approach to probabilis-

tic modelling is to represent the observed variables in terms of a number of hidden, or

latent, variables. By defining a joint distribution over visible and latent variables, the
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corresponding distribution of the observed variables is then obtained by marginalization.

This allows relatively complex distributions to be expressed in terms of more tractable

joint distributions over the expanded variable space. Such models may be employed for a

number of tasks and there are several successful applications they are involved in [9],[14].

Among all, two of the most successful and well developed latent variable models are the

Generative Topographic Mapping [6] and the Probabilistic Principal Surfaces [18]. These

models are very appealing for the flexibility they exhibit in a wide range of tasks such as

density modelling, classification and data visualization, which are crucial activities for any

astronomical data mining process. On the other hand, so far their effectiveness has been

tested only on synthetic data sets or on a limited number of complex data sets. Aim of this

thesis is to prove their usefulness in the context of scientific astronomical data for density

modelling, classification as well as data visualization purposes. The thesis is organized as

follows. Chapter 1 provides the general concepts of Knowledge Discovery and Data Min-

ing techniques, and gives details about astronomical data types and data mining tasks in

astronomical scientific data analysis. Chapter 2 introduces latent variable models describ-

ing in detail the Generative Topographic Mapping and Probabilistic Principal Surfaces

models. The models are then evaluated towards classification of complex data. Chapter 3

discusses how to enhance the classification performance of the models by introducing the

concept of ensemble methods in machine learning. Afterwards, two combining schemes are

proposed and discussed on the basis of experimental results. Chapter 4 addresses the issue

of data visualization showing the possibilities offered, in particular, by Probabilistic Prin-

cipal Surfaces. Finally, concluding remarks and future research directions are provided in

Chapter 5.



Chapter 1

Astronomical Data Mining

Across a wide variety of fields, data are being collected and accumulated at a dramatic

pace. There is an urgent need for a new generation of computational theories and tools

to assist humans in extracting useful information (knowledge) from the rapidly growing

volumes of digital data. These theories and tools belong to the field of Knowledge Dis-

covery in Databases (KDD). At an abstract level, the KDD field is concerned with the

development of methods and techniques aimed at extracting meaning out of data. The

basic problem addressed by the KDD process is one of mapping low-level data (which are

typically too voluminous to be understood and digested easily) into other forms that might

be either more compact (for example, a descriptive approximation or model of the process

that generated the data), or more useful (for example, a predictive model for estimating

the value for future cases). At the core of the process there is the application of specific

data mining methods for pattern discovery and extraction [29],[28],[32].

1.1 Why do we need KDD?

The traditional method of tuning data into knowledge, relies on manual analysis and

interpretation. Be it science, marketing, finance or any other field, the classical approach

to data analysis relies fundamentally on one or more analysts becoming intimately familiar

with the data and serving as an interface between the data and the users and products.

For these (and many other) applications, this type of manual probing of a data set is

slow, expensive, and highly subjective. In fact, as data volumes grow dramatically, this

type of manual data analysis is becoming unfeasible in many domains. Databases are

increasing in size in two ways: (1) the number N of records or objects in the database
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and (2) the number d of fields or attributes of an object. Databases containing the order

of N = 109 objects are becoming increasingly common also in astronomy. Who could be

expected to digest millions of records, each having hundreds of fields? Since computers

have enabled humans to gather more data than what they can digest, it is necessary to

rely on computational techniques capable to unearth meaningful patterns and structures

from massive volumes of data [29].

1.2 The KDD Process

Following the definition given in [31], the KDD process may be defined as: The non

trivial process of identifying valid, novel, potentially useful, and ultimately understandable

patterns in data.

Data comprise a set of facts (e.g, cases in a database), and pattern is an expression in

some language describing a subset of the data (or a model applicable to that subset). The

term process implies there are many steps involving data preparation, search for patterns,

knowledge evaluation, and refinement, all repeated in multiple iterations. The process is

assumed to be non trivial in that it goes beyond computing closed-form quantities; that

is, it must involve search for structure, models, patterns, or parameters. The discovered

patterns should be valid for new data with some degree of certainty. We also want patterns

to be novel (at least to the system, and preferably to the user) and potentially useful for

the user or task. Finally, the patterns should be understandable if not immediately, at

least after some postprocessing. This definition implies that we can define quantitative

measures for evaluating extracted patterns. In many cases, it is possible to define a

measure of certainty (e.g., estimated classification accuracy) or utility. Notions such as

novelty and understandability, can be estimated through simplicity. An important notion,

called interestingness, is usually taken as an overall measure of pattern value, combining

validity, novelty, usefulness and simplicity. The interestingness function can be explicitly

defined or can be manifested implicitly through an ordering placed by the KDD system on

the discovered patterns or models. Data mining is a step in the KDD process consisting

of an enumeration of patterns (or models) over the data, subject to some acceptable

computational-efficiency limitations. Since the patterns enumerable over any finite data

set are potentially infinite, and because the enumeration of patterns involves some form of
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Figure 1.1: Outline of the KDD process.

search in a large space, computational constraints place severe limits on the subspace that

can be explored by a data mining algorithm. The KDD process is outlined in figure 1.1.

The KDD process is interactive (with many decisions made by the user) and iterative,

involving several steps, which can be summarized as:

1. Learning the application domain: includes relevant prior knowledge and the goals of

the application;

2. Creating a target data set: includes selecting a data set or focusing on a subset of

variables or data samples on which discovery is to be performed;

3. Data cleaning and preprocessing: includes basic operations, such as removing the

noise or outliers if appropriate, collecting the necessary information to model or

account for noise, deciding on strategies for handling missing data fields, and ac-

counting for time sequence information and known changes;

4. Data reduction and projection: includes finding useful features to represent the data,

depending on the goal of the task, and using dimensionality reduction or transfor-

mation methods to reduce the effective number of variables under consideration or

to find invariant representation for the data;
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5. Choosing the function of data mining: includes deciding the purpose of the model

derived by the data mining algorithm (e.g., summarization, classification, regression

and clustering);

6. Choosing the data mining algorithm: includes selecting methods to be used for

searching for patterns in the data, such as deciding which models and parameters

may be appropriate and matching a particular data mining method with the overall

criteria of the KDD process (e.g., the user may be more interested in understanding

the model than in its predictive capabilities);

7. Data mining: includes searching for patterns of interest in a particular representa-

tional form or a set of such representations, including classification rules or trees,

regression, clustering, sequence modelling, dependency and line analysis;

8. Interpretation: includes interpreting the discovered patterns and possibly returning

to any of the previous steps, as well as possible visualization of the extracted patterns,

removing redundant or irrelevant patterns, and translating the useful ones into terms

understandable by the users;

9. Using discovered knowledge: includes incorporating this knowledge into the perfor-

mance system, taking action based on the knowledge, or simply documenting it and

reporting it to interested parties, as well as checking for, and resolving potential

conflicts with previously believed (or extracted) knowledge.

We now focus on the data mining component, which has received by far the most attention

in literature, nevertheless, all the steps of a KDD process are equally important for the

successful application of KDD to practical cases.

1.3 Data Mining Methods

Data Mining involves fitting models to, or determining patterns of data. The fitted mod-

els play the role of inferred knowledge. A wide variety of data mining algorithms are

described in literature, from the field of statistics, pattern recognition, machine learning

and databases. From a very general viewpoint, data mining techniques can be divided

into five classes of methods.
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1.3.1 Predictive Modelling

The goal is to predict the value of some fields in a database based on the values of other

fields. If the field being predicted is a numeric (continuous) variable (such as a phys-

ical measurement) then the prediction problem is a regression problem. If the field is

categorical, then it is a classification problem. There is a wide variety of techniques for

classification and regression [26]. The problem in general is defined as determining the

most likely value of the variable being predicted, given the other fields (inputs), training

data (in which the target variable is given for each observation), and a set of assump-

tions representing one’s prior knowledge of the problem. Linear regression combined with

non-linear transformation on inputs could be used to solve a wide range of problems.

Transformations of the inputs space are typically a difficult problem requiring knowledge

of the problem. In classification problems this type of transformation is often referred to

as ”feature extraction”. In classification the basic goal is to predict the most likely state

of a categorical variable (the class). This is fundamentally a density estimation problem.

If one can estimate the probability that the class C = c, given the other field X = x for

some feature vector x, then one could derive this probability from the joint density on C

and X. However, this joint density is rarely known and very difficult to estimate. Hence

one has to study to various estimation techniques. In Chapter 2 and 3 we shall focus on

latent variable models for density estimation.

1.3.2 Clustering

Clustering does not specify fields to be predicted but targets separating the data items

into subsets that are similar to each other. Since we do not know the number of desired

”clusters”, clustering algorithms typically employ a two stage search: an outer loop over

possible cluster numbers and an inner loop to fit the best possible clustering for a given

number of clusters. Given the number K of clusters, clustering methods can be divided

into three classes:

1. Metric-distance based methods: a distance measure is defined and the objective

becomes finding the best K-way partition such as cases in each block of the partition

are closer to each other (or centroid) than to cases in other clusters.
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2. Model-based methods: a model is assumed for each of the clusters and the idea is to

find the best fit of that model to each cluster. One way to score the fit of a model

to a cluster is via likelihood.

3. Partition-based methods: basically enumerate various partitions and then score them

by some criterion.

1.3.3 Data Summarization

Sometimes the goal is to extract compact patterns that describe subsets of the data. There

are two classes of methods which represent horizontal (cases) or vertical (fields) slices of

the data. In the former, one would like to produce summaries of subsets: e.g. producing

sufficient statistics, or logical conditions that hold for subsets. In the latter case, one

would like to predict relations between fields. The goal, for this class of methods is to

find relations between fields. One classical method used in literature is called association

rules. Associations are rules that state that specific combinations of values occur with

other combinations of values with a forecasted frequency and certainty.

1.3.4 Dependency Modelling

Insight into data is often gained by deriving some causal structure within the data. Models

of causality can be probabilistic (as in deriving some statement about the probability

distribution governing the data) or they can be deterministic as in deriving functional

dependencies between fields in the data. Density estimation methods in general fall under

this category.

1.3.5 Change and Deviation Detection

These methods account for sequence information, be it time-series or some other ordering.

The distinguishing feature of this class of methods is that ordering of observations is

important and must be accounted for.
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1.4 The Nature of Astronomical Data

Let us now give some details on the basic features of astronomical data. By its inher-

ent nature, astronomical data are extremely heterogeneous, in both format and content.

Astronomers are now exploring all regions of the electromagnetic spectrum, from gamma-

rays through radio wavelengths. With the advent of new facilities, previously unexplored

domains in the gravitational spectrum will soon be available. Computational advances

have enabled detailed physical simulations which rival the largest observational data sets

in terms of complexity. In order to truly understand our cosmos, we need to assimilate

all of this data, each presenting its own physical view of the Universe, and requiring its

own technology. Despite all of this heterogeneity, however, astronomical data and its

subsequent analysis can be broadly classified into five domains. In order to clarify later

discussions, we briefly discuss these domains and define some key astrophysical concepts.

• Imaging data is the fundamental constituent of astronomical observations, captur-

ing a two-dimensional spatial picture of the Universe within a narrow wavelength

region at a particular epoch or instant of time. Astrophysical pictures are generally

taken through a specific filter, or with an instrument covering a limited range of the

electromagnetic spectrum, which defines the wavelength region of the observation.

Astronomical images (see figure 1.2, as an example)[12] can be acquired directly, e.g.,

with imaging arrays such as CCDs1, or synthesized from interferometric observations

as it is customarily done in radio astronomy.

• Catalogs are generated by processing the imaging data. Each detected source can

have a large number of measured parameters, including coordinates, various flux

quantities, morphological information, and areal extant. In order to be detected, a

source must stand out from the background noise (which can be either cosmic or

instrumental in origin). The significance of a detection is generally quoted in terms

of σ, which is a relative measure of the strength of the source signal relative to the

dispersion in the background noise. We note that the source detection process is

generally limited both in terms of the flux (total signal over the background) and

surface brightness (intensity contrast relative to the background). Coordinates are
1Charge Coupled Device, a digital photon counting device that is superior to photographic images in

both the linearity of their response and quantum efficiency
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Figure 1.2: A multi-wavelength view of the Crab nebula.

used to specify the location of astronomical sources in the sky. While this might

seem obvious, the fact that we are sited in a non-stationary reference frame (e.g, the

earth rotates, revolves around the sun, and the sun revolves around the center of

our Galaxy) complicates the quantification of a coordinate location. In addition, the

Earth’s polar axis precesses, introducing a further complication. As a result, coor-

dinate systems, like Equatorial coordinates, must be fixed at a particular instant of

time (or epoch), to which the actual observations, which are made at different times,

can be transformed. One final caveat is that nearby objects (e.g., solar system bodies

or nearby stars) move on measurable timescales. Thus the date or precise time of

a given observation must also be recorded. Flux quantities determine the amount

of energy that is being received from a particular source. Since different physical

processes emit radiation at different wavelengths, most astronomical images are ob-

tained through specific filters. The specific filter(s) used varies, depending on the

primary purpose of the observations and the type of recording device. Historically,

photographic surveys used filters which were well matched to the photographic ma-

terial, and have names like O, E, J, F, and N. Modern digital detectors have different

characteristics (including much higher sensitivity), and work primarily with different
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filter systems,which have names like U, B, V, R and I, or g, r, i, in the optical, and J,

H, K, L, M and N in the near-infrared. In the optical and infrared regimes, the flux

is measured in units of magnitudes (which is essentially a logarithmic re-scaling of

the measured flux) with one magnitude equivalent to −4 decibels. The zeropoint of

the magnitude scale is determined by the star Vega, and thus all flux measurements

are relative to the absolute flux measurement of this star. Measured flux values in

a particular filter are indicated as B= 23 magnitudes, which means the measured B

band flux is 100.4× 23 times fainter than the star Vega in this band.

• Spectroscopy, Polarization, and other follow-up measurements provide detailed phys-

ical quantification of the target systems, including distance information (e.g., red-

shift, denoted by z for extragalactic objects), chemical composition, and measure-

ments of the physical (e.g., electromagnetic, or gravitational) fields present at the

source.

• Studying the time domain provides important insights into the nature of the Uni-

verse, by identifying moving objects (near -Earth objects and comets), variable

sources (pulsating stars), or transient objects (supernovae, and gamma ray bursts).

Studies in time domain either require multiple epoch observations of fields (which is

possible in the overlap regions of surveys), or dedicated synoptic surveys. In either

case, the data volume, and thus the difficulty in handling and analyzing the resulting

data, increase significantly.

1.4.1 Telescopio Nazionale Galileo Data

The Telescopio Nazionale Galileo (TNG), with a primary mirror of 3.58m, is the national

facility of the Italian astronomical community2, and is located at the Canary Island of

La Palma, near the top of the Roque de los Muchachos, at an altitude of 2358m. It is

operated by the Centro Galileo Galilei (CGG) which was created in 1997 by the Consorzio

Nazionale per l’Astronomia e l’Astrofisica (CNAA). In 2002 it became a part of the Italian

National Institute of Astrophysics (INAF ) which is ensuring its financial support.

The data collected at the TNG are stored together with the telemetry data monitoring

the weather condition, the dome and the telescope operational parameters into the Long
2http://www.tng.iac.es for more details



Chapter 1. Astronomical Data Mining 13

Term Archive (TNG-LTA). The goal of the present work is to find whether there is any

correlation among operational parameters and the quality of the final image. The existence

of a such a correlation would play a double role:

1. it would allow to put a quality flag on the scientific exposures;

2. it would allow to asses the quality of the final image while the exposure is being

acquired thus avoiding wastes of precious observing time.

1.5 Data Mining, Knowledge Discovery and Astronomical

Data

Crucial to maximize the knowledge extracted from the ever-growing quantities of astro-

nomical data, is the successful application of data mining and knowledge discovery tech-

niques. This effort is a step towards the development of the next generation of science

analysis tools that will redefine the way scientists interact and extract information from

large data sets. In our specific case, the new digital sky survey archives, which are driv-

ing the need for a virtual observatory. Such techniques are rather general, and will find

several applications outside astronomy and space science. In fact, these techniques can

find application in virtually every data-intensive field. Examples of particular studies may

include:

Classification methods In order to categorize objects or cluster of objects of interest.

Do they objectively found groupings of data vectors correspond to physically mean-

ingful, distinct types of objects? Are the known types recovered, and are there

new ones? Can we refine astronomical classifications of object types in an objective

manner?

Unsupervised methods Clustering techniques, mixture models to find groups of inter-

est, to come up with descriptive summaries, and to build density estimates for large

data set. How many distinct type of objects are present in the data, in some statis-

tical and objective sense? This would be an effective way to group data for specific

studies, e.g., some users would want only stars, others only galaxies, etc. They can

be useful even to detect rare, anomalous, or somehow unusual objects, e.g., outliers
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in the parameter space, to be selected for further investigation. This would include

both known but rare classes of objects, e.g, brown dwarf, high redshift quasars, and

possibly new and previously unrecognized types of objects and phenomena.

Visualization Effective new data visualization and presentation techniques, which can

convey most of the multidimensional information in a way more easily grasped by

a human user. Effective and powerful data visualization would be an essential part

of any virtual observatory. The human eye and brain are remarkably powerful in

pattern recognition, and selection of interesting features. The technical challenge

here is posed by the sheer size of the data sets (both in the image and catalog

domain), and the need to move through them quickly and to interact with them

”on the fly”. Here we focus on displaying the information only in the parameter

spaces defined in the catalog domain, where each object may be represented by a

data vector in tens or even hundreds of dimensions, but only a few can be displayed

at any given time (e.g., 3 spatial dimensions, color, shape, and intensity for displayed

objects).

The above examples are moving beyond merely providing assistance with handling of huge

data set: these software tools may become capable of independent or cooperative discov-

eries, and their application may greatly enhance the productivity of practicing scientists.
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Probability Density Estimation

In this chapter latent variable models for density estimation are introduced. After a brief

introduction on density modelling in general we formally define latent variable models and

describe Generative Topographic Mapping and Probabilistic Principal Surfaces.

2.1 Density Modelling

One of the central problem in pattern recognition is that of density estimation, i.e., the

construction of a model of a probability distribution given a finite sample of data drawn

from that distribution. For now on we consider the problem of modelling the distribution

of a set of continuous variables t1, . . . , tD which are denoted collectively by the vector t.

A standard approach to the problem of density estimation involves parametric models in

which a specific form for the density is proposed which contains a number of adaptive

parameters. Values for these parameters are then determined from an observed data set

T = {t1, ..., tN} consisting of N data vectors. The most widely used parametric model is

the normal, or Gaussian, distribution given by

p(t|µ,Σ) = (2π)−
D
2 |Σ|− 1

2 exp

{
−1

2
(t− µ)Σ−1(t− µ)T

}
(2.1)

where µ is the mean, Σ the covariance matrix, and |Σ| denotes the determinant of Σ. One

technique for setting the values of these parameters is that of maximum likelihood which

involves consideration of the log probability of the observed data set given the parameters,

i.e.

L(µ,Σ) = ln p(T |µ,Σ) =
N∑

n=1

ln p(tn|µ,Σ) (2.2)
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in which it is assumed that the data vectors tn are drawn independently from the distri-

bution. When viewed as a function of µ and Σ, the quantity p(T |µ,Σ) is called likelihood

function. Maximization of the likelihood (or log likelihood) with respect to µ and Σ leads

to the set of parameter values which are most likely to have given rise to the observed

data set. For the normal distribution (2.1) the log likelihood (2.2) can be maximized an-

alytically, leading to the result that the maximum likelihood solutions µ̂ and Σ̂ are given

by

µ̂ =
1
N

N∑

n=1

tn (2.3)

Σ̂ =
1
N

N∑

n=1

(tn − µ̂)(tn − µ̂)T (2.4)

corresponding to the sample mean and sample covariance, respectively.

While the simple normal distribution (2.1) is widely used, it suffers from some significant

limitations. In particular, it can often prove to be too flexible in that the number of

independent parameters in the model can be excessive. This problem is addressed through

the introduction of continuous latent variables. On the other hand, the normal distribution

can also be insufficiently flexible since it can only represent uni-modal distributions. A

more general family of distributions can be obtained by considering mixtures of Gaussians,

corresponding to the introduction of a discrete latent variable.

Before starting with the discussion concerning with the latent variable models, it is worth

stressing that to model the probability densities from finite data sets in high dimensionality

spaces is an extremely complex task which can be sketched by the following example: let

p(t) be a probability density function in D dimensions, which is function only of radius

r = ‖t‖ and which has a Gaussian form

p(t) =
1

(2πσ1/2)
exp

(
−‖t‖

2

2σ2

)
. (2.5)

The probability mass inside a thin shell of radius r and thickness ε is given (by expressing

variables from Cartesian to polar coordinates) by ρ(r)ε where

ρ(r) =
SDrD−1

(2πσ2)1/2
exp

(
− r2

2σ2

)

and SD is the surface area of a unit sphere in D dimensions. Moreover, ρ(r) has a single

maximum which, for large values of D, is located at r̂ ' √
Dσ. Now, by considering
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ρ(r̂ + ε), where ε << r̂, we have that for large D

ρ(r̂ + ε) = ρ(r̂)exp

(
− 3ε2

2σ2

)
,

which means that ρ(r) decays exponentially away from its maximum at r̂ with length scale

σ. Since σ << r̂ at large D, we see that most of the probability mass is concentrated

in a thin shell at large radius. By contrast, the value of the probability density itself is

exp(D/2) times bigger at the origin than at the radius r̂, as can be seen by comparing

p(t) in (2.5) for ‖t‖ = 0 with p(t) for ‖t‖2 = r̂2 = σ2D. Thus, the bulk of the probability

mass is located in a different part of space from the region of high probability density.

With finite data sets, there may be few, if any, data points associated with the region of

high probability density near the origin, this is consequence of the well known curse of

dimensionality [4].

2.1.1 Latent Variable Models

The goal of a latent variable model is to express the distribution p(t) of the variable

t = (t1, . . . , tD) in terms of a smaller number of latent variable x = (x1, . . . , xQ) where

Q < D. This is achieved by first decomposing the joint distribution p(t,x) into the

product of the marginal distribution p(x) of the latent variables and the conditional dis-

tribution p(t|x) of the data variables given the latent variables. It is convenient to express

the conditional distribution as a factorization over the data variables, so that the joint

distribution becomes

p(t,x) = p(x)p(t|x) = p(x)
D∏

d=1

p(td|x). (2.6)

Next the conditional distribution p(t|x) is expressed in terms of a mapping from latent

variables to data variables, so that

t = y(x;w) + u (2.7)

where y(x;w) is a function of the latent variable x with parameters w, and u is an

x-independent noise process. If the components of u are uncorrelated, the conditional

distribution for t will factorize as in (2.6). Geometrically the function y(x;w) defines a

manifold in data space given by the image of the latent space, as shown in figure 2.1.
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Figure 2.1: The non-linear function y(x;W) defines a manifold S embedded in data

space given by the image of the latent space under the mapping x → y.

The definition of the latent variable model is completed by specifying the distribution

p(u), the mapping y(x;w), and the marginal distribution p(x). The type of the map-

ping y(x;w) determines the particular latent variable model. The desired model for the

distribution p(t) of the data is obtained by marginalizing over the latent variables

p(t) =
∫

p(t|x)p(x)dx. (2.8)

This integration will, in general, be analytically intractable except for specific forms of the

distributions p(t|x) and p(x).

2.1.2 Mixture Distributions

The density models we have considered so far are clearly very limited in terms of the

variety of probability distributions which they can model since they can only represent

distributions which are uni-modal. However, they can form the basis of a very general

framework for density modelling, obtained by considering mixtures of M simpler para-

metric distributions. This leads to density models of the form

p(t) =
M∑

m=1

πmp(t|m) (2.9)
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in which the p(t|m) represent the individual components of the mixture and might consist,

for example, of normal distributions of the form (2.1) each one with its own independent

mean µm and covariance matrix Σm. The parameters πm in (2.9) are called mixing

coefficients and satisfy the requirements 0 ≤ πm ≤ 1 and
∑

m πm = 1 so that p(t) will be

non-negative and will integrate to unity (assuming the individual component densities also

have these properties). The mixing coefficients can be interpreted as prior probabilities

for the values of the label m. For a given data point tn we can then use Bayes’ theorem

to evaluate the corresponding posterior probabilities, given by

Rnm ≡ p(m|tn) =
πmp(tn|m)∑

j πjp(tn|j) . (2.10)

The value of p(m|tn) can be regarded as the responsibility which component m takes for

explaining data point tn. The log likelihood for the mixture distribution takes the form

L({πm, µm,Σm}) =
N∑

n=1

ln

{
M∑

m=1

πmp(tn|m)

}
. (2.11)

Maximization of this log likelihood is more complex then for a single component due to

the presence of the sum inside the logarithm. An elegant and powerful technique for

performing this optimization is the expectation-maximization (EM) algorithm [19]. The

EM algorithm is based on the observation that, if we were given a set of indicator variables

znm specifying which component m was responsible for generating each data point tn, then

the log likelihood would take the form

Lcomp({πm, µm,Σm}) =
N∑

n=1

M∑

m=1

znm ln{πmp(tn|m)} (2.12)

and its optimization would be straightforward, with the result that each component is

fitted independently to the corresponding group of data points, and the mixing coefficients

are given by the fractions of points in each group.

The {znm} are regarded as ”missing data”, and the data set {tn} is said to be ”incomplete”.

Combining {tn} and {znm} we obtain the corresponding ”complete” data set, with a log

likelihood given by (2.12). However, the values of {znm} are unknown, but their posterior

distribution can be computed using Bayes’ theorem, and the expectation of znm under this

distribution is just the set of responsibilities Rnm given by (2.10). The EM algorithm is

based on the maximization of the expected complete-data log likelihood given from (2.12)
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by

〈Lcomp({πm, µm,Σm})〉 =
N∑

n=1

M∑

m=1

Rnm ln{πmp(tn|m)}. (2.13)

It alternates between the E-step, in which the Rnm are evaluated using (2.10), and the M-

step in which (2.13) is maximized with respect to the model parameters to give a revised

set of parameters values. At each cycle of the EM algorithm the true log likelihood is

guaranteed to increase unless it is already at a local maximum.

The EM algorithm can also be applied to the problem of maximizing the likelihood for a

single latent variable model of the kind discussed in section 2.1.1. The log likelihood for

such a model takes the form

L(W, µ,Ψ) =
N∑

n=1

ln p(tn) =
N∑

n=1

ln
{∫

p(tn|xn)p(xn)dxn

}
. (2.14)

Again, this is difficult to treat because of the integral inside the logarithm. In this case

the values of xn are regarded as missing data. Given the prior distribution p(x) we can

consider the corresponding posterior distribution obtained through Bayes’ theorem

p(xn|tn) =
p(tn|xn)p(xn)

p(tn)
(2.15)

and the sufficient statistics for this distribution are evaluated in the E-step. The M-step

involves maximization of the expected complete-data log likelihood and is generally much

simpler than the direct maximization of the true log likelihood.

In the next sections we shall see how the concepts of latent variables and mixture distri-

butions can be used in a fruitful partnership to obtain a range of powerful algorithms for

density modelling, pattern classification and data visualization.

2.2 Non-linear Latent Variable Models

2.2.1 Generative Topographic Mapping

The GTM defines a non-linear, parametric mapping y(x;W) from a Q-dimensional latent

space (x ∈ RQ) to a D-dimensional data space (t ∈ RD), where normally Q < D. The

mapping is defined to be continuous and differentiable. y(x;W) maps every point in

the latent space to a point into the data space. Since the latent space is Q-dimensional,

these points will be confined to a Q-dimensional manifold non-linearly embedded into
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the D-dimensional data space. If we define a probability distribution over the latent

space, p(x), this will induce a corresponding probability distribution into the data space.

Strictly confined to the Q-dimensional manifold, this distribution would be singular, so it

is convolved with an isotropic Gaussian noise distribution, given by

p(t|x,W, β) =
(

β

2π

)D
2

exp

{
−β

2

D∑

d=1

(td − yd(x,W))2
}

(2.16)

where t is a point in the data space and β−1 denotes the noise variance.

By integrating out the latent variable, we get the probability distribution in the data space

expressed as a function of the parameters β and W,

p(t|W, β) =
∫

p(t|x,W, β)p(x)dx. (2.17)

This integral is generally not analytically tractable. However, by choosing p(x) to have a

particular form, a set of M equally weighted delta functions on a regular grid,

p(x) =
1
M

M∑

m=1

δ(x− xm), (2.18)

the integral in (2.17) turns into a sum,

p(t|W, β) =
1
M

M∑

m=1

p(t|xm,W, β). (2.19)

Now we have a model where each delta function center (from now on we shall refer to these

as latent points) maps into the center of a Gaussian which lies in the manifold embedded

in the data space, as illustrated in figure 2.2.

Note that, provided the mapping function y(x;w) is smooth and continuous, the pro-

jected points y(xm;w) will necessarily have a topographic ordering in the sense that any

two points xA and xB which are close in latent space will map to points y(xA;w) and

y(xB;w) which are close in data space. What we have is a constrained mixture of Gaus-

sians, since the centers of the mixture components can not move independently of each

other, but all depend on the mapping y(x;W) (see figure (2.3)). Moreover, all components

of the mixture share the same variance, and the mixing coefficients are all fixed to 1
M .

Given a finite set of independent and identically distributed (i.i.d.) data points, {tn}N
n=1,

we can write down the likelihood function for this model,

L =
N∏

n=1

p(tn|W, β) =
N∏

n=1

[
1
M

M∑

m=1

p(tn|xm,W, β)

]
, (2.20)
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t1

t2
t3

y(x;w)

x1

x2

Figure 2.2: In order to formulate a tractable non linear latent variable model, we consider

a prior distribution p(x) consisting of a superposition of delta functions, located at the

nodes of a regular grid in latent space. Each node xm is mapped to a corresponding point

y(xm;w) in data space, and forms the center of a corresponding Gaussian distribution.

Figure 2.3: A GTM example with D = 3, Q = 1, L = 4 and W3×4. An RBF network with

4 hidden units maps input latent node xm to the corresponding output node y(xm;W) =

WΦ(xm).
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and maximize it with respect to W and β. However, is normally more convenient to work

with the log likelihood function,

` =
N∑

n=1

ln

(
1
M

M∑

m=1

p(tn|xm,W, β)

)
. (2.21)

Since GTM is a form of mixture model it is natural to seek an EM algorithm for maxi-

mizing the corresponding log likelihood. By choosing a particular form for the mapping

y(x;w) we can obtain an EM algorithm in which the M-step has a simple form. In

particular we choose y(x;w) to be given by a generalized linear regression model of the

form

y(x;w) = Wφ(x) (2.22)

where the elements of φ(x) consist of L fixed basis functions {φl(x)}L
l=1, and W is a D×L

matrix. Generalized linear regression models possess the same universal approximation

capabilities as multi-layer adaptive networks, provided the basis functions are chosen ap-

propriately. The usual limitation of such models, however, is that the number of basis

functions must typically grow exponentially with the dimensionality Q of the latent space.

In the present context this is not a significant problem since the dimensionality is gov-

erned by the number of latent variables which will typically be small. In fact for data

visualization applications we generally use Q = 2.

GTM for visualization

An important potential application for the GTM is visualization. To see how this works,

note that a GTM, for which we have found suitable parameter values W∗ and β∗, by (2.16)

and (2.18) defines a probability distribution in the data space conditioned on the latent

variable, p(t|xm),m = 1, . . . , M . We can, therefore, use Bayes’ theorem, in conjunction

with the prior distribution over latent variable, p(x), given in (2.18), to compute the

corresponding posterior distribution in latent space for any given point in data space, t,

as

p(xm|t) =
p(t|xm,W∗, β∗)p(xm)∑M

m′=1 p(tn|xm′,W∗, β∗)p(xm′)
. (2.23)

Provided that the latent space has no more than two, or possibly three, dimensions,

p(xm|t) against xm can be plotted. However, in order to visualize whole sets of data, less

rich descriptions must be used. Two possibilities are, for each data point tn, to plot



24 Chapter 2. Probability Density Estimation

• the mode of the posterior distribution in latent space,

xmode
n = argmaxxmp(xm|tn),

which is called posterior-mode projection;

• the mean of the posterior distribution in latent space,

xmean
n =

M∑

m=1

xmp(xm|tn)

called posterior-mean projection.

One of the motivations for the development of the GTM algorithm was to provide a

principled alternative to the Self Organizing Maps (SOM ) algorithm [43, 44]. In fact,

while the SOM has achieved many success in practical applications, it also suffers from

some significant deficiencies: the absence of a cost function, the lack of any guarantee of

topographic ordering, the absence of any general proofs of convergence, and the fact that

the model does not define a probability density. These problems are all absent in GTM

[9, 61].

Computational complexity

When updating the parameters, the GTM requires the inversion of a L×L matrix, where

L is the number of basis functions. This computation requires O(L3) operations. Further-

more some matrix multiplications are involved and these require O(MND) operations.

Note that the computation of the probabilities p(t|x) requires (assuming small Q) O(D)

operations. This last consideration will be useful when comparing the generative Topo-

graphic Mapping and Probabilistic Principal Surfaces models.

2.2.2 Probabilistic Principal Surfaces

Probabilistic Principal Surfaces (PPS ) were proposed in [16, 17, 18] as a unified proba-

bilistic model for feature extraction to approximate principal surfaces in order to address

a number of issues [18] associated with principal surfaces algorithms [39, 46, 64]. The PPS

share the same formulation as the GTM, except for an oriented covariance structure for

nodes in RD. This means that data points projecting near a principal surface node have
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higher influences on that node than points projecting far away from it. This is illustrated

in figure (2.4).

Therefore, each node y(x;w), x ∈ {xm}M
m=1, has covariance

Σ(x) =
α

β

Q∑

q=1

eq(x)eT
q (x) +

(D − αQ)
β(D −Q)

D∑

d=Q+1

ed(x)eT
d (x), 0 < α <

D

Q
(2.24)

where

• {eq(x)}Q
q=1 is the set of orthonormal vectors tangential to the manifold at y(x;w),

• {ed(x)}D
d=Q+1 is the set of orthonormal vectors orthogonal to the manifold in y(x;w).

The complete set of orthonormal vectors {ed(x)}D
d=1 spans RD. The unified PPS model

reduces to GTM for α = 1 and to the manifold-aligned GTM [7] for α > 1

Σ(x) =





0 < α < 1 ⊥ to the manifold

α = 1 ID or spherical

1 < α < D/Q ‖ to the manifold

As α → 0, the support of each node becomes increasingly concentrated along the orthogo-

nal hyperplane at each node. Figure 2.5 shows the unit Mahalanobis distance loci of Σ(x)

for various values of α.

Estimation of the PPS Parameters

The EM algorithm can be used to estimate the PPS parameters. First, the complete

log likelihood for the PPS, assuming equal and constant prior probabilities P (xm) =

1/M,m = 1, . . . , M , is written as

Lcomp =
N∑

n=1

M∑

m=1

zmn ln
[
p(tn|xm)

1
M

]
, (2.25)

where the binary variable zmn indicates whether component m is responsible for generating

sample point tn. Since zmn is unknown or ”missing”, the complete log likelihood (2.25)

cannot be evaluated. Therefore in the E-step of the EM algorithm, the expected value

of Lcomp with respect to P (z|t) is evaluated instead at the k-th iteration, leading to the

following expression

L = 〈Lcomp〉 =
N∑

n=1

M∑

m=1

r(k)
mn ln

[
p(tn|xm)

1
M

]
, (2.26)
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Figure 2.4: Under a spherical Gaussian model of the GTM, points 1 and 2 have equal

influences on the center node y(x) (a) PPS have an oriented covariance matrix so point 1

is probabilistically closer to the center node y(x) than point 2 (b).

where the responsibility parameter

r(k)
mn = p(xm|tn) =

p(tn|xm)P (xm)∑M
m′=1 p(tn|xm′)P (xm′)

=
p(tn|xm)∑M

m′=1 p(tn|xm′)
, (2.27)

is computed by substituting the ”old” (k) parameter values W(k), β(k), α(k) into the con-

ditional probabilities p(tn|xm). In the M-step, the expected log likelihood function (2.26)

is maximized with respect to W, β and α, thereby giving the corresponding new (k+1)-th

values. However, for simplicity, the clamping factor α is assumed to be constant and the

approximation of the M-step is accomplished through the original GTM equations. A

simply description of the algorithm follows below:

Initialization Assuming that the latent nodes {xm}M
m=1are arranged in a uniform topol-

ogy within a hypercube in RQ,

initialize W(0) to the solution of the following least square problem,

[y(x1) . . .y(xm)] = W[Φ(x1) . . .Φ(xM )], (2.28)

where {y(xm)}M
m=1 are the set of nodes on a hyper-grid in RD spanned by the Q

principal components {eq}Q
q=1.
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α = 0.10 α = 0.50 α = 1.50 α = 1.90

Figure 2.5: Un-oriented covariance α = 1 (dashed line) and oriented covariances (solid

line) for α = 0.10, 0.50, 1.50, 1.90. The valid range for α is 0 < α < 2 for D = 2, Q = 1 in

this example.

With W(0) initialized, an initial distribution of the PPS nodes in RD can be com-

puted as y(0)(xm) = W(0)Φ(xm), m = 1, . . . , M . Initialize 1/β(0) to the median of

the squared Euclidean distances between adjacent nodes {y(0)(xm)}M
m=1 in the data

space.

At the k-th iteration:

1. Expectation (E-step): compute the responsibility matrix R(k)
M×N whose entries are

given by (2.27).

2. Maximization (M-step): compute updated parameters W(k+1) and β(k+1)

(a) Compute W(k+1) as the solution to the following linear matrix equation,

(ΦTG(k)Φ)WT = ΦTR(k)T, where

ΦL×M : Φlm = Φl(xm),

G(k)
M×M : g(k)

mm =
N∑

n=1

r(k)
mn,

TN×D = [t1 . . . tN ]T ,

(b) Compute βk+1 as,

1
βk+1

=
1

ND

N∑

n=1

M∑

m=1

r(k)
mn‖W(k+1)Φ(xm)− tn‖2.
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(c) Compute the new PPS nodes in RD as,

y(k+1)(xm) = W(k+1)Φ(xm), m = 1, . . . , M.

3. Evaluate the change in log likelihood,

∆L =

∥∥∥∥∥
L(k+1) − L(k)

L(k)

∥∥∥∥∥ .

4. Terminate if ∆L falls below some threshold ε, otherwise increment counter k and go

to step 1.

Computational Complexity

The PPS incurs in two additional computations over the GTM : (1) computation of the

D×Q tangential matrix E‖(x), which is obtained by concatenating the tangential manifold

vectors {eq(x)}Q
q=1 and (2) evaluation of the full Gaussian class-conditional probabilities

p(t|xm). The set of Q tangential vectors {eq(x)}Q
q=1 can be estimated from the partial

derivative of the latent basis activations at x:

e
′
q(x) = W

ϑφ(x)
ϑxq

,

where the constant latent basis derivative ϑφ(x)
ϑxq

need to be evaluated only once. Further-

more, since neither the row space of W nor the set {ϑφ(x)
ϑxq

}Q
q=1 is orthogonal in general,

the resulting {e′(x)}Q
q=1 will not be orthonormal, and thus must be orthonormalized via

the Gram-Schmidt procedure in order to satisfy the conditions (2.24). The matrix E‖(x)

is updated once per EM training epoch, which requires O(LQD) operations for the ma-

trix multiplication and O(Q2D) operation for the orthonormalization. It is worth noting

that it is not necessary to compute the Gram-Schmidt procedure for the set of orthogo-

nal manifold vectors {ed(x)}D
d=Q+1 in (2.24) since a proposition in [17] shows the (2.24)

can be expressed in terms of the tangential manifold vectors only. Definitely, evaluation

of the conditional probabilities p(t|x) requires O(QD2) operations with respect to O(D)

complexity of the GTM, however for complex mappings this overhead is attenuated by the

fact that the PPS converge faster than GTM.
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2.2.3 Spherical PPS

If 1 or 2-dimensional latent spaces are considered (i.e, Q = 1 or Q = 2) then the cor-

responding manifold will be a curve or a nonlinear plane. In [17] it is shown that for

characterizing high-D data, a spherical manifold (in this case Q = 3) is a more appropri-

ate tool. Spherical PPS are very effective for data visualization purposes (we shall address

this issue in chapter 4) and classification tasks. Basically, randomly distributed data in

high-D space tend to be sparse and concentrated at the periphery. This is a consequence

of the curse of dimensionality [4, 17] which causes the number of samples in a training

set is always sparse with respect to the dimensionality, and it is a major cause of error in

function approximation, density estimation, and classification [34].

A spherical manifold (see figure 2.6 [17]) can be constructed using a PPS with nodes

{xm}M
m=1 arranged regularly on the surface of a sphere in R3 latent space, with the latent

basis functions evenly distributed on the sphere at a lower density. The only modification

required with respect to 1−D and 2−D manifolds is the initialization procedure, which

initialize the manifold to a hyper-ellipsoid in RD defined by the 3 largest eigenvectors of

the data. This is achieved by solving for W in the following least squares equation,

[s1 . . . sM ] = W[Φ(x1) . . .Φ(xM )],

where

sm = [
√

ξ1e1

√
ξ2e2

√
ξ3e3]xm, m = 1, . . . , M,

are the coordinates of the hyper-ellipsoid in data space with {eq}3
q=1 denoting the three

largest eigenvectors (scaled by the corresponding eigenvalues {ξq}3
q=1) of the data covari-

ance matrix. After initialization, the standard PPS iteration procedure described in the

previous section follows.

Spherical PPS for data visualization

The spherical manifold can be used as an unsupervised high-D data visualization tool.

To visualize the data, a spherical manifold is first fitted to the data, effectively capturing

its structure. Next, the data is projected onto the manifold in RD, and the projected

locations along with the manifold are plotted in R3 as points on a sphere.

The method adopted for projecting data onto a spherical manifold for visualization is the
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(a) Manifold in

latent space R
3

x

(b) Manifold in

feature space R
D

t   

y(x)

(c) t projected onto

manifold in latent space R
3

E[x|t]

Figure 2.6: (a) The spherical manifold in R3 latent space. (b) The spherical manifold in

R3 data space. (c) Projection of data points t onto the latent spherical manifold.

probabilistic projection. The probabilistic projection computes the latent manifold coor-

dinates x̂n of each data point tn as the mean of the induced probability density function

in R3. In practice, the projected latent coordinate is computed as a linear combination of

all latent nodes weighted by the responsibility matrix (2.27),

x̂n ≡ 〈x|tn〉 =
∫

xp(x|t)dx =
M∑

m=1

rmnxm. (2.29)

For a spherical manifold, ‖xm‖ = 1 for m = 1, . . . , M and
∑

m rmn = 1 for n = 1, . . . , N ,

therefore, expression (2.29) implies that all projections lie within the sphere, i.e. ‖xm‖ ≤ 1.

Spherical PPS for Classification

The spherical PPS is used as a ”reference manifold” for classifying high-D data. A ref-

erence spherical manifold is computed for each class during the training phase. In test

phase, an unseen data is classified to the class of its nearest spherical manifold. Obvi-

ously, the concept of ”nearest” implies a distance computation between a data point t

and nodes onto the manifold. Before doing this computation the data point t must be

linear projected onto the manifold. Since a spherical manifold consists of triangular and

square patches each defined by three or four manifold nodes, what really happens here is

an approximation of the distance. PPS framework provides three approximation methods:

• Nearest Neighbor (NN): finds the minimal square distance to all manifold nodes.
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y y y

Figure 2.7: From left to right: NN, GP and NT projection approximations on a four

node manifold patch.

• Grid projections (GP): finds the shortest projection distance to a manifold grid.

• Nearest triangulation (NT): finds the nearest projection distance to the possible

triangulations.

It is worth noting that in the probabilistic framework the distance between a data point

t and the function of the mean of its induced distribution y(〈x|t〉) on the manifold is

computed. Clearly, the distance may not be the shortest in the Euclidean sense, so the

distance using linear projection onto the manifold is computed. Figure 2.7 shows the

three methods just described. Another way for employing PPS as classifiers consists in

choosing the class C with the maximum posterior class probability for a given new input t.

Formally, suppose we have N labelled data points {t1, . . . , tN}, with ti ∈ RD, i = 1, . . . , N

and labels class in the set {1, . . . , C}. The posterior probabilities may be derived from the

class-conditional density p(t|class) via Bayes theorem:

P (class|t) =
p(t|class)P (class)

p(t)
∝ p(t|class)P (class).

In order to approximate the posterior probabilities P (class|t) we estimate p(t|class) and

P (class) from the training data. Finally, an input t is assigned to the class with maximum

P (class|t).

In [17] it is shown that spherical PPS classifier reaches better performance then k-

nearest neighbor classifier and Gaussian Mixture Models classifier on several benchmark

data sets.
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2.2.4 Experimental results

In this section we examine three classification tasks concerning three different astronom-

ical data sets: (1) Star/Galaxy catalog, (2) GOODS catalog, and finally (3) Telescopio

Nazionale Galileo (TNG) telemetry data. The first is a synthetic catalog while the re-

maining two contain real-world data. These data sets will be used in all the experiments

described in this thesis, therefore they are detailed in appendix 6.1.

All the experiments are implemented under the Matlab computing environment exploiting

the LANS Pattern Recognition Matlab Toolbox1 and Netlab Toolbox [51].

Classification is accomplished by using the PPS models to

1. compute the reference manifolds for each class (we denote this classifier as PPSRM ),

2. compute the posterior class probability (hereinafter denoted as PPSPR).

In all the experiments, the classifiers are run 25 times for each of which new training and

test data partitions (60% for training and 40% for testing, except when differently stated)

are generated. Obviously, a good parameters setting is a key point for the overall system

performance achievable through various experiments, but at the same time this is not an

easy task. Most of the values of the parameters are very problem-dependent and must

be determined in an empirical fashion across trials. For this aim, for each training/test

partitions, ten PPS models are fitted to the data in order to evaluate the best clamping

factor α value, where α ranges in the set {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. Fur-

thermore, fundamental are the number of latent variables or nodes, which determines the

manifold resolution and the number of basis functions which control the manifold com-

plexity. Their settings are fixed on the basis of the size and complexity of each data set

at hand. Each run is allowed a maximum of 100 epochs with early stopping triggered

whenever the change in log-likelihood goes below the fixed threshold. Finally, the only

preprocessing made on the data is a normalization to zero mean and unit variance (the

whitening was tried as well but with less accurate results).

1http://www.lans.ece.utexas.edu/∼lans/lans/
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Synthetic catalog

The catalog contains 20000 objects equally divided into two classes composed by 10000

stars and galaxies, respectively. Each object is described by eight features or parameters,

namely the magnitudes in the corresponding eight optical filters. In general star-galaxy

classification is a complex task for astronomers and for a catalog of this nature the usually

adopted methodologies lead to a classification error about 10%2. Parameter setting (the

most meaningful) shared by the ten PPS models is shown in table 2.1. Figure 2.8 depicts

the error bars deriving from 10 PPS models used as reference manifold classifiers. For

each of the 10 fixed values of α, the error bars are computed over 25 iterations of the PPS

learning algorithm. As can be seen even from table 2.2, where the mean classification

error and standard deviation are reported, the best results, in terms of the mean classifi-

cation error, are obtained with values of α ranging between 0.6 and 1.4, with best models

α corresponding to the extremes of this interval. For α = 0.6, however, the standard

deviation is quite high, whereas for α = 1.4 we have the minimum standard deviation as

well. Figure 2.9 and table 2.3 show error bars and mean-standard deviation values for

PPS used to compute a posteriori class probabilities. In this case a different behavior is

observed in which the best results are obtained for increasing values of α with the over-

all best model α fixed to 2.0. Even though a more stable behavior (minimum standard

deviation) is obtained for α = 1.2. Table 2.4 shows confusion matrices corresponding to

both PPSRM and PPSPR with minimum classification errors. Therefore, by observing

the results obtained we can state that PPSRM is a more stable classifier whereas PPSPR

are able to gain the lower peaks in term of classification errors. This instability could be

explained for the effect of overtraining which is a plague of mixture models, and hence of

probabilistic principal surfaces, which converge in different local minima. In fact, it is well

known that maximizing the likelihood can lead to over-fitting which is particularly severe

in density estimation due to singularities in the log-likelihood function.

2personal communication of the synthetic catalog author
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Parameter Value Description

M 266 number of latent variables

L 83 number of basis functions

Lfac 1 basis functions width

class NT projection method for classification

iter 100 maximum number of iteration

ε 0.01 early stopping threshold

Table 2.1: Synthetic Catalog: parameter setting for PPSRM and PPSPR.
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Figure 2.8: Synthetic Catalog: error bars for PPSRM (errors averaged over 25 iterations

for fixed α).
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α Mean Classification Error (%) Standard Deviation

0.2 2.07 0.3222

0.4 2.19 0.4921

0.6 1.94 0.4535

0.8 2.02 0.375

1.0 2.00 0.2290

1.2 2.04 0.4133

1.4 1.94 0.2818

1.6 2.06 0.3320

1.8 2.22 0.3400

2.0 2.35 0.2287

Table 2.2: Synthetic Catalog: mean classification error (%) for PPSRM (errors averaged

over 25 iterations for fixed α). In bold are presented the lower mean classification errors.

The lower standard deviation is underlined.
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α Mean Classification Error (%) Standard Deviation

0.2 5.37 0.7523

0.4 4.35 0.5722

0.6 3.60 0.3228

0.8 3.22 0.4988

1.0 1.88 0.3188

1.2 2.13 0.2547

1.4 1.98 0.4521

1.6 1.34 0.5240

1.8 1.25 0.4443

2.0 1.10 0.4669

Table 2.3: Synthetic Catalog: mean classification error (%) for PPSPR (errors averaged

over 25 iterations for fixed α). In bold is presented the lower mean classification error.

The lower standard deviation is underlined.

Classifier type- Error (%) Confusion Matrix Best model α

PPSRM − 1.34

Star Galaxy

Star 3920 28

Galaxy 80 3972

1.4

PPSPR− 0.4

Star Galaxy

Star 3976 8

Galaxy 24 3992

2.0

Table 2.4: Synthetic Catalog: confusion matrices computed by PPSRM and PPSPR

best models.
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Figure 2.9: Synthetic Catalog: errors bars for PPSPR (errors averaged over 25 iterations

for fixed α).

GOODS catalog

GOODS catalog is a star-galaxy catalog composed by 28405 objects. Each object is

detected in 7 optical bands, namely U,B,V,R,I,J,K bands. For each band 3 different

parameters (i.e., Kron radius, Flux and Magnitudes) are considered summing to a total

number of 21 parameters. The catalog contains about 27000 galaxies and about 1400

stars. Moreover, there is a further peculiarity in the data contained in the catalog: the

majority of the objects are ”drop outs” which are objects not detectable in a given optical

band. Among this type of objects there are groups which are not detectable in only one

band, two bands, three bands and so on. In order to define the classification problem,

we decided to split the data in four classes, namely star, galaxy, star which are drop outs

and galaxy which are drop outs (we do not care about the number of bands for which an

object is a drop out) and indicated these classes by Star, Galaxy, StarD and GalaxyD.

The characteristics of the data make the classification task very difficult because the class

of ”dropped” galaxies dominates over the remaining classes as long as it contains about

the 90% of the objects. Therefore for any classifier, a problem of this nature tends to
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Parameter Value Description

M 266 number of latent variables

L 103 number of basis functions

Lfac 1 basis functions width

class NT projection method for classification

iter 100 maximum number of iteration

ε 0.001 early stopping threshold

Table 2.5: GOODS Catalog: parameter setting for PPSRM and PPSPR.

recognize near all the objects as dropped galaxy.

We can now give a look at the results. First of all, we used a PPS model a little bit

more complex as it can be seen in table 2.5 (a greater number L of basis functions).

Figures 2.10, 2.11 and tables 2.6, 2.7 show the error bars for PPSRM and PPSPR, and

mean-standard deviation classification errors for PPSRM and PPSPR, respectively. Here

the differences between PPSRM and PPSPR classifiers become wider in terms of mean

classification errors. In fact, while PPSRM reaches a mean classification error ranging

between a minimum of 7.48% and a maximum of 9.81%, PPSPR reaches its minimum

at 2.90% and the maximum at 5.84%. In front of these results, the stability of PPSRM

(standard deviations between 0.2613 and 0.8378 for PPSRM and between 0.1893 and 2.061

for PPSPR) assumes less importance with respect to PPSPR. Furthermore for α = 1.8

PPSPR has the best overall mean classification error and standard deviation. In table

2.8 are listed the confusion matrices relative to the best models minimum classification

error. Even though these values are different for PPSRM and PPSPR, respectively, it is

interesting to note that both classifiers have the majority of misclassification between the

same classes (Star as Galaxy and viceversa, StarD as GalaxyD and viceversa).
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α Mean Classification Error (%) Standard Deviation

0.2 7.48 0.5536

0.4 8.45 0.6020

0.6 7.83 0.5773

0.8 8.60 0.3933

1.0 8.34 0.5703

1.2 9.55 0.2613

1.4 9.42 0.6117

1.6 9.09 0.3896

1.8 9.18 0.4548

2.0 9.81 0.8378

Table 2.6: GOODS Catalog: mean classification error (%) for PPSRM (errors averaged

over 25 iterations for fixed α). In bold is presented the lower mean classification error.

The lower standard deviation is underlined.
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α Mean Classification Error (%) Standard Deviation

0.2 5.23 0.8695

0.4 5.84 1.6258

0.6 4.37 0.6221

0.8 4.56 1.5156

1.0 4.99 0.5105

1.2 3.19 0.3239

1.4 3.53 0.7930

1.6 4.38 2.0610

1.8 2.90 0.1893

2.0 3.35 0.2951

Table 2.7: GOODS Catalog: mean classification error (%) for PPSPR (errors averaged

over 25 iterations for fixed α). In bold is presented the lower mean classification error.

The lower standard deviation is underlined.
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Figure 2.10: GOODS Catalog: error bars for PPSRM (errors averaged over 25 iterations

for fixed α).

Classifier type - Error (%) Confusion Matrix Best model α

PPSRM - 6.51

Star Galaxy StarD GalaxyD

Star 124 140 2 2

Galaxy 40 1080 2 20

StarD 4 26 98 416

GalaxyD 0 0 88 9322

0.2

PPSPR− 2.63

Star Galaxy StarD GalaxyD

Star 90 10 2 4

Galaxy 78 1216 2 18

StarD 0 0 62 42

GalaxyD 0 20 124 9696

1.8

Table 2.8: GOODS Catalog: confusion matrices computed by PPSRM and PPSPR best

models.
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Figure 2.11: GOODS Catalog: errors bars for PPSPR (errors averaged over 25 iterations

for fixed α).

TNG telemetry data

Here we have data coming from sensors of (TNG), collected into three separate observation

sessions. Each session is associated to the quality of the images acquired by TNG. After

the preprocessing phase described in appendix 6.1.3, the data set is composed by three

classes corresponding to good, medium and bad quality images, respectively. Each image

is described by a vector of 17 values corresponding to the parameters of different groups

of sensors of TNG. Our experiment was devoted to find whether there was any correlation

among the telemetry data and the quality (in terms of tracking, seeing, etc.) of the

data. The existence of such a correlation would allow both to put a quality flag on the

scientific exposures, and (if real time monitoring is implemented) to interrupt potentially

bad exposure in order to avoid waste of precious observing time.

Before starting the PPS training steps, we randomly divided the data set in 50% for

training and 50% for testing. The PPS parameter setting is listed in table 2.9 and it

can be seen that we employee a PPS of reduced complexity (only 33 latent nodes and 6

basis functions) with respect to the two previous cases studied so far. This is justified
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Parameter Value Description

M 33 number of latent variables

L 6 number of basis functions

Lfac 1 basis functions width

class NT projection method for classification

iter 100 maximum number of iteration

ε 0.001 early stopping threshold

Table 2.9: TNG Data: parameter setting for PPSRM and PPSPR.

from a preliminary analysis of the parameter values selected for training. In fact, they

are very different for each of the three classes, therefore we expect a good separation

between classes. Indeed our expectation is validated by the results: figure 2.12 and table

2.10 say that PPSRM obtained very high performances whose mean classification errors

over the ten different α values range between a minimum of 0.031 (for α = 1.8) and a

maximum of 0.061 and even the standard deviation values are very low (in the range

0.0147 − 0.0290). PPSPR instead, exhibits an inverse behavior, i.e. it perform worse

with respect to PPSRM, compared to the previous cases. In fact, the minimum mean

classification error obtained for α = 1.6 and α = 0.6 is 0.131 and the maximum is fixed to

0.587. Moreover, in table 2.12, it can be seen that PPSRM obtains an exact classification

(no errors) for different values of α (0.2, 0.4, 1.8, 2.0). It is worth noting here that in order

to consider the PPS classifier (both reference manifold and probabilistic) as an important

tool to asses whether there is any correlation among the telemetry data and the quality

of the data it is necessary to have a greater number of images and a greater number of

different representative cases for each class of images quality. In other words, each class

may have different sensor value configurations which could be fixed as template for the

given class.
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Figure 2.12: TNG Data: error bars for PPSRM (errors averaged over 25 iterations for

fixed α).
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Figure 2.13: TNG Data: errors bars for PPSPR (errors averaged over 25 iterations for

fixed α).
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α Mean Classification Error (%) Standard Deviation

0.2 0.041 0.0229

0.4 0.041 0.0180

0.6 0.052 0.0149

0.8 0.047 0.0170

1.0 0.057 0.0187

1.2 0.061 0.0290

1.4 0.059 0.0188

1.6 0.059 0.0222

1.8 0.031 0.0147

2.0 0.032 0.0174

Table 2.10: TNG Data: mean classification error (%) for PPSRM (errors averaged over

25 iterations for fixed α). In bold is presented the lower mean classification error. The

lower standard deviation is underlined.
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α Mean Classification Error (%) Standard Deviation

0.2 0.587 0.4664

0.4 0.268 0.2729

0.6 0.131 0.0231

0.8 0.142 0.0299

1.0 0.138 0.0196

1.2 0.138 0.0301

1.4 0.134 0.0215

1.6 0.131 0.0238

1.8 0.144 0.0228

2.0 0.137 0.0171

Table 2.11: TNG Data: mean classification error (%) for PPSPR (errors averaged over

25 iterations for fixed α). In bold is presented the lower mean classification error. The

lower standard deviation is underlined.

Classifier type - Error(%) Confusion Matrix Best model α

PPSRM - 0

Good Medium Bad

Good 2230 0 0

Medium 0 3680 0

Bad 0 0 6140

1.8

PPSPR− 0.082

Good Medium Bad

Good 2230 0 10

Medium 0 3680 0

Bad 0 0 6130

0.6, 1.6

Table 2.12: TNG Data: confusion matrices computed by PPSRM and PPSPR best

models.
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Summary of experiments with PPSRM and PPSPR

From the experiments seen so far we can state that PPS classifier perform very well on real

complex astronomical data. If the data sets are more complex (more overlapping classes)

PPS classifier used by computing the a posteriori class probability maybe could be more

appropriate as it leads to the lowest mean classification errors despite a less stability

with respect to the PPS reference manifold classifier, even though the superiority of the

PPSPR should be proved by further experimental evidences. However, our aim here

is not to demonstrate better performance between different PPS classifier methods but

rather the overall viability of PPS to address complex astronomical data classification.

Furthermore, our results confirm the results shown in [17], i.e PPS with α < 1 lead to

better performance with respect to GTM model as can be seen from PPS models, with

α fixed to 1.0, performances; on the other hand, however, we obtained cases in which

the aligned-GTM performs better than PPS with α < 1. Finally, we observed faster

convergence in PPS models with α 6= 1.



Chapter 3

Committee of Probabilistic Principal Surfaces

Ensemble or committee of learning systems is a way to construct learning machines which

could obtain better generalization performance with respect to a single model in both

regression and classification tasks. In this chapter an overview to this research area is pro-

vided giving also its underlying motivations by introducing the well known bias-variance

dilemma or ”trade-off” for regression and classification problems. Furthermore, two com-

bining schemes for constructing committees of probabilistic principal surfaces are proposed

and their effectiveness is demonstrated in the experimental section for classification pur-

poses.

3.1 Bias and Variance

While constructing a learning model one has two ways for measuring its ”match” or

”alignment” to the problem, being it a regression or a classification problem: the bias

and variance. The bias measures the accuracy or quality of the match, in other words,

high bias implies a poor match. The variance measures the precision or the specificity of

the match, i.e., high variance implies a weak match. Bias and variance can be adjusted

in several ways, but the important bias-variance relation says that the two terms are not

independent. Fixed a loss function, they obey a sort of ”conservation law”. Now we

discuss theoretically this issue.

3.1.1 Bias-Variance Decomposition for Regression

The mathematical treatment of the bias-variance decomposition is based on the work

described in [36]. It is convenient to consider the particular case of a model trained using
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a sum of squares error function. The sum of square error, in the limit of an infinite data

set, can be written as [4]

E =
1
2

∫
{y(t)− 〈k|t〉}2p(t)dt +

1
2

∫
{〈k2|t〉 − 〈k|t〉2}p(t)dt (3.1)

in which p(t) is the unconditional density of the input data, y(t) is the model function

and 〈k|t〉 denotes the conditional average, or regression, of the target data given by

〈k|t〉 ≡
∫

kp(k|t)dk (3.2)

where p(k|t) is the conditional density of the target variable k conditioned on the input

vector t. Similarly

〈k2|t〉 ≡
∫

k2p(k|t)dk (3.3)

The second term in (3.1) is independent of the network function y(t) and hence is in-

dependent of the network weights. The optimal network function y(t), in the sense of

minimizing the sum of squares error, is the one which makes the first term in (3.1) vanish,

and is given by y(t) = 〈k|t〉. The second term represents the intrinsic noise in the data

and sets a lower limit on the error which can be achieved. In a practical situation we must

deal with the problems arising from a finite size data set. Suppose we consider a training

set D consisting of N patterns which we use to determine the network model y(t). Now

consider a whole ensemble of possible data sets, each containing N patterns, and each

taken from the same fixed joint distribution p(t, k). A measure of how close the actual

mapping function y(t) is to the desired one is given by the integrand of the first term in

(3.1)

{y(t)− 〈k|t〉}2. (3.4)

The value of this quantity will depend on the particular data set D on which it is trained.

We can eliminate this dependence by considering an average over the complete ensemble

of data sets,

ED[{y(t)− 〈k|t〉}2] (3.5)

where ED[·] denotes the expectation, or ensemble average. If the network function were

always a perfect predictor of the regression function 〈k|t〉 then this error would be zero.

The (3.5) in a different mathematical form,

{y(t)− 〈k|t〉}2 = {y(t)− ED[y(t)] + ED[y(t)]− 〈k|t〉}2 =
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= {y(t)− ED[y(t)]}2 + {ED[y(t)]− 〈k|t〉}2 + 2{y(t)− ED[y(t)]}{ED[y(t)]− 〈k|t〉}. (3.6)

In order to compute the expression in (3.5) we take the expectation of both sides of (3.6)

over the ensemble of data sets D. We see that the third term on the right-hand side of

(3.6) vanishes, and we are left with

ED[{y(t)− 〈k|t〉}2] =

= {ED[y(t)]− 〈k|t〉}2

︸ ︷︷ ︸
(bias)2

+ ED[{y(t)− ED[y(t)]}2]︸ ︷︷ ︸
variance

. (3.7)

In the expression (3.7) the bias measures the extent to which the average (over all data sets)

of the network function differs from the desired function 〈k|t〉. Conversely, the variance

measures the extent to which the network function y(t) is sensitive to the particular choice

of data set. The meaning of the bias and variance terms can be illustrated by considering

two extreme limits for the choice of functional form y(t). We shall suppose that the target

data for network training is generated from a smooth function h(t) to which zero mean

random noise ε is added, so that

k = h(t) + ε. (3.8)

The optimal mapping function in this case is given by 〈k|t〉 = h(t). One choice of the model

for y(t) would be some fixed function g(t) which is completely independent of the data

set D. It is clear that the variance term in (3.7) will vanish, since ED[y(t)] = g(t) = y(t).

However, the bias term will typically be high since no attention at all was paid to the

data, and so unless we have some prior knowledge which help us to choose the function

g(t) we are making a bad guess. The opposite extreme is to take a function which fits

the training data perfectly, such as a simple exact interpolant. In this case the bias term

vanishes at the data points themselves since

ED[y(t)] = ED[h(t) + ε] = h(t) = 〈k|t〉

and the bias will typically be small in the neighborhood of the data points. The variance,

however, will be significative since

ED[{y(t)− ED[y(t)]}2] = ED[{y(t)− h(t)}2] = ED[ε2]

which is just the variance of the noise on the data, which could be substantial. We see

that there is a natural trade-off between bias and variance. A function which is closely
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fitted to the data set will tend to have a large variance and hence give a large expected

error. We can decrease the variance by smoothing the function, but if this is taken too

far then the bias becomes large and the expected error is again large. The bias-variance

dilemma can be illustrated in the domain of regression (figure 3.1 taken from (taken from

[26])): each column represents a different model, and each row represents a different set

of N = 6 training points, Di, randomly sampled from the true function h(t) with noise.

Probability functions of the mean-square error of ED[{(y(t) − h(t)}2] are shown at the

bottom. Column a) shows a very poor model: a linear y(t) whose parameters are held

fixed, independent of the training data. This model has high bias and zero variance.

Column b) shows a somewhat better model, though it too is held fixed, independent of

the training data. It has a lower bias than in column a) and has the same zero variance.

Column c) shows a cubic model, where the parameters are trained to best fit the training

samples in a mean-square-error sense. This model has low bias and a moderate variance.

Column d shows a linear model that is adjusted to fit each training set; this model has

intermediate bias and variance. If these models were instead trained with a very large

number N of points, the bias in column c) would approach a small value (which depends

upon the noise), while the bias in column d would not; the variance of all models would

approach zero.

3.1.2 Bias-Variance Decomposition for Classification

While the bias variance decomposition and dilemma are simpler to understand in the

case of regression under the mean-squared loss function, we are most interested in their

relevance to classification. Several suggestions have been made in literature for other loss

functions [11, 40, 41, 24]. Here the discussion is based on the decomposition proposed in

[35] where the classification task is casted in the regression framework. Let us consider a

two-class classification problem, where an output variable k assumes values in {0, 1}. In

this context the mean-squared error does not appear the proper one, but we can proceed

as it follows.

The goal of a classification procedure is to predict the output value given the set of input

variables t = {t1, . . . , tD}. It is often the case that at a particular point t the value of k

is not uniquely determinable. It can assume both its values with respective probabilities
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Figure 3.1: The Bias-Variance Dilemma for regression.
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that depend on the location of the point t in the input space

h(t) = Pr[k = 1|t] = 1− Pr[k = 0|t]. (3.9)

h(t) is a single value deterministic function that at every point ti specifies the probability

that k assumes value 1. The role of a classification procedure is to produce a rule that

makes a prediction y(t) ∈ {0, 1} for the correct class label k at every input point t. The

goal is to choose y(t) to minimize inaccuracy as characterized by the misclassification

”risk”

r(t) = l1h(t)1(y(t) = 0) + l0(1− h(t))1(y(t) = 1). (3.10)

where l0 and l1 are the losses incurred for the respective misclassifications, and 1(·) is an

indicator function of the truth of its argument

1(η) =





1 if η is true

0 otherwise

The misclassification risk (3.10) is minimized by the Bayes rule

kB(t) = 1
(

h(t) ≥ l0
l0 + l1

)
(3.11)

which by definition achieves the lowest possible risk

rB(t) = min(l1h(t), l0(1− h(t))). (3.12)

For simplicity we take l0 = l1 in (3.12) so that the threshold in the indicator function

is 1/2 and the Bayes decision boundary is the set of points for which h(t) = 1/2. Now

the classification task can be cast in the regression framework setting by considering the

expected value of k. To do so, we consider a discriminant function

k = h(t) + ε, (3.13)

where ε is a zero mean, random variable, for simplicity here assumed to be a centered

binomial distribution with variance V ar[ε|t] = h(t)(1 − h(t)). The target function can

thus be expressed as

h(t) = E [k|t] = 〈k|t〉,
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and now the goal is to find an estimate y(t) that minimizes a mean-square error, such as

(3.4),

ED[(y(t)− 〈k|t〉)2].

In this way the regression method seen before, can yield an estimate y(t) used for classi-

fication. For a given training set D, if the classification error rate Pr[y(t) = k], averaged

over predictions at t, agrees with the Bayes discriminant,

Pr[y(t) = k] = Pr[kB 6= k] = min[h(t), 1− h(t)]

then indeed we have the lowest error. If not, then the prediction yields an increased error

Pr[y(t)] = max[h(t), 1− h(t)] = |2h(t)− 1|+ Pr[kB = k].

We average over all data sets of size N and find

Pr[y(t) 6= k] = |2h(t)− 1|Pr[y(t) 6= kB] + Pr[kB 6= k]. (3.14)

Equation (3.14) shows that classification error rate is linearly proportional to Pr[y(t) 6=
kB], which can be considered a boundary error in that it represents the incorrect estimation

of the optimal (Bayes) Boundary. Because of random variations in training sets, the

boundary error will depend upon p(y(t)), the probability density of obtaining a particular

estimate of the discriminant given D. This error is merely the area of the tail of p(y(t) on

the opposite side of the Bayes discriminant value 1/2:

Pr[y(t) 6= kB] =





∫∞
1
2

p(y(t))dy if h(t) < 1
2

∫ 1
2−∞ p(y(t))dy if h(t) ≥ 1

2

If we make the assumption that p(y(t)) is a Gaussian, we find

Pr[y(t) 6= kB] = Φ


Sgn[h(t)− 1/2][ED[y(t)]− 1/2]︸ ︷︷ ︸

boundary bias

V ar[y(t)]−
1
2︸ ︷︷ ︸

variance


 (3.15)

where

Φ[u] =
1√
2π

∫
e−

1
2u2 du

The boundary error is expressed in terms of a boundary bias, in analogy with the bias-

variance decomposition for regression. Equation (3.15) shows that the effect of the variance
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term on the boundary error is highly non linear and depends on the value of the boundary

bias . Furthermore when the variance is small, this effect is particularly sensitive to the

sign of the bias. In regression the estimation error is additive in bias and variance, whereas

for classification there is a nonlinear and multiplicative interaction. In classification the

sign of the boundary bias affects the role of the variance in the error. For this reason

low variance is generally important for accurate classification, while low boundary bias

need not to be. Said in another way, in classification variance dominates bias. Figure

3.2 (taken from [26]) provides an example to graphically understand the Bias-Variance

dilemma: the (boundary) bias-variance trade-off in classification is illustrated with a two-

dimensional Gaussian problem. The figure at the top shows the true distributions and the

Bayes decision boundary. The nine figures in the middle show different learned decision

boundaries. Each row corresponds to a different training set of N = 8 points selected

randomly from the true distributions and labelled according to the true decision boundary.

Column a) shows case of a Gaussian model with fully general covariance matrices trained

by maximum-likelihood. The learned boundaries differ significantly from one data set

to the next; this learning algorithm has high variance. Column b) shows the decision

boundaries resulting from fitting a Gaussian model with diagonal covariances; in this case

the decision boundaries vary less from one row to another. This learning algorithm has

a lower variance than the one at the left. Finally, column c) shows decision boundaries

learning by fitting a Gaussian model with unit covariances (i.e., a linear model); notice

that the decision boundaries are nearly identical from one data set to the next. This

algorithm has low variance.

3.2 Committee Machines

In committee machines, an ensemble of estimators is generated by means of a learning

process and the prediction of the committee for a new input is generated in form of a

combination of the predictions of the individual committee members. Committee machines

can be useful in many ways, as listed below

1. the committee might exhibit a test set performance unobtainable by an individual

committee member on its own. The reason is that the errors of the individual

committee members cancel out to some degree when their predictions are combined.
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Figure 3.2: The Bias-Variance Dilemma for classification.



Chapter 3. Committee of Probabilistic Principal Surfaces 57

Even if the committee members were trained on ”disturbed” version of the same

data set, the predictions of the individual committee members might be sufficiently

different such that this averaging process take place and is beneficial;

2. modularity. It is sometimes beneficial if a mapping from input to target is not

approximated by one estimator but several estimators, where each estimator can

focus on a particular region of input space. The prediction of the committee is

obtained by a locally weighted combination of the predictions of the committee

members. In some applications the individual members self-organize in a way such

that the prediction task is divided into meaningful modules;

3. reduction of computational complexity. Instead of training one estimator using all

training data it is computationally more efficient for some types of estimators to par-

tition the data set into several data sets, train different estimators on the individual

data sets and then combine the predictions of the individual estimators. By using a

committee machine approach, the computational complexity increases only linearly

with the size of the training data set.

3.2.1 Averaging, Bagging and Stacking

The idea is to train a committee of estimators and combine the individual predictions with

the goal of achieving improved generalization performance if compared to the performance

achievable with a single estimator. In regression, the committee prediction for a test input

t is achieved by forming a weighted sum of the predictions of the M committee members

k̂(t) =
M∑

i=1

αiyi(t)

where yi(t) is the prediction of the i-th committee member at input t and where αi

are weights which are required to be positive and to sum to one. In classification, the

combination is typically implemented as a voting scheme. The committee assigns the

pattern to the class which obtains the majority of the vote

ˆclass(t) = argmaxj

M∑

i=1

αiyi,class=j(t)
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where yi,class=j(t) is the output of the classifier i for class j. The output typically either

corresponds to the posterior class probability yi,class=j(t) ∈ [0, 1] or to a binary decision

yi,class=j(t) ∈ {0, 1}.
The motivation for pursuing committee methods can be understood by analyzing the

prediction error of the combined system, i.e. the bias-variance decomposition (3.7) (for

simplicity, we hide the dependence on input t). We are interested in estimating the target

k by forming a linear combination of the yi

k̂ =
M∑

i=1

αiyi = α
′
y

where y = (y1, . . . , yM )
′

is the vector of the predictions of the committee members and

where α = (α1, . . . , αM )
′
is the vector of the weights. The expected error of the combined

system is

E(k̂ − k)2 = E(α
′
y − E(α

′
y))2 + E(E(α

′
y)− k)2

= E(α
′
(y − E(y)))2 + E(α

′
m− k)2 = α

′
Ωα + (α

′
m− k)2 (3.16)

where Ω is a M × M covariance matrix with Ωij = E [(yi − mi)(yj − mj)], and where

m = (m1, . . . ,mM )
′
is the vector of the expected values of the predictions of the committee

members. The term α
′
Ωα denotes the variance of the committee and α

′
m− k is the bias

of the committee. By setting αi = 1/M , we average the predictors, and (3.16) becomes

E(k̂ − k)2 =
1

M2

M∑

i=1

Ωii +
1

M2

M∑

i=1

M∑

j=1,j 6=i

Ωij +
1

M2

(
M∑

i=1

(mi − k)

)2

. (3.17)

Let us assume now that mean mi = mean, the variance Ωii = var and the covariances

Ωij = cov are identical for all members, then

E(k̂ − k)2 =
1
M

var +
M2 −M

M2
cov + (mean− k)2.

The last expression says that: 1) the bias of the combined system (mean− k) is identical

to the bias of each member and is not reduced. Therefore, estimators should be used

which have low bias and regularization, which introduces bias, should be avoided; 2) the

estimators should have low covariance, since this term in the error function cannot be

reduced by increasing M ; 3) the term corresponding to the variances of the committee

members decreases as 1/M . Definitely if we have estimators with low bias and low co-

variances between members, the expected error of the combined system is significantly
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less than the expected errors of the individual members. We can synthesize saying that

a committee can be used to reduce both bias and variance: bias is reduced in the design

of the members by using little regularization and variance is reduced by the averaging

process which takes place in the committee. Anyway, in practical problems things are not

so simple. In regression, t(t) corresponds to the optimal regression function and yi(t) to

the prediction of the i-th estimator. Here, the squared error is commonly used and the

bias-variance decomposition just described is applicable. In classification t(t) might corre-

spond to the probability of the class one, 1−k(t) to the probability for class two, and yi(t)

is the estimate of the i-th estimator for k(t). In this case one can proceed as described in

section 3.1.2 or employing other bias-variance decompositions suited for classification.

Averaging

In this approach, committee members are typically neural networks. The neural networks

are all trained on the complete training data set. A de-correlation among the neural

networks predictions is typically achieved by varying the initial conditions in training the

neural networks such that different neural networks converge into different local minima of

the cost function. Despite its simplicity, this procedure is surprisingly successful and turns

an apparent disadvantage, i.e. local minima in training neural networks, into something

useful. This approach was initialized in [54] and drew a lot of attention to the concept

of committee machines. Using the the Cauchy inequality in [54] is shown that even for

correlated and biased predictors the squared prediction error of the committee machines

is equal to or less than the mean squared prediction error of the committee members, i.e.,

(k̂ − k)2 ≤ 1
M

M∑

i=1

(yi − k)2.

This means that as long as the committee members have good prediction performance,

averaging cannot make things really worse; it is as good as the average model or better.

This can be also understood from the work described in [45]. Here it is shown that, in the

special case of averaging, αi = 1/M ,

(k̂ − k)2 =
1
M

M∑

i=1

(yi − k)2 − 1
M

M∑

i=1

(yi − k̂)2

which means that the generalization error of the committee is equal to the average of the

generalization error of the members minus the average variance of the committee members
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(the ambiguity) which immediately leads to the previous bound. In highly regularized

neural networks, the ensemble ambiguity is typically small and the generalization error is

essentially equal to the average generalization error of the committee members. If neural

networks are not strongly regularized the ensemble ambiguity is high and the generalization

error of the committee should be much smaller than the average generalization error of

the committee members.

Bagging

Bagging (Bootstrap aggregation) [10] is aimed to reduce the correlation between estimators

in order to further improve generalization performance. Let us assume that each committee

member is trained on a different data set. Then, surely, the covariance between the

predictions of the individual members is zero. Unfortunately, we have to work with a

fixed training data set. Although it is then impossible to obtain a different training data

set for each member, we can at least mimicry this process by training each member on

a bootstrap sample of the original data set. Bootstrap data sets [27] are generated by

drawing randomly K data points from the original data set of size K with replacement.

This means that some data points will appear more then once in a given new data set and

some other will not appear at all. The procedure is repeated M times obtaining M non-

identical data sets which are then used to train estimators. The output of the committee is

then obtained by simple averaging (regression) or by voting (classification). Experimental

evidence suggests that bagging typically outperforms simple averaging and voting. A key

point for bagging to work properly is that the committee members should be unstable. In

fact, for a given bootstrap sample, an instance in the training set has probability 1− (1−
1
m)m of being selected at least once in the m times instances which are randomly selected

from the training set. For large m, this is about 1 − 1
e = 63.2%, which means that each

bootstrap sample contains only about 63.2% unique instances from the training set. This

perturbation causes different estimators to be built if the basic estimators are unstable, and

performance can improve if these estimators are good and not correlated; however, bagging

may slightly degrade the performance of stable algorithms because effectively smaller

training sets are used for training each classifier. Unstable means that estimators should

be sensitive to changes in the training data set, e.g. neural networks should not be strongly

regularized. But recall that well regularized neural networks in general perform better than
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under -regularized neural networks and we are faced with another version of the bias-

variance dilemma: if we use under regularized neural networks we start with suboptimal

committee members but bagging improves performance considerably. If we start with

well regularized neural networks we start with well-performing committee members but

bagging does not significantly improve performance. Experimental evidence indicates that

the optimal degree of regularization is problem-dependent [63].

Stacked Generalization

In stacking [70], the weights αi are determined after training the committee members,

typically by using leave-one-out cross-validation. Here we have a modular network system,

with a set of M ’level 0’ networks N0
1 to N0

M whose outputs are combined using a ’level

1’ network N1. The idea is to train the level-0 networks first and examine their behavior

when generalizing. This provides a new training set which is used to train the level-1

network. The specific procedure for setting up the stacked generalization system is as

follows. Let the complete set of available data be denoted by D. We first leave aside a

single data point from D as a validation point, and treat the remainder of D as a training

set. All level-0 networks are then trained using the training partition and their outputs

are measured using the validation data point. This generates a single pattern for a new

data set which will be used to train the level-1 network N1. The inputs of this network

consist of the outputs of all the level-0 networks, and the target value is the corresponding

target value from the original full data set. This process is now repeated with a different

choice for the data point which is kept aside. After cycling through the full data set of N

points we have N patterns in the new data set, which is now used to train N1. Finally,

all of the level-0 networks are re-trained using the full data set D. Predictions on new

data can now be made by presenting new input vectors to the level-0 networks and taking

their outputs as the inputs to the level-1 network, whose output constitutes the predicted

output. In [70] it is suggested that the level-0 networks should contain a wide variety of

different models, while the level-1 network should provide a relatively smooth function

and hence should have a relatively simple structure.
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3.3 Committee Machines for Density Estimation

In literature the main part of the work has been made in the context of supervised learning

methods, hence all the techniques described so far were applied to this latter learning

paradigm. Less attention, indeed, was paid to unsupervised learning methodologies [72,

60, 68] and even fewer in the field of density estimation [59, 53], where stacking and bagging

were properly adapted to the unsupervised density estimation case. More recently boosting

[58, 33] is employed for density estimation [57] as well. From now on we shall concentrate on

the construction of an ensemble of generative latent variable models, namely an ensemble

of probabilistic principal surfaces, and hence for unsupervised density estimation.

Supervised and unsupervised methods share the same motivation we already mentioned

when adopting ensemble techniques to combining them. Furthermore, as stated in [59] and

[25], in density estimation tasks model uncertainty plays a crucial role in the predictive

error in inductive inference. Even when the model class under consideration contains the

true density, if we are only given a finite data set, then there is always a chance of selecting

the wrong model. Furthermore, even if the correct model is selected, there will typically be

an estimation error in the parameters of that model. This can be summarized by writing:

P (f |D) =
∑

M

∫
dθMP (θM |D, M)P (M |D)fM,θM

, (3.18)

where f is a density function we are assuming generates data set D, M is a model, and

θM is a set of values for the parameters for model M . The posterior probability P (M |D)

reflects model uncertainty, and the posterior P (θM |D, M) reflects uncertainty in setting

the parameters even knowing the model. It is worth noting that if we know P (M, θM ),

the Bayes’ theorem allows us to express the posteriors in (3.18) explicitly, so that we

explicitly have P (f |D) given by a weighted average of the fM,θM
. However, calculating

the combining weights is a difficult task, therefore it is natural to call for schemes for

combining multiple density models in an empirically-driven way.

3.3.1 Stacked PPS for Density Estimation: StPPS

The combining schema herein described may be seen as an instantiation of the method

proposed in [59]. Let us suppose we are given M probabilistic principal surface models

(i.e., M density estimators) {PPSm(t)}M
m=1, where PPSm(t) is the m-th PPS model.
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Note that in the original formulation given in [59], the M density estimators could also be

of different kind, for example finite mixtures with a fixed number of component densities

or kernel density estimates with a fixed kernel and a single fixed global bandwidth in each

dimension.

Now, going back to our model, each of the M PPS models can be chosen to be different

enough, i.e. by considering different clamping factors αm, number of latent variables and

latent base functions. To stack the M PPS models, we follow the procedure described

below (see also figure 3.3):

1. Let D the training data set, with size |D| = N . Partition D v times, as in v-fold

cross-validation. The v-th fold contains exactly (v − 1)N
v training data points and

N
v test data points both from the training set D. For each fold:

• (a) fit each of the M PPS model to the training portion of D.

• (b) evaluate the likelihood of each data point in the test partition of D, for each

of the M fitted models.

2. At the end of this preliminary steps, we obtain M density estimators for each of the

N data points which are organized in a matrix A, of size N ×M , where each entry

aim is PPSm(ti);

3. Use the matrix A to estimate the combination coefficients {αm}M
m=1 that maximize

the log-likelihood at the points ti of a stacked density model of the form:

StPPS(t) =
M∑

m=1

αmPPSm(t)

which correspond to maximize

N∑

i=1

ln

(
M∑

m=1

αmPPSm(ti)

)
,

as a function of the weight vector (α1, . . . , αM ). Direct maximization of this func-

tion is a non-linear optimization problem. We can apply the EM algorithm di-

rectly, by observing that the stacked mixture is a finite mixture density with weights

(α1, . . . , αM ). Thus, we can use the standard EM algorithm for mixtures, except

that the parameters of the component densities PPSm(t) are fixed and the only

parameters allowed to vary are the mixture weights.
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4. The concluding phase consists in the parameters re-estimation of each of the m

component PPS models using all of the training data D. The stacked density model

is then the linear combination of the so obtained component PPS models, with

combining coefficients {αm}M
m=1. It is worth stressing that this procedure becomes

quite heavy in terms of computational performance. Therefore, with increasing size

of the learning training sets, it is necessary to keep the number of PPS models low.

Furthermore the number of folds in the cross-validation procedure needs to be not

too high.

3.3.2 Experimental Results

The experiments follow the same organization described in last chapter. The difference is

to build a model in which a group of different PPS models (in particular, we decided to use

six PPS models in all the experiments), each of which has a fixed α value, are put together

in an ensemble via stacking. All the obtained results are averaged over 25 iterations of

the algorithm, in which every time a new training\test partition is randomly built. For

Synthetic catalog and GOODS catalog, the data are split in 60% for training and 40% for

testing, while for TNG data are split in 50% both for training and testing. An important

parameter for stacking is the number v of folds in the cross-validation procedure. In our

experiments we tried 5−fold and 10−fold cross-validation.

Synthetic Catalog

As shown in table 3.1, among the six different PPS models, not only the parameter α differs

but the number M of latent variables and the number L of basis functions too. Moreover,

the basis functions widths are set on the base of the number of basis functions. The

results depicted in figure 3.4 say that 5−fold cross-validation works better than 10−fold

cross-validation, in both the mean classification error (1.34 against 1.84, respectively) and

standard deviation (0.2606 against 0.4071, respectively). The minimum error reached is

1.05 as shown in table 3.2 where is also shown the corresponding confusion matrix. The

difference between 5−fold and 10−fold cross-validation could be explained by the fact

that the size of the training set is quite high, so a 10−fold cross-validation may lead to
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Figure 3.3: Steps of PPS stacking procedure.
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Parameters PPS1 PPS2 PPS3 PPS4 PPS5 PPS6

α 1 0.5 3 0.2 0.3 0.8

M 266 266 266 266 266 266

L 18 51 51 51 6 51

Lfac 2.2 2 2 2 2.5 2

iter 100 100 100 100 100 100

ε 0.01 0.01 0.01 0.01 0.01 0.01

Table 3.1: Synthetic Catalog: parameter setting for StPPS model.

Classifier type - Error(%) Confusion Matrix

StPPS − 1.05

Star Galaxy

Star 3943 27

Galaxy 57 3973

Table 3.2: Synthetic Catalog: confusion matrix computed by StPPS best result.

over-fitting problems (recall that in our PPS models we don’t employe any regularization

method).

GOODS Catalog

In GOODS catalog the behavior of the stacked model, for which the parameters are set as

in table 3.3, is inverted in terms of 5−fold and 10−fold cross-validation. In fact here we

have better results for 10−fold cross-validation (mean classification error 2.87 and standard

deviation 0.1344) with respect to 5−fold cross validation (mean classification error 3.44

and standard deviation 0.4720) as can be seen from figure 3.5. This is reasonable as the

number of training data for the first three classes (Star, Galaxy and StarD) are much less

than the number of training data for class GalaxyD, so a higher number of folds lead to a

better fit to data. Confusion matrix corresponding to the minimum error (1.05) is shown

in table 3.4.
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Figure 3.4: Synthetic Catalog: errors over 25 StPPS iterations.

Parameters PPS1 PPS2 PPS3 PPS4 PPS5 PPS6

α 1.4 1.2 0.8 0.6 1.6 2.0

M 266 266 266 266 615 615

L 18 83 83 83 83 83

Lfac 1 2 1.5 1.1 1.3 2

iter 100 100 100 100 100 100

ε 0.01 0.01 0.01 0.01 0.01 0.01

Table 3.3: GOODS Catalog: parameter setting for StPPS model.
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Figure 3.5: GOODS Catalog: errors over 25 StPPS iterations.

Classifier type - Error(%) Confusion Matrix

StPPS − 2.62

Star Galaxy StarD GalaxyD

Star 92 4 2 0

Galaxy 76 1234 2 36

StarD 0 0 52 36

GalaxyD 0 8 134 9688

Table 3.4: GOODS Catalog: confusion matrices computed by StPPS best model.
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Parameters PPS1 PPS2 PPS3 PPS4 PPS5 PPS6

α 1 1.4 1.8 2.0 0.8 1.6

M 62 62 62 62 62 62

L 18 18 18 6 11 27

Lfac 1 1 1 1 1 1

iter 100 100 100 100 100 100

ε 0.01 0.01 0.01 0.01 0.01 0.01

Table 3.5: TNG Data: parameter setting for StPPS models.

Classifier type - Error(%) Confusion Matrix

StPPS − 0.091

Good Medium Bad

Good 2230 0 11

Medium 0 3680 0

Bad 0 0 6129

Table 3.6: TNG Data: confusion matrix computed by StPPS best model.

TNG Telemetry Data

We used a less complex PPS models (see table 3.5) as suggested by the experiments on

TNG data with PPSRM and PPSPR. The results are depicted in figure 3.6 and table

3.6. For which concerns the stacked model performance using 5−fold and 10−fold cross

validation, the trend is similar to GOODS catalog results, with better results for 10−fold

cross-validation with respect to 5−fold cross-validation, even though the difference between

them is reduced.
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Figure 3.6: TNG Data: errors over 25 StPPS iterations.

3.3.3 Committee of PPS via Bagging: BgPPS

The second combining schema here proposed employees bagging as mean to average single

density estimators, in our case probabilistic principal surfaces, in a way similar to the model

proposed in [53]. All we have to do is to train a number M of PPS with M bootstrap

replicates of the original learning data set. At the end of this training process, we obtain

M different density estimates which are then averaged to form the overall density estimate

model. Formally speaking, let D be the original training set of size N and {PPSm}M
m=1 a

set of PPS models:

1. create M bootstrap replicates (with replacement) of D, {DBoot(m)}M
m=1 with size

N ;

2. train each of the M PPS models with a bootstrap replicate DBoot;

3. at the end of the training we obtain M density estimates {PPSm}M
m=1;

4. average the M density estimates {PPSm}M
m=1 as

BgPPS(t) =
1
M

M∑

m=1

PPSm(t).



Chapter 3. Committee of Probabilistic Principal Surfaces 71

As we shall see in the next section looking at the experimental results, we use bagging

to build a ”bagged” density estimate (possibly, improved) from which computing the

posterior class probability.

A natural question using bagging arise, i.e. how many bootstrap replicates we have to

use? In [10] Breiman suggested that this number comes from the empirical evidence, and

indicated 50 replicates for classification (and 25 for regression) and this number should

increase with increasing number of classes. Obviously setting the number of bootstrap

replicates faces with the complexity of the models adopted. Neural networks and models

like probabilistic principal surfaces require much more training time with respect to other

procedures like, for instance, CART used by Breiman. For our model, this number is fixed

as a compromise between computational efficiency and accuracy of classification task as

it will be showed in the next section.

3.3.4 Experimental Results

For bagging there are two possibilities to build our model. One can decide to use a

single PPS model with its own parameters setting and to bag it in order to improve

its performance. Although this schema employees just one PPS model it could still be

considered as an ensemble since being the PPS learning algorithm based on the EM

algorithm the Gaussian mixture models differs, since optimization procedure typically

terminates in different local minima if different starting points are used. The alternative

is to bag a number of different PPS models (different α values, variable number of latent

nodes and basis function). In our experiments we bag ten PPS models (one for each value

of α ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}) in order to assess the best α value. The

PPS models are trained on 20 bootstrap replicates of the training data set (hence we have

a committee of 20 PPS models whose responses are averaged). We average the results on

25 iterations of the algorithm in which a new training\test partition is randomly generated

as described in the section 3.3.2 (60 \ 40 for Synthetic and GOODS catalogs, 50 \ 50 for

TNG data).
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Parameter Value Description

M 266 number of latent variables

L 102 number of basis functions

Lfac 1 basis functions width

iter 100 maximum number of iteration

ε 0.01 early stopping threshold

Table 3.7: Synthetic Catalog: parameter setting for combined PPS via Bagging.

Synthetic Catalog

As almost usual, the parameter setting is shown in table 3.7. On synthetic catalog, bagging

performs very well for values of clamping factor α between [1.0, 2.0], where the best mean

classification error and standard deviation results are obtained. In particular, for α = 2.0

BgPPS reaches its minimum mean classification error (0.24) (see figure 3.7 and table 3.8).

Table 3.9 shows confusion matrix and corresponding classification error in the best case.
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Figure 3.7: Synthetic Catalog: error bars for BgPPS (errors averaged over 25 iterations

for fixed α).

α Mean Classification Error (%) Standard Deviation

0.2 2.50 0.3192

0.4 1.98 0.3379

0.6 1.43 0.4268

0.8 1.29 0.2640

1.0 0.57 0.2226

1.2 0.72 0.2186

1.4 0.50 0.1387

1.6 0.65 0.1908

1.8 0.45 0.1231

2.0 0.24 0.1412

Table 3.8: Synthetic Catalog: mean classification error (%) for BgPPS (errors averaged

over 25 iterations for fixed α).
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Classifier type Confusion Matrix Best model α

BgPPS

Star Galaxy

Star 3996 0

Galaxy 4 4000

2.0

Table 3.9: Synthetic Catalog: confusion matrix computed by BgPPS best model.

Parameter Value Description

M 266 number of latent variables

L 83 number of basis functions

Lfac 1 basis functions width

iter 100 maximum number of iteration

ε 0.01 early stopping threshold

Table 3.10: GOODS Catalog: parameter setting for combined PPS via Bagging.

GOODS Catalog

For GOODS catalog the results are more fluctuating for each of the α values. In fact

the best results are obtained between the interval [0.2, 0.6] and [1.4, 2.0]. The overall best

result falls in the second interval, in particular for α = 1.8 (mean classification error 2.74

and standard deviation 0.3987) even though BgPSS with α = 0.6 obtains a lower standard

deviation value (0.1725). The minimum classification error with confusion matrix is shown

in table 3.12.



Chapter 3. Committee of Probabilistic Principal Surfaces 75

0 0.5 1 1.5 2 2.5
2

3

4

5

6

7

8

9

10

11

GOODS Catalog: BgPPS error bars

α (clamping factor)

m
ea

n 
cl

as
si

fic
at

io
n 

er
ro

r 
(%

)

std min=0.1725
std max=1.1137

Figure 3.8: GOODS Catalog: error bars for BgPPS (errors averaged over 25 iterations

for fixed α).

α Mean Classification Error (%) Standard Deviation

0.2 3.71 0.6973

0.4 3.58 0.2885

0.6 3.12 0.1725

0.8 4.39 0.9490

1.0 4.02 0.5811

1.2 3.73 0.9887

1.4 3.66 1.1137

1.6 3.27 0.5518

1.8 2.74 0.3987

2.0 3.17 0.2812

Table 3.11: GOODS Catalog: mean classification error (%) for BgPPS (errors averaged

over 25 iterations for fixed α).
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Classifier type - Error (%) Confusion Matrix Best model α

BgPPS − 2.15

Star Galaxy StarD GalaxyD

Star 155 35 12 5

Galaxy 8 1160 6 8

StarD 0 0 64 7

GalaxyD 5 51 108 9740

1.8

Table 3.12: GOODS Catalog: confusion matrix computed by BgPPS best model.

TNG Telemetry Data

For TNG, parameter setting is shown in table 3.13. With increasing α values BgPPS

decreases the obtained mean classification error until α = 0.8, then becoming more stable

with little fluctuations in the mean classification errors for the remaining values of α.

The minimum is reached for α = 1.4 (mean classification error equal to 0.12) as can be

seen from figure 3.9 and table 3.14. The minimum error and the corresponding confusion

matrix is shown in table 3.15. As we shall see in the next section where we compare the

performance of each of the model seen so far, TNG data is the unique case in which BgPPS

does not perform better with respect to the other models (in particular with respect to

PPSRM and PPSPR). For this reason a further BgPPS model is built whose committee is

formed by 25 different PPS models each one with the same parameter setting except the

values of α which ranges between 0.1 and 4.49 as shown in table 3.16. In substance, we

wish to assess if increasing the variability in the PPS model components of the committee

we gain better results. In table 3.17 are shown the mean classification error and standard

deviation over 25 iterations and in table 3.18 the minimum error over the 25 iterations and

the corresponding confusion matrix. As expected by introducing more variability in the

PPS model components we gain something in terms either the mean classification error

and standard deviation, even though the difference is very small in mean classification

error (0.11% for different α values components against 0.12% for BgPPS with best α

value) while more sensible in the standard deviation value (0.0118 for different α values

components against 0.0225 for BgPPS with best α value).
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Parameter Value Description

M 33 number of latent variables

L 6 number of basis functions

Lfac 1 basis functions width

iter 100 maximum number of iteration

ε 0.01 early stopping threshold

Table 3.13: TNG Data: parameter setting for combined PPS via Bagging.
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Figure 3.9: TNG Data: error bars for BgPPS (errors averaged over 25 iterations for

fixed α).
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α Mean Classification Error (%) Standard Deviation

0.2 0.72 0.2377

0.4 0.42 0.2582

0.6 0.29 0.2170

0.8 0.14 0.0183

1.0 0.13 0.0280

1.2 0.13 0.0209

1.4 0.12 0.0225

1.6 0.13 0.0110

1.8 0.15 0.0292

2.0 0.15 0.0156

Table 3.14: TNG Data: mean classification error (%) for BgPPS (errors averaged over

25 iterations for fixed α).

Classifier type - Error (%) Confusion Matrix Best model α

BgPPS − 0.091

Good Medium Bad

Good 2230 0 11

Medium 0 3680 0

Bad 0 0 6129

1.8, 1.4, 1.2, 1.0

Table 3.15: TNG Data: confusion matrix computed by BgPPS best model.
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α M L Lfac iter ε

0.1 33 6 1 100 0.01

0.2 33 6 1 100 0.01

0.3 33 6 1 100 0.01

0.4 33 6 1 100 0.01

0.5 33 6 1 100 0.01

0.6 33 6 1 100 0.01

0.7 33 6 1 100 0.01

0.8 33 6 1 100 0.01

0.9 33 6 1 100 0.01

1.0 33 6 1 100 0.01

1.1 33 6 1 100 0.01

1.2 33 6 1 100 0.01

1.3 33 6 1 100 0.01

1.4 33 6 1 100 0.01

1.5 33 6 1 100 0.01

1.6 33 6 1 100 0.01

1.7 33 6 1 100 0.01

2.16 33 6 1 100 0.01

3.33 33 6 1 100 0.01

4.49 33 6 1 100 0.01

Table 3.16: TNG Data: parameter setting for combined PPS via Bagging (different α

values).
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Mean Std

0.11 0.0118

Table 3.17: TNG Data: BgPPS with different α values result (averaged over 25 itera-

tions).

Classifier type - Error(%) Confusion Matrix

BgPPS − 0.082

Good Medium Bad

Good 2230 0 10

Medium 0 3680 0

Bad 0 0 6130

Table 3.18: TNG Data: confusion matrix computed by BgPPS (different α values).

3.3.5 PPSRM, PPSPR, StPPS and BgPPS comparison

Having made all the experiments with single PPS model classifiers (PPSRM and PPSPR)

and the two committee of PPS schemes proposed (StPPS and BgPPS ), what remains to

do is to compare them all together. In order to be clear we address the comparison task

separately, one for each of the used data sets. For each case two types of figures are shown:

• mean classification error plots for PPSRM, PPSPR and BgPPS, in which the errors

are showed for each of the ten α values used;

• bar chart of the best model mean classification errors and standard deviations for

PPSRM, PPSPR, StPPS and BgPPS. Obviously, saying best model we mean the

best model α value only for PPSRM, PPSPR and BgPPS, whereas for StPPS we only

have the model result over 25 iterations (since in StPPS we employee a committee

of PPS with different α values).

Synthetic Catalog

As can be seen from figure 3.10 BgPPS outperforms either PPSR and PPSPR for near

all the values of clamping factor α used. Moreover, from figure 3.11 is clear that BgPPS
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Figure 3.10: Synthetic Catalog: mean errors for PPSRM, PPSPR and BgPPS (errors

averaged over 25 iterations for fixed α).

outperforms StPPS. This latter model performs better of the single model classifiers on

average, even though PPSPR for just one α value reaches a better result.

GOODS Catalog

GOODS catalog classification task is more complex (we shall discuss this issue from a

graphical point of view in the next chapter). This is evident from the results obtained by

the different classifiers used. However, even in this case BgPPS outperforms all the other

models (PPSRM, PPSPR and StPPS ). Moreover, Stacked PPS here outperforms both

PPSRM and PPSPR. Among the two single PPS classifier models, PPSPR is still better

than PPSRM (see figures 3.12 and 3.13).

TNG Data

TNG data in this thesis, provides the simpler classification task. In fact, the classes (we

shall see in the next chapter) are well separated, due to the features chosen but, above
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Figure 3.11: Synthetic Catalog: bar chart for PPSRM, PPSPR, StPPS and BgPPS best

models statistics (averaged over 25 iterations).

all, for the limited number of observational sessions used. Actually, the problem is not so

easy but more reliable results will be obtained when more observational sessions for each

quality class (Good, Medium and Bad) will be available. This is to justify the fact that

PPSRM outperforms very clearly all the remaining PPS classifier models as it can be

seen from figures 3.14 and 3.15. BgPPS performs better than PPSPR and StPPS, but the

differences are smaller with respect to the previous data sets. We tried to improve BgPPS

performances by adopting a committee built with PPS models with different clamping

factors α effectively improving only a little bit the performances. In conclusion it can be

stated that the committees of PPS perform better than single PPS, eve though this is clear

for the ensemble of PPS built via bagging. Stacked PPS, instead, has less stable results but

it seems a promising combining schema after all, since we did few experiments by varying

the PPS component complexity. We rather focused, on the impact of cross-validation

which appears as of primary importance. Last consideration is about the complexity of

committee combining schema, which is computationally expensive, since we have to train

a number of different PPS models. Bagged PPS, anyway is less expensive with respect to
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Figure 3.12: GOODS Catalog: mean errors for PPSRM, PPSPR and BgPPS (errors

averaged over 25 iterations for fixed α).

stacked PPS, primarily when a high number o folds in cross-validation for stacked PPS is

used. Nevertheless, the search for the best model in the case of the single PPS classifiers,

might involve the training of a considerable number of PPS.
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Figure 3.13: GOODS Catalog: bar chart for PPSRM, PPSPR, StPPS and BgPPS best

models statistics (averaged over 25 iterations).
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Figure 3.14: TNG Data: mean errors for PPSRM, PPSPR and BgPPS (errors averaged

over 25 iterations for fixed α).
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Figure 3.15: TNG Data: bar chart for PPSRM, PPSPR, StPPS, BgPPS and BgPPSma

best models statistics (averaged over 25 iterations).



Chapter 4

Spherical PPS Data Visualization

In this chapter an overview of the visualization possibilities offered by the PPS framework

is provided. Next, we describe the visualization capabilities added to the system. Finally,

we give a brief introduction of our developed easy-to-use graphical user interface which

integrates all the functionalities described, then the overall visualization possibilities are

illustrated for each of the used data sets (Synthetic, GOODS and TNG).

4.1 Visualizations offered by Spherical Probabilistic Princi-

pal Surfaces

As already mentioned in section 2.2.3, the spherical manifold can be used as an unsuper-

vised high−D data visualization tool. After a PPS model is fitted to the data, the data

themselves are projected into the latent space as points onto a sphere. The latent manifold

coordinates x̂n of each data point tn are computed as

x̂n ≡ 〈x|tn〉 =
∫

xp(x|t)dx =
M∑

m=1

rmnxm (4.1)

and these coordinates lie within a unit sphere. In figure 4.1 an example of such a pro-

jection is sketched. From the figure it is clear that the visualization appears confused in

the crowded areas because the data points lying on the opposite sides of the sphere are

overlapped. Therefore, as we shall see in the next paragraphs, we draw a unit sphere

under the data so that the data lying on the opposite side is hidden to the user, who can,

eventually, rotate the sphere to look at all the data interactively. Obviously this means

that data points lying in the volume of the sphere must be projected on the surface in
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Figure 4.1: A typical data projection on a sphere in the latent space. As it can be seen,

even though this representation is already better with respect to other visualization (i.e,

PCA) and useful for a first investigation on the data, the data lying on the opposite sides

of the sphere can be confused when this regions are particularly crowded.
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order to be properly visualized. This is the only type of visualization possible in the latent

space. Eventually, one can show the manifold shape into the input space along with the

input data in two or at most three dimensions. Obviously the projection of input data

into latent space is useful to gain some insights into the class shapes, the overlap amount

between classes and so on. However, for data mining goals these visualizations do not

appear an efficient tool since there is no interaction at all between the user and the data.

For example, for the astronomers it is of primary importance to have the chance to select

a data point or a group of data points and to know to what pattern it corresponds in the

original catalog in order to make inference about the similarity or dissimilarity between

objects or to establish the nature of such a group (Stars, Galaxy, etc.). All these requests

can be satisfied by the visualization options we are going to describe in the next section.

4.2 Further visualization capabilities added to PPS

Basically, our aim is to allow the user to:

• easily interact with the data into the latent space, hence with the data onto the

sphere in several ways,

• to visualize the data probability density in the latent space so giving a first under-

standing about the clusters in the data,

• finally to fix a number of clusters and visualize it. Eventually, at the end of this

option one could still interact with the data by selecting data points in a given cluster

and make a number of comparisons.

4.2.1 Interactively selecting points on the sphere

Having projected the data onto the latent sphere, it is advisable for a data analyzer to

localize the most interesting data points (obviously, this depends on the application at

hand), for example the ones lying far away from more dense areas, or the ones lying in

the overlapping regions between clusters, and to gain some information about them, by

linking the data points on the sphere with their position in the catalog which contains all

the information about the typology of the data. Eventually, if the images corresponding to
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Figure 4.2: Data points selection phase. The bold black circles represent the latent

variables; the blue points represent the projected input data points. While selecting a

latent variable, each projected point for which the variable is responsible is colored. By

selecting a data point the user is provided with information about it: coordinates and

index corresponding to the position in the original catalog.

the catalog would be available to the user then he can visualize the object in the original

image which corresponds to the data point selected onto the sphere. These possibilities

are fundamental for the astronomers who may be able to extract important meanings

from the data and for all the data mining activities. In figure 4.2 the functionality just

described is depicted. Furthermore, the user is also allowed to select a latent variable and

coloring all the points for which the latent variable is responsible.

4.2.2 Visualizing the latent variable responsibilities on the sphere

The only projections of the data points onto the sphere provide only partially information

about the clusters inherently present in the data: if the data are strongly overlapped

the data analyzer can not derive any information at all. A first insight on the number

of agglomerate localized onto the spherical latent manifold is provided by the mean of

the responsibility for each latent variable. In details, from equation 4.1, we saw that

each latent variable onto the spherical manifold has an associate value which measures its

amount of responsibility for the overall input data points. Therefore, if we build a spherical
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Figure 4.3: Clusters computed by k-means on the spherical latent manifold (left) opposite

side of the same sphere (right).

manifold which is composed by a set of faces each one delimited by four vertices (and these

latter corresponding to latent variables) we can then color each face with colors varying

in intensity on the base of the values of the responsibility associate to each vertex (and

hence, to each latent variable). The overall result is that the sphere will contain regions

more dense with respect to other and this information is easily visible and understandable.

Obviously, what can happen is that a more dense area of the spherical manifold might

contain more than one cluster, and this can be validated by further investigations.

4.2.3 A method to visualize clusters on the sphere

Once the user or a data analyzer has an overall idea of the number of clusters on the sphere,

he can then exploit this information through the use of classical clustering techniques (such

as hard or fuzzy k-means [3]) to find out the prototypes of the clusters and the data therein

contained. This task is accomplished by running the clustering algorithm on the projected

data. In general, since the data points lie in the volume of the unit spherical manifold

and not necessarily on the surface, we need, after the clustering algorithm run, to project

each computed prototype onto the surface of the spherical latent manifold. Afterwards,

one may proceed by coloring each cluster with a given color (see figure 4.3).
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Figure 4.4: The PPS Graphical user interface main window. In the left panel the pa-

rameter of the PPS are listed, while in the right panel are shown a text window for the

training results, and the buttons for starting the training and the plot options.

4.3 An easy to use interface to PPS

The visualization options so far described have been integrated in a user-friendly graphical

user interface which provides a unified tool for the training of the PPS model, and next,

after the completion of the training phase, to accomplish all the functions for the visual-

ization and the investigation of the given data set. Figure 4.4 shows the main interface

from which it is possible to carry on the setting of the PPS parameters, and from which

one can select the plotting options. These plotting options, are grouped in a single vertical

toolbar (see figure 4.5). As already done with the classification algorithms described in

the previous sections, all the software was implemented in the Matlab computing Envi-

ronment exploiting and adapting the LANS Matlab Toolbox. This software was used to

make all the experiments we are going to describe in the next section.

4.3.1 Synthetic Catalog Visualizations

The visualizations showed in the following are computed with the best model PPS derived

during the classification tasks described in chapter 2. Figure 4.6 shows three different visu-

alizations for the synthetic catalog, namely, 3−D PCA visualization, the SOM U-matrix
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Figure 4.5: The plot bar to start the plotting options.

and the spherical PPS projections. Recall, that the SOM U-matrix [67], visualizes the

clustering structure of the SOM as distances between neighboring map units: high values

of the U-matrix indicate a cluster border, uniform areas of low values indicate clusters

themselves. PPS projections onto the spherical latent manifold appear far and away more

readable than PCA where all the data appear as a unique overlapped agglomerate (except

a little isolated group), and than SOM U-matrix which provides the same information

of PCA, a large unique cluster: there is a large agglomerate of data points in which, by

rotating the sphere, it is possible to localize two main clusters divided by a little region

of less dense data points. In figure 4.7 the PPS projections with class labels and the

corresponding latent variable probability density function are shown. By rotating the

sphere with density, two high density regions are highlighted with other few lower density

regions. This visualization result confirms the a priori knowledge we have about the data

set and the good classification performance exhibited by the PPS in chapters 2 and 3.

Finally, figure 4.8 displays the variable probability densities from class Star and Galaxy,

respectively, where it is worth noting how these densities are quite different and, hence,

representative of these classes.
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Figure 4.6: Synthetic Catalog - clockwise from upper left: 3 − D PCA visualization

corresponding to the 3 largest eigenvectors; SOM U-Matrix (grid size: 32×22); Projections

onto PPS latent manifold.
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the corresponding probability density onto the latent manifold.



Chapter 4. Spherical PPS Data Visualization 95

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Synthetic Catalog: PPS Class Star Density in Latent Space

0

2

4

6

8

10

12

x 10
−3

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Synthetic Catalog: PPS Clas Galaxy Density in Latetn Space

2

4

6

8

10

12

x 10
−3

Figure 4.8: Synthetic Catalog: (left) class Star probability density (right) class Galaxy

probability density.

4.3.2 GOODS Catalog Visualizations

As already told, the GOODS catalog, is a very complex data set which exhibits four

strongly overlapping classes. In fact, as it can be seen from figure 4.9, the PCA and

SOM visualizations give no interesting information at all, since they display only a single

large group of data. In PCA, the class GalaxyD (whose objects are yellow colored), which

contains the majority of objects (about 24000) is near totally hidden. The PPS projec-

tions, instead, show a large group consisting of the objects belonging to GalaxyD class

and overlapping objects of the remaining classes and a well bounded group of Galaxy class

objects (see the PPS projections with and without labels in figure 4.9). It is meaningful

to compute the PPS manifold for each one of the 4 classes. The projections onto the

latent manifold are displayed in figure 4.10 while in figure 4.11 the corresponding latent

variable probability densities are shown. Note, especially, how different these densities

appear for each class. It is clear, from these visualizations the reason for which the PPS

classification performances for the GOODS catalog obtained in chapters 2 and 3 are worse

than performances obtained with the synthetic catalog.
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Figure 4.9: GOODS Catalog - Clockwise from upper left: 3 − D PCA visualization

corresponding to the 3 largest eigenvectors; SOM U-matrix (grid size: 37×28); Projections

onto the PPS latent manifold with class labels and Projections onto PPS latent manifold

without class labels.
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Figure 4.10: GOODS Catalog - Clockwise from upper left: input data point projections

onto the sphere for classes Star, Galaxy, GalaxyD and StarD.



98 Chapter 4. Spherical PPS Data Visualization

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

GOODS Catalog: PPS Class Star Density in Latent Space

0

0.005

0.01

0.015

0.02

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

GOODS Catalog: PPS Class Galaxy Density in Latent Space

0

1

2

3

4

5

6

7

8

9

x 10
−3

−1

−0.5

0

0.5

1 −1−0.8−0.6−0.4−0.200.20.40.60.81

−1

−0.5

0

0.5

1

GOODS Catalog: PPS Class StarD density in Latent Space

0.005

0.01

0.015

0.02

0.025

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

GOODS Catalog: PPS Class GalaxyD Density in Latent Space

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Figure 4.11: GOODS Catalog - Clockwise from upper left: probability density functions

into the latent space for classes Star, Galaxy, GalaxyD and StarD.



Chapter 4. Spherical PPS Data Visualization 99

4.3.3 TNG Data Visualizations

Looking at the plots in figure 4.12 it is clear that the TNG data represent a simpler problem

for PPS and for PCA and SOM as well. The data appears well separated, and this explains

the almost perfect classification results described in chapters 2 and 3. It is interesting to

note how, in particular in the PPS projections, the data points are superimposed each

other (recall that the entire TNG data set is composed by 24118 objects). This is due to the

parameter selection phase which caused each object belonging to the same class, to have

near the same values in all the parameters. The important thing to note here is that each

class has its own parameter configuration enough different each other. Figure 4.13 displays

the PPS data projections with class labels and the corresponding probability density in the

latent space. In this latter plot 3 high density regions are evident (by rotating the sphere)

which correspond to the 3 data classes. For each class the corresponding latent variable

responsibility is also plotted (figure 4.14). For the TNG data it is of primary importance to

establish the influences of each parameter, therefore, for this aim, a PPS model was trained

on the data by sequentially eliminating the Azimuth, the Azimuth and the Elevation, and

Azimuth, Elevation and Rotator position, respectively, in order to assess their weight in

the obtained results, which are depicted in figures 4.15 and 4.16. This preliminary results

indicate that the only Azimuth has a little influences for discriminating between classes

(the corresponding PPS projections and responsibility plots are very similar with respect

the use of all the parameters) while eliminating the Elevation and the Rotator position

led to lightly different projections on the sphere and latent variable responsibility. At first

glance Elevation and Rotator position seem to have the same importance. As stressed in

section 3.3.5, for TNG data, there is the need to have more observational sessions with

several diversified cases for each kind of class in order to gain more reliable results.
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Conclusions

This thesis studied in depth two well known nonlinear latent variable models, namely the

Generative Topographic Mapping (GTM ) and the Probabilistic Principal Surfaces (PPS ),

showing how the latter model seems to be the most flexible and efficient in several data

mining activities, specially for high-D data classification and visualization. Above all, the

spherical PPS, which consists of a spherical latent manifold lying in a three dimensional

latent space, is better suitable to high-D data since the sphere is able to capture the

sparsity and periphery of data in large input spaces which are due to the curse of dimen-

sionality. Nevertheless, it was also shown that PPS may be enhanced both in classification

and visualization tasks:

PPS for Classification PPS builds a probability density function in the input data

space which is composed by a mixture of Gaussians whose parameters, fixed the log-

likelihood function, are derived through the Expectation-Maximization algorithm

(EM). However, specially for high-D data, the EM algorithm is inherently unstable,

due to the singularity of the log-likelihood function and for the local optima. There-

fore, we developed a committee of PPS taking inspiration by [53], to compute more

accurate density models which are averaged over the single density models computed

by the PPS components. The way this is done is through two diverse combining

schemes, i.e. Bagging and Stacking. By computing the posterior class probability, as

expected, the classification performance improved substantially. This work enlarges

the area of committee machines applied to unsupervised learning algorithm and for

density estimation, usually a less developed field with respect to the supervised case.

PPS for Visualization In [17], some examples of spherical PPS visualization are pro-

vided, and while it appeared very appealing, it is not enough for large data mining
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applications. Hence, the basic functionalities provided in the PPS framework, have

been enriched with a number of visualization options which are proved to be very

effective for the interpretation of the data at hand:

• Interactive selection of regions of sample points projected onto the sphere for

further analysis. This is particularly useful to profile groups of data.

• Visualization of the latent variable responsibilities onto the sphere as a colored

surface plot. Specially, useful to localize more and less dense areas to find out

a first number of clusters present into the data, and to highlight the regions

where lies outliers.

• A method to exploit the information gathered with the previous visualization

options through a clustering algorithm to find out the clusters with the corre-

sponding prototypes and data points.

Both the classification and visualization tasks have been proved effective in a complex

application domain: astronomical data analysis. Astronomy is a very rich field for a

computer scientist due to the presence of a very huge amount of data. Therefore, every

day there is the need to resort to efficient methods which often are neural networks-based.

In all the used astronomical data sets, a synthetic one, and two real world data sets, the

committee of PPS classifier performed very well, far and away outperforming the standard

methods usually adopted by astronomers. Furthermore, in its own way the spherical PPS

for visualization represents the first tool for astronomical data mining which gives to the

astronomers the possibility to easily interact with the data. Although the study of the

methods addressed in this dissertation is devoted to the astronomical applications, the

system is general enough to be used in whatever data-rich field to extract meaningful

information.

5.1 Future developments

There are many way to further develop the models described in this thesis. In the following

we propose two directions:

1. In committee of PPS via staking, for example, one way to enhance the stacked model

is to make the coefficients αi, i = 1, . . . , M dependent on the data as suggested in
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[59] as done in the hierarchical mixture of experts model [42]. So doing, the input

data space is partitioned into regions for which a PPS component is responsible.

2. To build a hierarchical PPS for constructing localized nonlinear projection manifold

as already done for GTM [65] and previously for a linear latent variable model

[8]. Following [65], a hierarchy of PPS could be organized in a tree whose root

corresponds to the PPS model trained on the entire data set at hand, and whose

nodes, built interactively in a top-down fashion, represent PPS models trained in

localized regions of the data input chosen in the ancestor plot PPS by the user,

interactively. In all the sub-models one might exploit all the visualization options

developed in this thesis.
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Appendix

6.1 Astronomical Data Sets used in the thesis

6.1.1 Stars/Galaxies Synthetic data

The catalogs contain 10000 simulated objects each. The photomteric information (i.e.

the magnitudes) for each object was obtained by the convolution of some template spec-

tral energy distributions (SEDs) with the chosen photometric system (i.e. the filters).

Our simulated observation is performed with VLT filters (FORS + ISAAC instruments)

therefore our fake observations are very deep.

In table 6.1 the completeness magnitudes for each filter (i.e. the maximum magnitude

at which we expect to see all objects in a specific filter and to have an error of about 0.1)

are listed. The photometric errors are introduced as Gaussian noise plus a zeropoint error,

added quadratically, that takes into account any systematic error.

The STARS catalog

The stellar spectra flux library we used was published by Pikles [55] and consists of 131 flux-

calibrated spectra, encompassing all normal spectral types and luminosity classes at solar

abundance, and metal-weak and metal-rich F-K dwarf and G-K giant components. Each

spectrum of the library was formed by combining data from several sources overlapping

in wavelength coverage. The library has a complete spectral coverage from 1150 to 10620

Angstrom for all the components and to 25000 Angstrom for about half of them, mainly

later types of solar abundance. Because we need to have photometry from ultraviolet

(UV) to near infrared (NIR), i.e. from 3000 to 20000 Angstrom, this library is an ideal
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Filter s/n Mag

U 10 27

B 10 27.5

V 10 27.5

R 10 27.5

I 10 28

J 10 24

H 10 24

Ks 10 24

Table 6.1: Completeness magnitudes for each filter

tool for our goal. The simulated sources were selected in the R band as those having a

R magnitude in the range between 22 and 25, no reddening was applied and a minimum

error of 0.05 was quadratically added.

The GALAXIES catalog

The construction of a fake galaxies catalog is a more tricky job in the sense that more

paremeters are involved. For this purpose we used the Bruzual - Charlot code [13]. The

code, GISSEL98 (Galaxy Isochrone Synthesis Spectral Evolution Library), provides spec-

tral synthesis models. The stellar population synthesis models are based on stellar tracks

libraries: then, a spectral energy distribution is assigned to all stars on the evolutionary

tracks. Then, the Initial Mass Function (IMF) and the Star Formation Rate (SFR) must

be specified to follow the evolution of the integrated spectrum. In a few words, the IMF

specifies the distribution in mass of newly formed stellar population and the SFR says

how many stars are formed as function of time, the birthrate of stars. While for the IMF

the standard Miller and Scalo law [50] is adopted, for the SFR one has to choose different

laws in order to end up with different types of galaxies. We have choosen different SFRs

in order to have all the different galaxies spectra we know in nature: from Ellipticals to

the Irregular Starbursts passing trough all kind of Spiral Galaxies. The sample is selected

again in the R band as those having a R magnitude in the range between 22 and 25.
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All the galaxies are formed at a redshift of 10 and randomly taken in the redshift range

from 0 to 3 to fill up the catalog. A Lambda CDM in considered for the age (redshift)

estimate with H0 = 70 (Hubble constant), OMEGAM = 0.3 (matter density parameter)

and OMEGAV = 0.7 (Lambda density parameter). A reddening, due to extragalactic

absorption, in the form of the Calzetti law is considered [15]. A minimum error of 0.05

was quadratically added. Two aspects are worth noting:

1. The number counts are obviously in no way representative of the real number counts

one could obtain from a real survey (GOODS), in the sense that you will never end

up with the same number of galaxies and stars in a catalog for a normal extragalactic

survey;

2. Because of the tricky job of creating a galaxy catalog, there are a lot of different

possible solutions: this is only one of the many. However, the important thing in our

case is to have simulated objects having different physical properties as it happens

in the two catalogs.

6.1.2 GOODS Catalog

The Great Observatories Origin Deep Survey (GOODS)1, covers at several wavelengths

the Chandra Deep Field South (CDF-S) [56]. The available catalogs provide photometric

multi-wavelength data reduced to a common system: optical broad band UBVRI photom-

etry obtained using the Wide Field Imager (WFI) at the ESO/MPG 2.2m telescope, near

infrared (JHK) photometry obtained with the SOFI imager at the ESO/NTT. Additional

information on the X and radio fluxes are also available but since they will not be used here,

we shall neglect them. Object catalogues were extracted using the package S-Extractor [2]

from each co-added image were combined in a multi-color list: the UBVRIJK catalogue

contains more than 28000 sources (WFI + SOFI) in an area of approximately 0.25 square

degrees. One of the main problems is posed by the so called ”dropouts”, namely objects

which are below the detection threshold in at least one of the available bands. This prob-

lem is especially relevant in the GOODS catalog due to the very different sensitivities of

the instruments (24872 in the UBVRIJK catalog). Table 6.2 shows the parameters used

to build the GOODS catalog.
1http://www.stsci.edu/science/goods
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No. Parameters Description

1 SeqNr Object sequence number

2 ALPHA-J2000 Right ascension of barycenter (J2000)

3 DELTA-J2000 Declination of barycenter (J2000)

4 FLUX-AUTO-B842 Flux within a Kron-like elliptical aperture

5 FLUX-AUTO-I845 Flux within a Kron-like elliptical aperture

6 FLUX-AUTO-J998 Flux within a Kron-like elliptical aperture

7 FLUX-AUTO-K999 Flux within a Kron-like elliptical aperture

8 FLUX-AUTO-R844 Flux within a Kron-like elliptical aperture

9 FLUX-AUTO-U877 Flux within a Kron-like elliptical aperture

10 FLUX-AUTO-V843 Flux within a Kron-like elliptical aperture

11 KRON-RADIUS-B842 Kron apertures in units of A or B

12 KRON-RADIUS-I845 Kron apertures in units of A or B

13 KRON-RADIUS-J998 Kron apertures in units of A or B

14 KRON-RADIUS-K999 Kron apertures in units of A or B

15 KRON-RADIUS-R844 Kron apertures in units of A or B

16 KRON-RADIUS-U877 Kron apertures in units of A or B

17 KRON-RADIUS-V843 Kron apertures in units of A or B

18 MAG-ISO-B842 std

19 MAG-ISO-I845 std

20 MAG-ISO-J998 std

21 MAG-ISO-K999 std

22 MAG-ISO-R844 std

23 MAG-ISO-U877 std

24 MAG-ISO-V843 std

25 CLASS STAR S/G class: 1 point source, 0 extended

Table 6.2: Parameters used in the UBVRIJK GOODS Catalog
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6.1.3 Telescopio Nazionale Galileo Telemetry Data

TNG is provided with three mirrors (M1,M2,M3) whose primary mirror (M1) has 78 axial

actuators and 24 lateral supports. Moreover, TNG (see paragraph 1.4.1) is equipped with

five instruments which are permanently operating on his foci and offers a large variety of

observing modes covering the optical and near infrared wavelength ranges and spanning

from broad band imaging to high resolution spectroscopy.

The Long Term Archive of the Telescopio Nazionale Galileo (TNG-LTA) contains both

the raw data and the telemetry data collecting a wide set of monitored parameters such

as, for instance, the atmospheric and dome temperatures, the operating conditions of the

telescope and of the focal plane instruments, etc.

The images come from two different optical instruments (namely, Dolores and OIG), and

are divided into five different observational sessions. Some sessions have strongly elliptical

images maybe due to bad tracking or incorrect aberrations. However, generally the quality

of the images provided by TNG is better. We can now list in details the five sessions:

EUIB images acquired by Dolores, in imaging mode. The images belong to good quality

images.

EVNJ images acquired by Dolores, in imaging mode. Medium quality images.

EXOH Images acquired by Dolores in imaging mode. Images belonging to bad quality

class. In fact, they are very elliptical as a differential tracking was used (since the

target was fixed to a nearby object, i.e. asteroids or comets, and therefore TNG had

a tracking as well as a relative speed).

FISE Images acquired by OIG. Medium-bad quality images, in which the causes are

unknown.

FJDX Images acquired by OIG. Medium-bad quality images, in which the causes are

unknown.

However, in the experiments described in the thesis, we only used the first three sessions.

We extracted from the TNG-LTA a set of 278 telemetric data monitored (for a total

of 35.000 epochs) during the acquisition of almost 50 images. The images were then

randomly examined in order to assess their quality and build a set of labels (we shall limit
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Parameters Number

∆ actuators M1 78

Gravitational field strength lateral actuators 4

Gravitational field strength M1 actuators 78

M2 bars extent 6

M3 X-axes position 1

M3 Y-axes position 1

M3 Z-axes position 1

CCD temperature 1

Encoder read Azimuth 1

Encoder read elevation 1

Encoder read rotator position 1

Table 6.3: TNG parameters

ourselves to the case of images with bad tracking (elongated PSF), medium tracking and

good tracking (round PSF). From the starting list of 278 parameters we extracted 172

parameters ignoring the ones less significative by eye inspection. These parameters are

described in table 6.3

Moreover, a further parameter reduction is accomplished by reducing only the groups

of parameters listed in table 6.3 which contains more than one parameter as follows:

∆ actuators M1: the 78 actuators are divided in four group of 15 elements and one group

of 18 elements. For each group the mean is computed, and the obtained five means

represent the parameters used for training.

Gravitational field strength lateral actuators: the mean of 4 parameters is com-

puted.

Gravitational field strength M1 actuators: the same as ∆ actuators M1 preprocess-

ing is carried on this group of parameters.

M2 bars extent: the mean of 6 parameters is computed.
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M3 X-axes position, M3 Y-axes position, M3 Z-axes position: these parameters are

grouped in their mean.

Therefore the parameter used for the training of the PPS models are reduced to 17 plus

the label.
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