

DS6 – Phase 4 Napoli group

Astroneural 1,0 is available and includes tools for supervised and unsupervised data mining:

- Preprocessing & visualization
- Supervised (MLP, RBF)
- Unsupervised (PPS, NEC+dendrogram, SOM)
- PCA and ICA
- Genetic algorithms
- visualzation of results
- http://people.na.infn.it/~longo/

Science is a non negligible part of the work:

- to understand what the r.m.s astronomer needs and to adapt the tool accordingly
- to convince the community that this approach is useful

Hence: Astroneural v 1.0 is being tested on several science cases:

- photometric redshifts for the SDSS dataset
- physical classification of galaxies using photometry (multiband)

- Statistical studies of loose groups in 3-D space
- Star/Galaxy classification on multiepoch survey data (PalomarQuest with Caltech)
- AGN and QSO identification from multiband photometric surveys (in progress)

- 1. <u>A novel approach to gene expression clustering</u>, 2005, Bioinformatics, 2006, 22, pp. 589-596
- 2. <u>Visualization, Clustering and Classification of Multidimensional</u> <u>Astronomical Data</u>, 2005, CAMP 2005
- 3. <u>Mining the SDSS data. I. Photometric redshifts for</u> <u>the nearby universe</u>, ApJ. accepted (<u>astro-</u> <u>ph/0703108</u>)
- 4. Donalek C., 2007, <u>Mining Massive Astronomical Data Sets</u>, Ph.D. Thesis, University Federico II in Napoli & Caltech
- 5. <u>The use of neural networks to probe the structure of the nearby</u> <u>universe</u>, <u>R. d'Abrusco</u>, <u>G. Longo</u>, <u>M. Paolillo</u>, <u>E. de Filippis</u>, <u>M.</u> <u>Brescia</u>, <u>A. Staiano</u>, <u>R. Tagliaferri</u>, 2007 (<u>astro-ph/0701137</u>)
- 6. Other papers on Astroneural site

Frequency of Astroneural downloads increased by a factor 10 after publication of papers 1 and 3

 σ rob = 0.206

 σ rob = 0.234

General galaxy sample

Porting of Astroneural as it is, was found to be impossible mainly due to visualization of results and to the fact that software is propietary

Simple conversion of MatLab code to C is not optimal due to (i) the need to optimize the code (ii) the (possibly) long computing time no interactivity (iii) lack of visualization capabilities

Scalability issue: code needs to be entirely re-written (there is not any C/Java DM library capable to deal with >10^5 records)

No need to write most of the visualization and pre-analysis tools (TOPCAT does it wonderfully)

Programs must be used in iterative way and each code needs its own visualization tool to become user friendly (some problems do exist)

VOneural.jar

VO-	∎∎ Neural
Supervised methods	Help supervised
Unsupervised metho	ods
•	Help unsupervised
SOM	
PPS	

- preprocessing, visualization and data selection using TOPCAT
- Supervised (MLP, RBF)
- Unsupervised (PPS, NEC + dendrogram, SOM)
- Genetic algorithms?
- Clustering via K-means
- PCA & ICA

VOneural.MLP

MLP Tool

Done: under test as local implementation

VOneural.SOM tool

DATA	PARAMETERS SETTINGS Lattice Hexagonal Shape Sheet Neigh. func. Gaussian Initialization Linear Algorithm Batch Force map size	TRAINING Training Training using batch algorithm done. Final quantization error: 3.857 Final topographic error: 0.063
WORKING FILE	Reset to default values	Analysis Cluster <u>3D U-matrix</u> Incidence param. Plane pie

Partially done: Problems with visualization of some features

Examples of needed visualizations

feature significance maps

U-matrix with labels

Probabilistic Principal Surfaces: probably solved (in part) within TOPCAT

Tricky interactive visualization

To be solved

An universal classifier for the virtual observatory. I. The methods.

Longo Giuseppe^{1,3,4}, Brescia Massimo^{3,4}, D'Abrusco Raffaele^{1,2}, De Filippis Elisabetta^{1,3}, Paolillo Maurizio^{1,3,4}, Staiano Antonino⁵, Tagliaferri Roberto⁶

a)

b)

Figure 7. Gaussian distribution examples. Upper panel: Negentropy = 2.6261 using the G_1 function with $a_1 = 0.1$; Lower panel: Negentropy = 0.005 using the G_1 function with $a_1 = 0.1$

Figure 9. NEC colored dendrogram.PPS 2-dimensional mapping nd labeling.MDS 2-dimensional projection and labeling.

c)

No DEMO:

if you wish you can play with Astroneural (tbx) on this computer

The remaining year will be entirely devoted to the following tasks: Completion of the release 1.0 of the VO-Neural package (plasticized, etc)

ALL data mining tools are of limited use unless the MISSING DATA problem is solved

This will include: MLP, PPS, SOM and NEC modules together with all the needed visualization tools. We also plan to include immediately after also the RBF module.

MLP	March 2007
SOM	June 2007
PPS	September 2007
NEC + dendrogram	September 2007
NexT	December 2007

Several Other Science cases will be completed (all done within the VO):

- 3-D structure of nearby (z<0.25) universe using SDSS data and SOM clustering techniques
- AGN/QSO identification from SDSS and UKIDS surveys (both unsupervised and supervised MLP)
- Star/Galaxy separation with a priori information