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1 Introduction 

 

he present document is the user guide of the data mining models MLPQNA (Multi Layer Perceptron 

with Quasi Newton) and MLP-LEMON (Multi Layer Perceptron with Levenberg Marquardt), as 

implemented and integrated into the DAMEWARE web application. They are models that can be used to 

execute scientific experiments for both classification (crispy or two-class mode) and regression (single 

output mode) on massive data sets, formatted in one of the supported types: ASCII (columns separated by 

spaces), CSV (comma separated values), FITS-Table (numerical columns embedded into the fits file) or 

VOTable. 

 

More scientific and technical information about models  and their use in the astrophysical context are 

available in [R9, R10, R11, R12]. 

 

This manual is one of the specific guides (one for each data mining model available in the webapp) having 

the main scope to help user to understand theoretical aspects of the model, to make decisions about its 

practical use in problem solving cases and to use it to perform experiments through the webapp, by also 

being able to select the right functionality associated to the models, based upon the specific problem and 

related data to be explored, to select the use cases, to configure internal parameters, to launch experiments 

and to evaluate results. 

 

The documentation package consists also of a general reference manual on the webapp (useful also to 

understand what we intend for association between functionality and data mining model) and a GUI 

user guide, providing detailed description on how to use all GUI features and options.  

So far, we strongly suggest to read these two manuals and to take a little bit of practical experience 

with the webapp interface before to explore specific model features, by reading this and the other 

model guides. 

All the cited documentation package is available from the address  

http://dame.dsf.unina.it/dameware.html, where there is also the direct gateway to the beta webapp. 

 

 

As general suggestion, the only effort required to the end user is to have a bit of faith in Artificial 

Intelligence and a little amount of patience to learn basic principles of its models and strategies.  

 

By merging for fun two famous commercial taglines we say: “Think different, Just do it!” 

(casually this is an example of data (text) mining...!) 

 

 

  

T 

http://dame.dsf.unina.it/dameware.html
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2 MLPQNA Model Theoretical Overview 

The MLP architecture is one of the most typical feed-forward neural network model. The term feed-forward 

is used to identify basic behavior of such neural models, in which the impulse is propagated always in the 

same direction, e.g. from neuron input layer towards output layer, through one or more hidden layers (the 

network brain), by combining weighted sum of weights associated to all neurons (except the input layer). 

As easy to understand, the neurons are organized in layers, with proper own role. The input signal, simply 

propagated throughout the neurons of the input layer, is used to stimulate next hidden and output neuron 

layers. The output of each neuron is obtained by means of an activation function, applied to the weighted 

sum of its inputs. Different shape of this activation function can be applied, from the simplest linear one up 

to sigmoid. The number of hidden layers represents the degree of the complexity achieved for the energy 

solution space in which the network output moves looking for the best solution. As an example, in a typical 

classification problem, the number of hidden layers indicates the number of hyper-planes  used to split the 

parameter space (i.e. number of possible classes) in order to classify each input pattern. What is different in 

such a neural network architecture is typically the learning algorithm used to train the network. It exists a 

dichotomy between supervised and unsupervised learning methods. 

 

 

Fig. 1 – MLP architecture 

 

In the first case, the network must be firstly trained (training phase), in which the input patterns are 

submitted to the network as couples (input, desired known output). The feed-forward algorithm is then 

achieved and at the end of the input submission, the network output is compared with the corresponding 

desired output in order to quantify the learning quote. It is possible to perform the comparison in a batch way 

(after an entire input pattern set submission) or incremental (the comparison is done after each input pattern 

submission) and also the metric used for the distance measure between desired and obtained outputs, can be 

chosen accordingly problem specific requirements (the simplest is MSE, Mean Square Error). 

After each comparison and until a desired error distance is unreached (typically the error tolerance is a pre-

calculated value or a constant imposed by the user), the weights of hidden layers must be changed 

accordingly to a particular law or learning technique.  

After the training phase is finished (or arbitrarily stopped), the network should be able not only to recognize 

correct output for each input already used as training set, but also to achieve a certain degree of 

generalization, i.e. to give correct output for those inputs never used before to train it. The degree of 

generalization varies, as obvious, depending on how “good” has been the learning phase. This important 

feature is realized because the network doesn’t associates a single input to the output, but it discovers the 

relationship present behind their association. After training, such a neural network can be seen as a black box 

able to perform a particular function (input-output correlation) whose analytical shape is a priori not known. 
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In order to gain the best training, it must be as much homogeneous as possible and able to describe a great 

variety of samples. Bigger the training set, higher will be the network generalization capability.  

Despite of these considerations, it should always take into account that neural networks application field 

should be usually referred to problems where it is needed high flexibility (quantitative result) more than high 

precision (qualitative results).  

Concerning the hidden layer choice, there is the possibility to define zero hidden layers (SLP, Single Layer 

Perceptron, able to solve only linear separation of the parameter space), 1 or 2 hidden layers, depending on 

the complexity the user wants to introduce in the not linear problem solving experiment. 

 

Second learning type (unsupervised) is basically referred to neural models able to classify/cluster patterns 

onto several categories, based on their common features, by submitting training inputs without related 

desired outputs.  This is not the learning case approached with the MLP architecture, so it is not important to 

add more information in this document. 

 

The Newton method is the general basis for a whole family of so called Quasi-Newton methods. One of 

those methods, implemented here is the L-BFGS algorithm. More rigorously, the QNA is an optimization of 

learning rule, also because, as described below, the implementation is based on a statistical approximation of 

the Hessian by cyclic gradient calculation, that, as said in the previous section, is at the base of BP method. 

As known, the classical Newton method uses the Hessian of a function. The step of the method is defined as 

a product of an inverse Hessian matrix and a function gradient. If the function is a positive definite quadratic 

form, we can reach the function minimum in one step. In case of an indefinite quadratic form (which has no 

minimum), we will reach the maximum or saddle point. In short, the method finds the stationary point of a 

quadratic form.  

In practice, we usually have functions which are not quadratic forms. If such a function is smooth, it is 

sufficiently good described by a quadratic form in the minimum neighborhood. However, the Newton 

method can converge both to a minimum and a maximum (taking a step into the direction of a function 

increasing). 

Quasi-Newton methods solve this problem as follows: they use a positive definite approximation instead of a 

Hessian. If Hessian is positive definite, we make the step using the Newton method. If Hessian is indefinite, 

we modify it to make it positive definite, and then perform a step using the Newton method. The step is 

always performed in the direction of the function decrement. In case of a positive definite Hessian, we use it 

to generate a quadratic surface approximation. This should make the convergence better. If Hessian is 

indefinite, we just move to where function decreases. 

 

 

Fig. 2 – The learning mechanism of QNA rule, using the error function 
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Some modifications of Quasi-Newton methods perform a precise linear minimum search along the indicated 

line, but it is proved that it's enough to sufficiently decrease the function value, and not necessary to find a 

precise minimum value. The L-BFGS algorithm tries to perform a step using the Newton method. If it does 

not lead to a function value decreasing, it lessens the step length to find a lesser function value. 

Up to here it seems quite simple…but it is not! 

The Hessian of a function isn't always available and in many cases is too much complicated; more often we 

can only calculate the function gradient.  

Therefore, the following operation is used: the Hessian of a function is generated on the basis of the N 

consequent gradient calculations, and the quasi-Newton step is performed. There is a special formulas which 

allows to iteratively get a Hessian approximation. On each step approximation, the matrix remains positive 

definite. The algorithm uses the L-BFGS update scheme. BFGS stands for Broyden-Fletcher-Goldfarb-

Shanno (more precisely, this scheme generates not the Hessian, but its inverse matrix, so we don't have to 

waste time inverting a Hessian). 

The L letter in the scheme name comes from the words "Limited memory". In case of big dimensions, the 

amount of memory required to store a Hessian (N 2) is too big, along with the machine time required to 

process it. Therefore, instead of using N gradient values to generate a Hessian we can use a smaller number 

of values, which requires a memory capacity of order of N·M. In practice, M is usually chosen from 3 to 7, 

in difficult cases it is reasonable to increase this constant to 20. Of course, as a result we'll get not the 

Hessian but its approximation. On the one hand, the convergence slows down. On the other hand, the 

performance could even grow up. At first sight, this statement is paradoxical. But it contains no 

contradictions: the convergence is measured by a number of iterations, whereas the performance depends on 

the number of processor's time units spent to calculate the result. 

As a matter of fact, this method was designed to optimize the functions of a number of arguments (hundreds 

and thousands), because in this case it is worth having an increasing iteration number due to the lower 

approximation precision because the overheads become much lower. This is particularly useful in 

astrophysical data mining problems, where usually the parameter space is dimensionally huge and confused 

by a low signal-to-noise ratio. But we can use these methods for small dimension problems too. The main 

advantage of the method is scalability, because it provides high performance when solving high 

dimensionality problems, and it allows to solve small dimension problems too. 

From the implementation point of view, in the MLPQNA case the following features are available for the 

end user: 

 

 only batch learning mode is available; 

 Strict separation between classification and regression functionality modes; 

 For classification mode, the Cross Entropy method is available to compare output and target network 

values. It is possible to alternatively use standard MSE rule, that is mandatory for regression mode; 

 K-fold cross validation method to improve training performances and to avoid overfitting problems; 

 Resume training from past experiments, by using the weights stored in an external file at the end of 

the training phase; 

 Confusion matrix calculated and stored in an external file for both classification and regression 

modes (in the last case an adapted version is provided). It is useful after training and test sessions to 

evaluate model performances. 

 

The MLP-LEMON is identical to MLP-QNA, with the only exception of: 

 

 The Hessian of the MLP error is not approximated, but exactly calculated, using the rule inspired to the 

Levenberg-Marquardt optimization strategy; 

 MLP-LEMON has same parameters of MLPQNA, but internally it uses only restarts and decay values;  
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3 Use of the web application model 

The MLPQNA is a neural network based on the self-adaptive machine learning in supervised mode (i.e. 

trained by input/output samples), used in many application fields and specialized to work on massive data 

sets, i.e. data sets formed by thousands of rows (patterns), composed by tenth of columns (pattern features).  

 

It is especially related to classification/regression problems, and in DAME it is designed to be associated 

with such functionality domains. The description of these functionalities is reported in the Reference Manual 

[A18], available from webapp GUI (Graphical User Interface) menu or from the intro web page (see address 

in the introduction). 

 

In the following are described practical information to configure the network architecture and the learning 

algorithm in order to launch and execute science cases and experiments. 

There are two functionalities  available in the webapp for this model. The functionalities extracted have been 

plugged into the DAMEWARE by using an internal software integration wrapping system and available as 

two methods from the GUI. 

The methods are: 

 

 Classification_MLPQNA or Classification_MLPLEMON: use this method to perform classification 

experiments, in which the model is able to learn and perform generalization for the prediction of 

input patterns as belonging to one of possible classes or categories (for example star/galaxy 

separation); 

 Regression_MLPQNA or Regression_MLPLEMON: use this method to perform nonlinear 

regression experiments, i.e. one-dimension approximation or interpolation function, where its 

analytical expression is not known. 

3.1 Use Cases 

For the user the MLPQNA system offers four use cases: 

 

 Train 

 Test 

 Run 

 

As described in [A19] a supervised machine learning model like MLPQNA or MLPLEMON requires 

different use cases, well ordered in terms of setup and execution sequence. A typical complete experiment 

consists of the following steps: 

 

1. Train the network with a dataset as input, containing both input and target features; then store as 

output the  final weight matrix (best configuration of trained network weights); 

2. Test the trained network, in order to verify training quality (it is also available a validation 

procedure, based on statistical analysis, named k-fold cross validation). The same training dataset or 

a mix with new patterns can be used as input; 

3. Run the trained and tested network with datasets containing ONLY input features (without target 

ones). In this case new or different input data are encouraged, because the Run use case implies to 

simply execute the model, like a generic static function. 
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3.2 Input 

We also remark that massive datasets to be used in the various use cases are (and sometimes must be) 

different in terms of internal file content representation. Remind that in all DAME models it is possible to 

use one of the following data types: 

 

 ASCII (extension .dat or .txt): simple text file containing rows (patterns) and columns (features) 

separated by spaces, normally without header; 

 CSV (extension .csv): Comma Separated Values files, where columns are separated by commas; 

 FITS (extension .fits): fits files containing tables; 

 VOTABLE (extension .votable): formatted files containing special fields separated by keywords 

coming from XML language, with more special keywords defined by VO data standards; 

 

For training and test cases a correct dataset file must contain both input and target features (columns), with 

input type as the first group and target type as the final group. 

 

 

Fig. 3 – The content of the xor.csv file used as input for training/test use cases 

As shown in Fig. 3, the xor.csv file for training/test uses cases has 4 patterns (rows) of 2 input features (first 

two columns) and one target feature (third column). The target feature is not an input information but the 

desired output to be used in the comparison (calculation of the error) with the model output during a 

training/test experiment. 

 

 

Fig. 4 – The content of the xor_run.csv file used as input for Run use case 

In Fig. 4, the xor_run.csv file is shown, valid only for Run use case experiments. It is the same of xor.csv 

except for the target column that is not present. This file can be also generated by the user starting from the 

xor.csv. As detailed in the GUI user Guide [A19], the user may in fact use the Dataset Editor options of the 

webapp to manipulate and build datasets starting from uploaded data files. 
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3.3 Output 

In terms of output, different files are obtained, depending on the specific use case of the experiment. 

In the case of regression functionality, the following output files are obtained in all use cases: 

 
TRAIN DESCRIPTION REMARKS 

mlpqna_TRAIN.log Experiment status report log  

mlpqna_TRAIN_error.txt Error trend during training  

mlpqna_TRAIN_output.txt Output of training with input 

dataset in append 

 

<input dataset name>_mlpqna_TRAIN_TrainTestOutLog.txt training Output vs target 

table 

 

mlpqna_TRAIN_errorPlot.jpeg Error trend plot  

MLPQNA_Train_params.xml Experiment configuration  

<input dataset name>_mlpqna_TRAIN_frozen_net.txt Model frozen setup after 

training 

Must be moved to File 

Manager tab to be used for 

test and run use cases 

mlpqna_TRAIN_weights.txt Network trained weights Must be moved to File 

Manager tab to be used for 

test and run use cases 

TEST DESCRIPTION REMARKS 

mlpqna_TEST.log Experiment report log  

mlpqna_TEST_output.txt Output of test with input 

dataset in append 

 

mlpqna_TEST_outputPlot.jpeg Output plot  

MLPQNA_Test_params.xml Experiment configuration  

RUN DESCRIPTION REMARKS 

mlpqna_RUN.log Experiment report log  

mlpqna_RUN_output.txt Output of run with input 

dataset in append 

 

MLPQNA_Run_params.xml Experiment configuration  

 

Tab. 1 – output file list in case of regression type experiments (in case of LEMON model the prefix of 

the files may be changed accordingly) 

 

 

In the case of classification functionality, the following output files are obtained in all use cases: 

 
TRAIN DESCRIPTION REMARKS 

mlpqna_TRAIN.log Experiment report log  

mlpqna_TRAIN_error.txt Error trend during training  

mlpqna_TRAIN_output.txt Output of training with input 

dataset in append 

 

mlpqna_TRAIN_trainTestOutLog.txt Output vs target  

mlpqna_TRAIN_errorPlot.jpeg Error trend plot  

mlpqna_TRAIN_ConfMatrix.txt Output confusion matrix  

MLPQNA_Train_params.xml Experiment configuration  

mlpqna_TRAIN_frozen_net.txt Model setup after training Must be moved to File 

Manager tab to be used for 

test and run use cases 

mlpqna_TRAIN_weights.txt Network trained weights Must be moved to File 

Manager tab to be used for 

test and run use cases 

TEST DESCRIPTION REMARKS 

mlpqna_TEST.log Experiment report log  

mlpqna_TEST_output.txt Output of test with input 

dataset in append 
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mlpqna_TEST_TestOutLog.txt Output vs target  

mlpqna_TEST_testConfMatrix.txt Output confusion matrix  

MLPQNA_Test_params.xml Experiment configuration  

RUN DESCRIPTION REMARKS 

mlpqna_RUN.log Experiment report log  

mlpqna_RUN_output.txt Output of run with input 

dataset in append 

 

MLPQNA_Run_params.xml Experiment configuration  

Tab. 2 – output file list in case of classification type experiments (in case of LEMON model the prefix 

of the files may be changed accordingly) 

 

 

3.4 TRAIN Use case 

In the use case named “Train”, the software provides the possibility to train the MLPQNA or MLPLEMON. 

In the following we refer to MLPQNA what is considered fully applicable also to MLPLEMON. 

The user will be able to use new or existing (already trained) weight configurations, adjust parameters, set 

training parameters, set training dataset, manipulate the training dataset and execute the training experiments. 

 

There are several parameters to be set to achieve training, specific for network topology and learning 

algorithm setup. In the experiment configuration there is also the Help button, redirecting to a web page 

dedicated to support the user with deep information about all parameters and their default values. 

 

We remark that all parameters labeled by an asterisk are considered as required. In all other cases the fields 

can be left empty (default values are used and shown in the help web pages). 

3.4.1 Regression with MLPQNA – Train Parameter Specifications 

The setup of train use case for MLPQNA model, used for regression problems, is shown in Fig. 5. 
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Fig. 5 – The setup tab for regression + MLPQNA train use case 

 

In the case of Regression_MLPQNA with Train use case, the help page is at the address: 

http://dame.dsf.unina.it/mlpqna_help.html#regr_train 

 Input dataset 

this parameter is a field required! 

This is the dataset file to be used as input for the learning phase of the model. 

The file must be already uploaded by user and available in the current workspace of the experiment 

It typically must include both input and target columns, where each row is an entire pattern (or 

sample of data). The format (hence its extension) must be one of the types allowed by the application 

(ASCII, FITS-table, CSV, VOTABLE). More specifically, take in mind the following simple rule: 

the sum of input and output nodes MUST be equal to the total number of the columns in this 

file! 

 Trained network weights file 

It is a file generated by the model during training phase. It contains the resulting network weights, 

associated to neurons, as stored at the end of a previous training session. Usually this file should not 

be edited or modified by users, just to preserve its content as generated by the model itself. 

The canonical use of this file in this use case is to resume a previous training phase, in order to try to 

improve it. If users leaves empty this parameter field, by default the current training session starts 

from scratch, (i.e. the initial weights are randomly generated). 

 Number of input neurons 

http://dame.dsf.unina.it/mlpqna_help.html#regr_train


 
DAta Mining & Exploration 

Program 

 

 

DAMEWARE MLPQNA + MLPLEMON Model User Manual 

 

This document contains proprietary information of DAME project Board. All Rights Reserved. 

13 

this parameter is a field required! 

It is the number of neurons at the first (input) layer of the network. It must exactly correspond to 

the number of input columns in the dataset input file (Training File field), except the target 

columns.  

 Number of first hidden layer neurons 

this parameter is a field required! 

It is the number of neurons of the first hidden layer of the network. As suggestion this should be 

selected in a range between a minimum of 1.5 times the number of input nodes and a maximum of 2 

times + 1 the number of input nodes. 

 Number of second hidden layer neurons 

It is the number of neurons of the second hidden layer of the network. As suggestion this should be 

selected smaller than the previous layer. 

For most experiments, this layer is considered redundant, except for particular complex cases. So use 

it only if really needed. Moreover some theoretical issues have demonstrated that one hidden layer 

only is sufficient to solve usual non-linear regression problems. 

By default the second hidden layer is empty (not used) 

 Max number of iterations 

One of the internal model parameters. It indicates the number of algorithm iterations, i.e. the 

maximum number of iterations for each approximation step of the Hessian inverse matrix. It is one 

of the stopping criteria. 

By default the value is 1500 

 Restarts 

One of the internal model parameters. It indicates the number of restarts for each approximation step 

of the Hessian inverse matrix. 

By default the value is 20 

 Error Threshold 

One of the internal model parameters. It indicates the minimum weight error at each iteration step. 

Except for those problems particularly difficult to solve, in which a value of 0.0001 should be used, 

a value of 0.01 is usually considered sufficient. 

By default the value is 0.01 

 Decay 
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One of the internal model parameters. It indicates the weight regularization decay. If accurately 

chosen, the effect is an important improvement of the generalization error of the trained neural 

network, with also an acceleration of training. 

This parameter is particularly important. In case of unknown value to choose, one can try with 

values within the range of 0.001 (weak case) up to 100 (very strong regularization). It should be 

noted that if the chosen value is too small (less than 0.001), it will be automatically increased up to 

the allowed minimum. 

By default the value is 0.001 

 Apply k-fold cross validation 

This is a checkboxed parameter. If selected the validation of the training is activated, by following 

the k-fold method, i.e. based on an automatic procedure that splits in different subsets the training 

dataset, applying a k step cycle in which the training error is evaluated and its performances are 

validated. 

If you select this option, you should specify the k value in the next parameter below. Take into 

account that, if selected, this option will statistically improve the training but the execution time will 

dramatically grow up. 

By default the value is unselected. 

 Cross validation k value 

k-fold cross validation parameter that specify the value of k. Use it in combination with the previous 

checkbox. 

By default the value is 10, but it is not used if the previous k-fold checkbox is unselected. 

 Statistical train 

This is a checkboxed parameter. If selected it engages a very time expensive cycle, in which the 

training set is split into a growing subset iteratively submitted to the model. This is useful only in 

case user wants to evaluate the training performances for several dimensions of input patterns. 

By default the value is unselected. Use it very carefully and only if really required. 

 

3.4.2 Classification with MLPQNA – Train Parameter Specifications 

The setup of train use case for MLPQNA model, used for classification problems, is shown in Fig. 6. 
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Fig. 6 – The setup tab for classification + MLPQNA train use case 

 

 

In the case of Classification_MLPQNA with Train use case, the help page is at the address: 

http://dame.dsf.unina.it/mlpqna_help.html#class_train 

 Input dataset 

this parameter is a field required! 

This is the dataset file to be used as input for the learning phase of the model. 

The file must be already uploaded by user and available in the current workspace of the experiment 

It typically must include both input and target columns, where each row is an entire pattern (or 

sample of data). The format (hence its extension) must be one of the types allowed by the application 

(ASCII, FITS-table, CSV, VOTABLE). More specifically, take in mind the following simple rule: 

the sum of input and output nodes MUST be equal to the total number of the columns in this 

file! 

 Trained network weights file 

It is a file generated by the model during training phase. It contains the resulting network weights, 

associated to neurons, as stored at the end of a previous training session. Usually this file should not 

be edited or modified by users, just to preserve its content as generated by the model itself. 

http://dame.dsf.unina.it/mlpqna_help.html#class_train
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The canonical use of this file in this use case is to resume a previous training phase, in order to try to 

improve it. If users leaves empty this parameter field, by default the current training session starts 

from scratch, (i.e. the initial weights are randomly generated). 

 Number of input neurons 

this parameter is a field required! 

It is the number of neurons at the first (input) layer of the network. It must exactly correspond to 

the number of input columns in the dataset input file (Training File field), except the target 

columns.  

 Number of first hidden layer neurons 

this parameter is a field required! 

It is the number of neurons of the first hidden layer of the network. As suggestion this should be 

selected in a range between a minimum of 1.5 times the number of input nodes and a maximum of 2 

times + 1 the number of input nodes. 

 Number of second hidden layer neurons 

It is the number of neurons of the second hidden layer of the network. As suggestion this should be 

selected smaller than the previous layer. 

For most experiments, this layer is considered redundant, except for particular complex cases. So use 

it only if really needed. Moreover some theoretical issues have demonstrated that one hidden layer 

only is sufficient to solve usual non linear classification problems. 

By default the second hidden layer is empty (not used) 

 Number of output neurons 

this parameter is a field required! 

It is the number of neurons in the output layer of the network. It must correspond to the number of 

target columns as contained in the dataset input file (filed Training File). 

 Max number of iterations 

One of the internal model parameters. It indicates the number of algorithm iterations, i.e. the 

maximum number of iterations for each approximation step of the Hessian inverse matrix. It is one 

of the stopping criteria. 

By default the value is 1500 

 Restarts 

One of the internal model parameters. It indicates the number of restarts for each approximation step 

of the Hessian inverse matrix. 
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By default the value is 20 

 Error Threshold 

One of the internal model parameters. It indicates the minimum weight error at each iteration step. 

Except for those problems particularly difficult to solve, in which a value of 0.0001 should be used, 

a value of 0.01 is usually considered sufficient. 

By default the value is 0.01 

 Decay 

One of the internal model parameters. It indicates the weight regularization decay. If accurately 

chosen, the effect is an important improvement of the generalization error of the trained neural 

network, with also an acceleration of training. 

This parameter is particularly important. In case of unknown value to choose, one can try with 

values within the range of 0.001 (weak case) up to 100 (very strong regularization). It should be 

noted that if the chosen value is too small (less than 0.001), it will be automatically increased up to 

the allowed minimum. 

By default the value is 0.001 

 Apply k-fold cross validation 

This is a checkboxed parameter. If selected the validation of the training is activated, by following 

the k-fold method, i.e. based on an automatic procedure that splits in different subsets the training 

dataset, applying a k step cycle in which the training error is evaluated and its performances are 

validated. 

If you select this option, you should specify the k value in the next parameter below. Take into 

account that, if selected, this option will statistically improve the training but the execution time will 

dramatically grow up. 

By default the value is unselected. 

 Cross validation k value 

k-fold cross validation parameter that specify the value of k. Use it in combination with the previous 

checkbox. 

By default the value is 10, but it is not used if the previous k-fold checkbox is unselected. 

 Apply cross entropy 

This is a checkboxed parameter. If selected it integrates a statistical optimization process in the 

classification training, also taking into account the linear softmax activation function associated to 

output neurons. Generally for complex problems, like classification in astrophysical contexts, it is 

strongly suggested to use such error minimization strategy. 
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Please, consult the MLPQNA model manual for more information. 

By default the value is unselected. 

 Statistical train 

This is a checkboxed parameter. If selected it engages a very time expensive cycle, in which the 

training set is split into a growing subset iteratively submitted to the model. This is useful only in 

case user wants to evaluate the training performances for several dimensions of input patterns. 

By default the value is unselected. Use it very carefully and only if really required. 

 

3.5 TEST Use case 

In the use case named “Test”, the software provides the possibility to test the MLPQNA. The user will be 

able to use already trained MLPQNA models, their weight configurations to execute the testing experiments. 

 

In the experiment configuration there is also the Help button, redirecting to a web page dedicated to support 

the user with deep information about all parameters and their default values. 

 

We remark that all parameters labeled by an asterisk are considered required. In all other cases the fields can 

be left empty (default values are used). 

 

3.5.1 Regression with MLPQNA – Test Parameter Specifications 

The setup of test use case for MLPQNA model, used for regression problems, is shown in Fig. 7. 

 

 

Fig. 7 – The setup tab for regression + MLPQNA test use case 
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In the case of Regression_MLPQNA with Test use case, the help page is at the address: 

http://dame.dsf.unina.it/mlpqna_help.html#regr_test 

 Input dataset 

this parameter is a field required! 

This is the dataset file to be used as input for the test phase of the model. 

The file must be already uploaded by user and available in the current workspace of the experiment. 

It can be the same input dataset already submitted during training phase. 

It typically must include both input and target columns, where each row is an entire pattern (or 

sample of data). The format (hence its extension) must be one of the types allowed by the application 

(ASCII, FITS-table, CSV, VOTABLE). More specifically, take in mind the following simple rule: 

the sum of input and output nodes MUST be equal to the total number of the columns in this 

file! 

 Trained network weights file 

this parameter is a field required! 

It is a file generated by the model during training phase. It contains the resulting network weights, 

associated to neurons, as stored at the end of a previous training session. Usually this file should not 

be edited or modified by users, just to preserve its content as generated by the model itself. 

 Trained network setup file 

this parameter is a field required! 

It is a file generated by the model during training phase. It contains the resulting network setup 

information, associated to neurons and other important internal parameters, as stored at the end of a 

previous training session. This file must not be edited or modified by users, just to preserve its 

content as generated by the model itself. 

 Number of input neurons 

this parameter is a field required! 

It is the number of neurons at the first (input) layer of the network. It must exactly correspond to 

the number of input columns in the dataset input file (Training File field), except the target 

columns.  

 Number of first hidden layer neurons 

this parameter is a field required! 

It is the number of neurons of the first hidden layer of the network. In the test phase the number 

must correspond to the exact number used in the training step. Otherwise the experiment will 

crash.. 

http://dame.dsf.unina.it/mlpqna_help.html#regr_test
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 Number of second hidden layer neurons 

It is the number of neurons of the second hidden layer of the network. As suggestion this should be 

selected smaller than the previous layer. 

For most experiments, this layer is considered redundant, except for particular complex cases. So use 

it only if really needed. Moreover some theoretical issues have demonstrated that one hidden layer 

only is sufficient to solve usual non linear regression problems. 

If used, in the test phase the number must correspond to the exact number used in the training 

step. Otherwise the experiment will crash.  

By default the second hidden layer is empty (not used) 

3.5.2 Classification with MLPQNA – Test Parameter Specifications 

The setup of test use case for MLPQNA model, used for classification problems, is shown in Fig. 8. 

 

 

Fig. 8 – The setup tab for classification + MLPQNA test use case 

 

 

In the case of Classification_MLPQNA with Test use case, the help page is at the address: 

http://dame.dsf.unina.it/mlpqna_help.html#class_test 

 Input dataset 

this parameter is a field required! 

This is the dataset file to be used as input for the test phase of the model. 

The file must be already uploaded by user and available in the current workspace of the experiment. 

It can be the same input dataset already submitted during training phase. 

It typically must include both input and target columns, where each row is an entire pattern (or 

sample of data). The format (hence its extension) must be one of the types allowed by the application 

http://dame.dsf.unina.it/mlpqna_help.html#class_test
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(ASCII, FITS-table, CSV, VOTABLE). More specifically, take in mind the following simple rule: 

the sum of input and output nodes MUST be equal to the total number of the columns in this 

file! 

 Trained network setup file 

this parameter is a field required! 

It is a file generated by the model during training phase. It contains the resulting network setup 

information, associated to neurons and other important internal parameters, as stored at the end of a 

previous training session. This file must not be edited or modified by users, just to preserve its 

content as generated by the model itself. 

 Trained network weights file 

this parameter is a field required! 

It is a file generated by the model during training phase. It contains the resulting network weights, 

associated to neurons, as stored at the end of a previous training session. Usually this file should not 

be edited or modified by users, just to preserve its content as generated by the model itself. 

 Number of input neurons 

this parameter is a field required! 

It is the number of neurons at the first (input) layer of the network. It must exactly correspond to 

the number of input columns in the dataset input file (Training File field), except the target 

columns.  

 Number of first hidden layer neurons 

this parameter is a field required! 

It is the number of neurons of the first hidden layer of the network. In the test phase the number 

must correspond to the exact number used in the training step. Otherwise the experiment will 

crash.. 

 Number of second hidden layer neurons 

It is the number of neurons of the second hidden layer of the network. As suggestion this should be 

selected smaller than the previous layer. 

For most experiments, this layer is considered redundant, except for particular complex cases. So use 

it only if really needed. Moreover some theoretical issues have demonstrated that one hidden layer 

only is sufficient to solve usual non linear classification problems. 

If used, in the test phase the number must correspond to the exact number used in the training 

step. Otherwise the experiment will crash.  

By default the second hidden layer is empty (not used) 
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 Number of output neurons 

this parameter is a field required! 

It is the number of neurons in the output layer of the network. In the test phase the number must 

correspond to the exact number used in the training step. Otherwise the experiment will 

crash.. 

3.6 Run Use case 

In the use case named “Run”, the software provides the possibility to run the MLPQNA. The user will be 

able to use already trained and tested MLPQNA models, their weight configurations, to execute the normal 

experiments on new datasets. 

 

In the experiment configuration there is also the Help button, redirecting to a web page dedicated to support 

the user with deep information about all parameters and their default values. 

 

We remark that all parameters labeled by an asterisk are considered required. In all other cases the fields can 

be left empty (default values are used). 

 

3.6.1 Regression with MLPQNA – Run Parameter Specifications 

The setup of run use case for MLPQNA model, used for regression problems, is shown in Fig. 9. 

 

 

Fig. 9 – The setup tab for regression + MLPQNA run use case 

 

 

In the case of Regression_MLPQNA with Run use case, the help page is at the address: 

http://dame.dsf.unina.it/mlpqna_help.html#regr_run 

 Trained network setup file 

this parameter is a field required! 

http://dame.dsf.unina.it/mlpqna_help.html#regr_run
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It is a file generated by the model during training phase. It contains the resulting network setup 

information, associated to neurons and other important internal parameters, as stored at the end of a 

previous training session. This file must not be edited or modified by users, just to preserve its 

content as generated by the model itself. 

 Trained network weights file 

this parameter is a field required! 

It is a file generated by the model during training phase. It contains the resulting network weights, 

associated to neurons, as stored at the end of a previous training session. Usually this file should not 

be edited or modified by users, just to preserve its content as generated by the model itself. 

 Input dataset 

this parameter is a field required! 

This is the dataset file to be used as input for the run phase of the model. 

The file must be already uploaded by user and available in the current workspace of the experiment. 

The format (hence its extension) must be one of the types allowed by the application (ASCII, FITS-

table, CSV, VOTABLE). 

 Number of input neurons 

this parameter is a field required! 

It is the number of neurons at the first (input) layer of the network. It must exactly correspond to 

the number of input columns in the dataset input file.  

 Number of first hidden layer neurons 

this parameter is a field required! 

It is the number of neurons of the first hidden layer of the network. In the run phase the number 

must correspond to the exact number used in the training/test step. Otherwise the experiment 

will crash.. 

 Number of second hidden layer neurons 

It is the number of neurons of the second hidden layer of the network. As suggestion this should be 

selected smaller than the previous layer. 

For most experiments, this layer is considered redundant, except for particular complex cases. So use 

it only if really needed. Moreover some theoretical issues have demonstrated that one hidden layer 

only is sufficient to solve usual non linear regression problems. 

If used, in the run phase the number must correspond to the exact number used in the 

training/test step. Otherwise the experiment will crash.  
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By default the second hidden layer is empty (not used) 

3.6.2 Classification with MLPQNA – Run Parameter Specifications 

The setup of run use case for MLPQNA model, used for classification problems, is shown in Fig. 10. 

 

 

Fig. 10 – The setup tab for classification + MLPQNA run use case 

 

 

In the case of Classification_MLPQNA with Run use case, the help page is at the address: 

http://dame.dsf.unina.it/mlpqna_help.html#class_run 

 Input dataset 

this parameter is a field required! 

This is the dataset file to be used as input for the run phase of the model. 

The file must be already uploaded by user and available in the current workspace of the experiment. 

The format (hence its extension) must be one of the types allowed by the application (ASCII, FITS-

table, CSV, VOTABLE). 

 Trained network setup file 

this parameter is a field required! 

It is a file generated by the model during training phase. It contains the resulting network setup 

information, associated to neurons and other important internal parameters, as stored at the end of a 

previous training session. This file must not be edited or modified by users, just to preserve its 

content as generated by the model itself. 

 Trained network weights file 

this parameter is a field required! 

http://dame.dsf.unina.it/mlpqna_help.html#class_run


 
DAta Mining & Exploration 

Program 

 

 

DAMEWARE MLPQNA + MLPLEMON Model User Manual 

 

This document contains proprietary information of DAME project Board. All Rights Reserved. 

25 

It is a file generated by the model during training phase. It contains the resulting network weights, 

associated to neurons, as stored at the end of a previous training session. Usually this file should not 

be edited or modified by users, just to preserve its content as generated by the model itself. 

 Number of input neurons 

this parameter is a field required! 

It is the number of neurons at the first (input) layer of the network. It must exactly correspond to 

the number of input columns in the dataset input file.  

 Number of first hidden layer neurons 

this parameter is a field required! 

It is the number of neurons of the first hidden layer of the network. In the run phase the number 

must correspond to the exact number used in the training/test step. Otherwise the experiment 

will crash.. 

 Number of second hidden layer neurons 

It is the number of neurons of the second hidden layer of the network. As suggestion this should be 

selected smaller than the previous layer. 

For most experiments, this layer is considered redundant, except for particular complex cases. So use 

it only if really needed. Moreover some theoretical issues have demonstrated that one hidden layer 

only is sufficient to solve usual non linear classification problems. 

If used, in the run phase the number must correspond to the exact number used in the 

training/test step. Otherwise the experiment will crash.  

By default the second hidden layer is empty (not used) 

 Number of output neurons 

this parameter is a field required! 

It is the number of neurons in the output layer of the network. In the run phase the number must 

correspond to the exact number used in the training/test step. Otherwise the experiment will 

crash. 
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4 Examples 

This section is dedicated to show some practical examples of the correct use of the web application. 

Not all aspects and available options are reported, but a significant sample of features useful for beginners of 

DAME suite and with a poor experience about data mining methodologies with machine learning algorithms. 

In order to do so, very simple and trivial problems will be described. 

Further complex examples will be integrated here in the next releases of the documentation. 

4.1 Regression XOR problem 

The problem can be stated as follows: we want to train a model to learn the logical XOR function between 

two binary variables. As known, the XOR problem is not a linearly separable problem, so we require to 

obtain a neural network able to learn to identify the right output value of the XOR function, having a BoK 

made by possible combinations of two input variable and related correct output. 

This is a very trivial problem and in principle it should not be needed any machine learning method. But as 

remarked, the scope is not to obtain a scientific benefit, but to make practice with the web application. 

Let say, it is an example comparable with the classical “print <Hello World> on standard output” 

implementation problem for beginners in C language. 

 

As first case, we will use the MLPQNA model associated to the regression functionality. 

 

The starting point is to create a new workspace, named mlpqnaExp and to populate it by uploading two 

files: 

 

 xor.csv: CSV dataset file for training and test use cases; 

 xor_run.csv: CSV dataset file for run use case; 

 

Their content description is already described in section 3 of this document. 

 

 

Fig. 11 – The starting point, with a Workspace (mlpqnaExp) created and two data files uploaded 

4.1.1 Regression MLPQNA – Train use case 

Let suppose we create an experiment named XorTrain and we want to configure it. After creation, the new 

configuration tab is open. Here we select Regression_MLPQNA as couple functionality-model of the 

current experiment and we select also Train as use case. 
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Fig. 12 – The xorTrain experiment configuration tab 

 

Now we have to configure parameters for the experiment. In particular, we will leave empty the not required 

fields (labels without asterisk). 

The meaning of the parameters for this use case are described in section 3.1.1 of this document. As 

alternative, you can click on the Help button to obtain detailed parameter description and their default values 

directly from the webapp. 

We give xor.csv as training dataset, specifying: 

 Number of input nodes: 2, because 2 are the input columns in the file; 

 Number of hidden nodes (first level): 2, as minimal number of hidden nodes (no particularly 

complex network brain is required to solve the XOR problem). Anyway, we suggest to try with 

different numbers of such nodes, by gradually incrementing them, to see what happens in terms of 

training error and convergence speed; 

 Number of output nodes: 1, because the third column in the input file is the target (correct output 

for input patterns); 

 

Fig. 13 – The xorTrain experiment status after submission 
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Fig. 14 – The xorTrain experiment output files 

 

The content of output files, obtained at the end of the experiment (available when the status is “ended”) is 

shown in the following (note that in the training phase the file train_out is not much relevant). The file 

error reports the training error after a set of iterations indicated in the first column (the error is the MSE of 

the difference between network output and the target values). 

 

 

Fig. 15 – The files error (left) and weights (right) output of the xorTrain experiment 

4.1.2 Regression MLPQNA – Test use case 

The file weights  and frozen_train_net can be copied into the input file area (File Manager) of the 

workspace, in order to be re-used in future experiments (for example in this case the test use case).  
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Fig. 16 – The file “weights” and “frozen_train_net” copied in the WS input file area for next purposes 

 

So far, we proceed to create a new experiment, named xorTest, to verify the training of the network. For 

simplicity we will re-use the same input dataset (file xor.csv) but in general, the user could use another 

dataset, uploaded from scratch or extracted from the original training dataset, through file editing options. 

 

 

 

Fig. 17 – The xorTest experiment configuration tab (note “weights” file and frozen_train_net file 

inserted) 

 

After execution, the experiment xorTest will show the output files available. 
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Fig. 18 – The xorTest experiment output files 
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5 Appendix – References and Acronyms 

Abbreviations & Acronyms 

 
A & A Meaning A & A Meaning 

AI Artificial Intelligence KDD Knowledge Discovery in Databases 

ANN Artificial Neural Network IEEE Institute of Electrical and Electronic 

Engineers 

ARFF Attribute Relation File Format INAF Istituto Nazionale di Astrofisica 

ASCII American Standard Code for  

Information Interchange 

JPEG Joint Photographic Experts Group 

BoK Base of Knowledge LAR Layered Application Architecture 

BP Back Propagation MDS Massive Data Sets 

BLL Business Logic Layer MLC Multi Layer Clustering 

CE Cross Entropy MLP Multi Layer Perceptron 

CSOM Clustering SOM MSE Mean Square Error 

CSV Comma Separated Values NN Neural Network 

DAL Data Access Layer OAC Osservatorio Astronomico di 

Capodimonte 

DAME DAta Mining & Exploration  PC Personal Computer 

DAMEWARE DAME Web Application REsource PI Principal Investigator 

DAPL Data Access & Process Layer REDB Registry & Database 

DL Data Layer RIA Rich Internet Application 

DM Data Mining SDSS Sloan Digital Sky Survey 

DMM Data Mining Model SL Service Layer 

DMS Data Mining Suite SOFM Self Organizing Feature Map 

FITS Flexible Image Transport System SOM Self Organizing Map 

FL Frontend Layer SW Software 

FW FrameWork UI User Interface 

GRID Global Resource Information Database URI Uniform Resource Indicator 

GSOM Gated SOM VO Virtual Observatory 

GUI Graphical User Interface XML eXtensible Markup Language 

HW Hardware   

Tab. 3 – Abbreviations and acronyms 
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Press, GB 

Bishop, C. M. 1995 

R3 Neural Computation Bishop, C. M., Svensen, M. & Williams, 

C. K. I. 

1998 

R4 Data Mining Introductory and Advanced Topics, Prentice-

Hall 

Dunham, M. 2002 

R5 The Fourth Paradigm. Microsoft research, Redmond 

Washington, USA 

Hey, T. et al. 2009 

R6 Artificial Intelligence, A modern Approach. Second ed. 

(Prentice Hall) 

Russell, S.,  Norvig, P. 2003 

R7 Neural Networks - A comprehensive Foundation, Second 

Edition, Prentice Hall 

Haykin, S., 1999 

R8  A practical application of simulated annealing to clustering. 
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Donald E. Brown D.E., Huntley, C. L.: 1991 
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ID Title / Code Author Date 

A1 SuiteDesign_VONEURAL-PDD-NA-0001-Rel2.0 DAME Working Group 15/10/2008 

A2 project_plan_VONEURAL-PLA-NA-0001-Rel2.0 Brescia 19/02/2008 

A3 statement_of_work_VONEURAL-SOW-NA-0001-Rel1.0 Brescia 30/05/2007 

A4 mlpGP_DAME-MAN-NA-0008-Rel2.0 Brescia 04/04/2011 
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A11 dm-model_VONEURAL-SDD-NA-0008-Rel2.0 Cavuoti/Di Guido 22/03/2010 

A12 ConfusionMatrixLib_VONEURAL-SPE-NA-0001-Rel1.0 Cavuoti 07/07/2007 

A13 softmax_entropy_VONEURAL-SPE-NA-0004-Rel1.0 Skordovski 02/10/2007 

A14 MLPQNA_DAME-SRS-NA-0009-Rel_1.0 Riccardi, Brescia 09/02/2011 

A15 dm_model_VONEURAL-SRS-NA-0005-Rel0.4 Cavuoti 05/01/2009 

A16 MLPQNA_DAME-SDD-NA-0015-Rel_1.0 Riccardi, Brescia 02/06/2011 

A17 DMPlugins_DAME-TRE-NA-0016-Rel0.3 Di Guido, Brescia 14/04/2010 

A18 BetaRelease_ReferenceGuide_DAME-MAN-NA-0009-

Rel1.0 

Brescia 28/10/2010 

A19 BetaRelease_GUI_UserManual_DAME-MAN-NA-0010-

Rel1.0 

Brescia 03/12/2010 

Tab. 5 – Applicable Documents 
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