

PDF with MLPQNA

Cavuoti Stefano, Brescia Massimo, Longo Giuseppe, Amaro Valeria, Vellucci Civita,

INAF OACN INAF OACN University Federico II of Naples University Federico II of Naples University Federico II of Naples

Photometric redshift PDF

We started our R&D process by a level-0 method (called **base algorithm**), able to provide a PDF estimation of the photo-z for each single input object of the data sample used. Then we are still under debugging a series of more complex methods based on a post-processing of photo-z production model.

The common element of such process is the machine learning model used to derive photo-z. The model is MLPQNA (Multi Layer Perceptron trained by the Quasi Newton Algorithm), already successfully validated on several real cases.

PDF base algorithm processing flow

PDF base algorithm processing flow

Hierarchical approach

PDF base algorithm processing flow

Photometry perturbation

$$m_{ijperturbed}(o_i) = m_{ij} + alpha_b * p_b \circ (mag(o_i)) * N_A(0; 1)$$

where the symbol "o" stays for the scalar product,

 $N_A(0; 1)$ is a normal distribution with the dimension of the dataset A to be perturbed, i.e. a distribution of a number $N_{Samples}$ of values in the interval (-1,1).

The variation of the percentage of noise is ensured by the randomly generated normal distribution at each step.

The KB

The dataset used for the current test is the same utilized by Masters et al. 2015 containing the following information, matched to the Euclid Requirements:

- u \rightarrow CFHT
- griz \rightarrow SUBARU
- Y,J,H → ULTRAVISTA
- zspec \rightarrow Salvato 2016 (in prep)

For the following experiment we fitted the errors with a 3rd order polynomial expansion.

Photometry perturbation

Two class approach vs One Shot

2-class Hierarchical approach

2-class Hierarchical approach

2-class Hierarchical approach

zspec >= 1

0.0089

0.127

0.082

18.40

3,453 / 788

zspec >= 1

0.0166

0.140

0.086

19.03

3,453 / 788

zspec >= 1

0.0178

0.138

0.076

16.62

3,453 / 788

zspec < 1

0.0006

0.074

0.020

3.75

11,384 / 2,910

zspec < 1

0.0010

0.066

0.021

3.44

11,384 / 2,910

zspec < 1

0.0012

0.058

0.014

3.26

11,384 / 2,910

14,837 / 3,698

TRAIN/TEST dim.

Four-class approach

In this experiment we define the classes on the base of the break at 4000 Å.

In order to properly select the redshift bins, we considered the transmission curves provided at the CALTECH web page (<u>http://www.astro.caltech.edu/~capak/filters/index.html</u>).

We therefore measured for each band the zspec value corresponding to the entry point of the break, resulting as follows:

Band u has the quantum efficiency peak at 4065Å;

 \rightarrow zspec = 0.033;

 \rightarrow zspec = 0.395;

 \rightarrow zspec = 0.735;

 \rightarrow zspec = 1.075;

 \rightarrow zspec = 1.440;

 \rightarrow zspec = 1.915;

Band g

Band r

Band i

Band z

Band Y

Band J

following some heuristics learned from previous experiments, we identified the following 4 classes: Class 1: zspec < 0.395 (break of band r); Class 2: 0.395 ≤ zspec < 0.735 (break of band i); Class 3: 0.735 ≤ zspec < 1.075 (break of band z); Class 4: 1.075 ≤ zspec.

In order to maintain almost balanced the dimensions of bins and

Four-class approach

CONFUSION MATRIX		CLASS OUTPUT				
CLASS TARGET		1	2	3	4	
	1	860	51	6	14	
	2	72	1036	64	14	
	3	15	63	743	41	
	4	12	4	22	681	

mean	mean	mean
accuracy	purity	completeness
90%	90%	90%

We explored	also a	7-class
approach	by	simply
balancing the	seven	bins in
terms of	quantit	y but
obtaining low	ver resu	ults, as
expected.		

(no physical meaning)

MAGNITUDES ONLY (8 features)						
	one-shot approach	4-class Hierarchical approach				
REGRESSION	FULL	Class 1	Class 2	Class 3	Class 4	
	redshift range	zspec < 0.395	[0.395, 0.735[[0.735, 1.075[1.075 ≤ zspec	
Bias	0.0103	5.4E-5	2.5E-5	2.9E-6	0.0172	
σ	0.132	0.035	0.026	0.023	0.135	
NMAD	0.037	0.017	0.017	0.015	0.075	
% Outliers>0.15	8.11	1.07	0.17	0.0	15.99	
TRAIN/TEST dimensions	14,837 / 3,698	3605 / 931	4700 / 1186	3347 / 862	3185 / 719	

COLORS ONLY (7 features)						
one-shot approach 4-class Hie				chical approach		
REGRESSION	FULL	Class 1	Class 2	Class 3	Class 4	
	redshift range	zspec < 0.395	[0.395, 0.735[[0.735, 1.075[1.075 ≤ zspec	
Bias	0.0103	0.0009	0.0006	7.8E-5	0.0184	
σ	0.132	0.035	0.027	0.024	0.144	
NMAD	0.037	0.017	0.016	0.015	0.091	
% Outliers>0.15	8.11	1.18	0.5	0.0	20.45	
TRAIN/TEST	14 837 / 3 698	3605 / 931	4700 / 1186	3347 / 862	3185 / 719	
dimensions	14,037 7 3,030	50057551	470071100	55477002	51057715	

COLORS + MAGNITUDES (9 features)						
	one-shot approach	4-class Hierarchical approach				
REGRESSION	FULL	Class 1	Class 2	Class 3	Class 4	
	redshift range	zspec < 0.395	[0.395, 0.735[[0.735, 1.075[1.075 ≤ zspec	
Bias	0.0103	0.0011	0.0001	0.0011	0.0148	
σ	0.132	0.039	0.029	0.026	0.158	
NMAD	0.037	0.016	0.010	0.016	0.086	
% Outliers>0.15	8.11	1.72	0.51	0.12	18.36	
TRAIN/TEST	14,837 / 3,698	3605 / 931	4700 / 1186	3347 / 862	3185 / 719	
dimensions		·	·	·	•	

PDFs

We derived our PDFs through ten redshift binning ranges, from 0.01 up to 0.1. We considered the best photo-z guess the peak with the highest probability closest to the photo-z obtained without photometric perturbation.

By considering a PDF bin of 0.03:

- The 46%, 38% and 40% of objects for class 1, 2 and 3 respectively, have their zspec within the peak of the PDF;
- While the 84% 79% and 76%, have zspec falls within the PDF. By considering also the bin closest to the PDF, the percentages grow up to 87%, 85% and 85% respectively.

The class 4 (z>=1.075) shows a different behavior due, as expected, to the undersampled spectroscopic KB which causes a lower quality of photo-z estimation and of the derived PDF.

By considering again a PDF bin of 0.03:

- The 6% have their zspec within the peak of the PDF;
- While the 52%, have zspec within the PDF. By considering also the bin closest to the PDF, the percentage grows up to 58%.

PDF examples

0.40

0.35

0.30

0.25 می brobabillity 0.20 م

0.15

0.10

0.05

0 + 0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.22

0.24

0.40

0.20

redshift

Thanks!

