

Data-Rich Asterion

Obama the warrior Misgoverning Argentina The economic shift from West to East Genetically modified crops blossom The right to eat cats and dogs

3G

IN CASE OF IP DATA FLOOD OFFLOAD TO WI-FI We all know that astrophysics has became a data rich science, but do we grasp the depth of the problem?

SKA – first light planned 2020 – will produce about 1.5 PB/day Great! But it is just a number... What does 1.5 PB mean???

Did you know?

The data collected by the SKA in a single day would take nearly two million years to playback on an ipod.

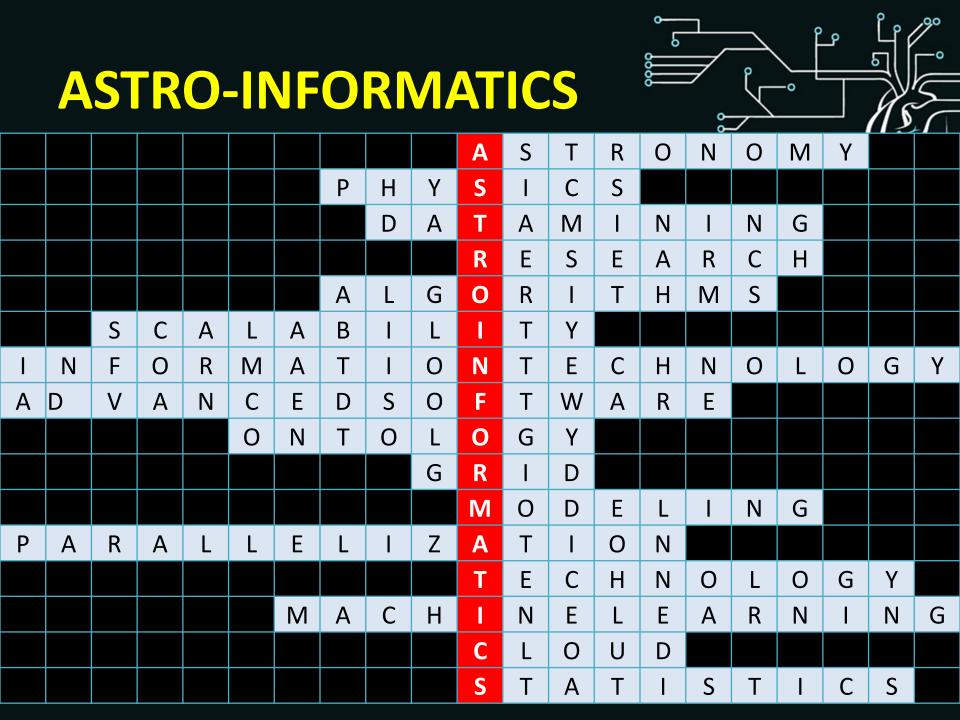
The SKA will generate enough raw data to fill 15 million 64GB iPods every day!

kindle

SKA WILL ALSO FILL ABOUT 1.000.000.000 AMAZON KINDLE PER DAY

The largest library in the world is the Library of Congress, Washington, D.C., USA with ONLY 30.000.000 books...

US Census Bureau (December 2010) estimates for 2020 is 7.7 billion of person...


So to SEE each day the amount of SKA data, each person in the world should read about 10.000 books per day... ARE YOU READY FOR THIS???

AND THIS IS JUST ONE SURVEY!!!

I've seen things you people wouldn't believe. Attack ships on fire off the shoulder of Orion. I've watched c-beams glitter in the dark near the Tannhäuser Gate. All those ... moments will be lost in time, like tears...in rain.

Time to die...

ROY EFFECT: (Blade Runner) MOST DATA WILL NEVER BE SEEN BY HUMANS!!!

SEMANTIC TUNING:

X-informatics is the application of information technology to X disciplines, with emphasis on persistent data stores. Astro-, Bio-, Chem-, Meteo-Informatics and so on...

BEYOND THE SEMANTIC:

These fields share the same traits: they all aim at acquiring new viewpoints and models by applying informatics-based approaches to existing fields such as biology.

They also share the same methodology: the generation of huge amount of data with the help of advanced sensor and observation technologies, and the fast search and knowledge discovery from large-scale databases.

Astroinformatics: a new era for Astronomy?

You take the **Blue Pill**,

The story ends. You wake up in your bed and believe whatever you want to believe. You take the **Red Pill**,

You stay in Wonderland and I show You how deep the rabbit hole goes

I'm only offering You the **TRUTH**... Nothing more.

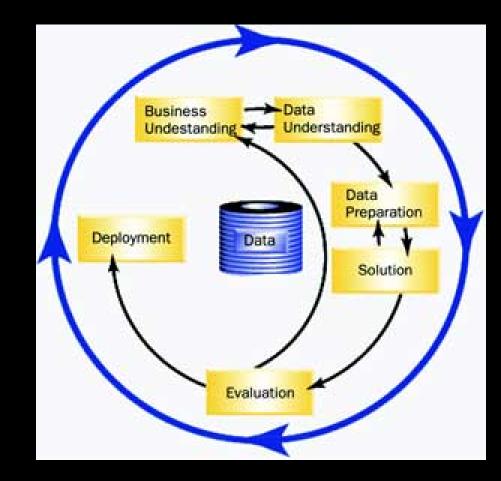
Data Mining

One of the crucial part of Astroinformatics is Data Mining

Data Mining is the process concerned with automatically uncovering patterns, associations, anomalies, and statistically significant structures in large and/or complex data sets

Therefore it includes all those disciplines which can be used to uncover useful information in the data

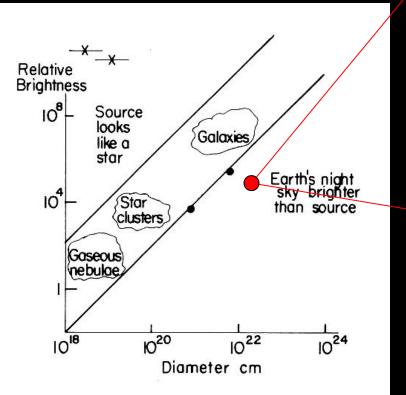
What is new is the confluence of the most mature offshoots of many disciplines with technological advances

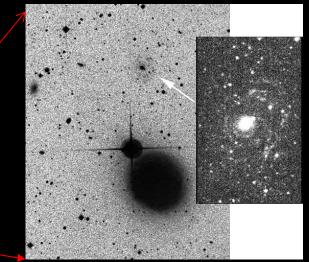

As such, its contents are «user defined» and more than a new discipline is an ensemble of different methodologies originated in different fields

In particular in this talk we will focus on Machine Learning

Data Mining 11-step virtuous cycle

- 1. Translate any opportunity (problem) into DM opportunity (problem)
- 2. Select appropriate data
- 3. Get to know the data
- 4. Create a model set
- 5. Fix problems with the data
- 6. Transform data to bring information
- 7. Build/Evolve models
- 8. Assess models
- 9. Deploy models
- **10.** Assess results
- 11. Go to 2




Parameter Space in Astrophysics

The astronomical parameter space is of high dimensionality, still sparsely covered and poorly sampled:

every time you improve either coverage or sampling you make new discoveries

Malin 1 a new type of low surface brightness galaxies (Malin, 1991)

Machine Learning

Machine learning: Field of study that gives computers the ability to learn without being explicitly programmed.

Arthur Samuel (1959).

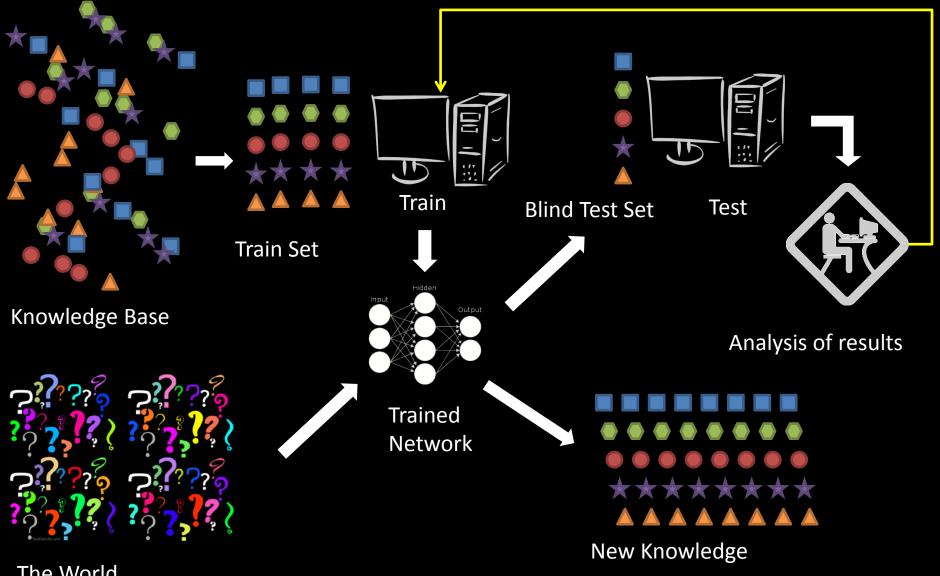
February 24, 1956, Arthur Samuel's Checkers program, which was developed for play on the IBM 701, was demonstrated to the public on television.

In 1962, self-proclaimed checkers master Robert Nealey played the game on an IBM 7094 computer...

May 11, 1997 – Deep Blue defeats Kasparov

...the computer won.

Machine Learning: Supervised


- A Supervised Method tries to reproduce a bias, extending a preexisting knowledge on new patterns...
- \circ Good for interpolation of data, bad for extrapolations;
- They need extensive bases of knowledge (i.e. uniformly sampling the parameter space) which are difficult to obtain;
- Errors are easy to evaluate;
- Relatively easy to use;
- They reproduce all biases and preconceived ideas present in the KB.

Supervised Methods are subdivided into: Classification and Regression algorithms

Machine Learning: Supervised

The World

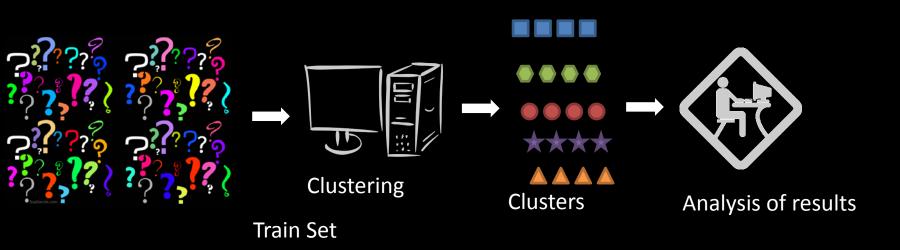
Machine Learning: Unsupervised

Unsupervised Methods (UM) are applied without any a priori knowledge... They cluster the data relying on their statistical properties. The understanding only takes place through labeling (very limited Knowledge Base or KB).

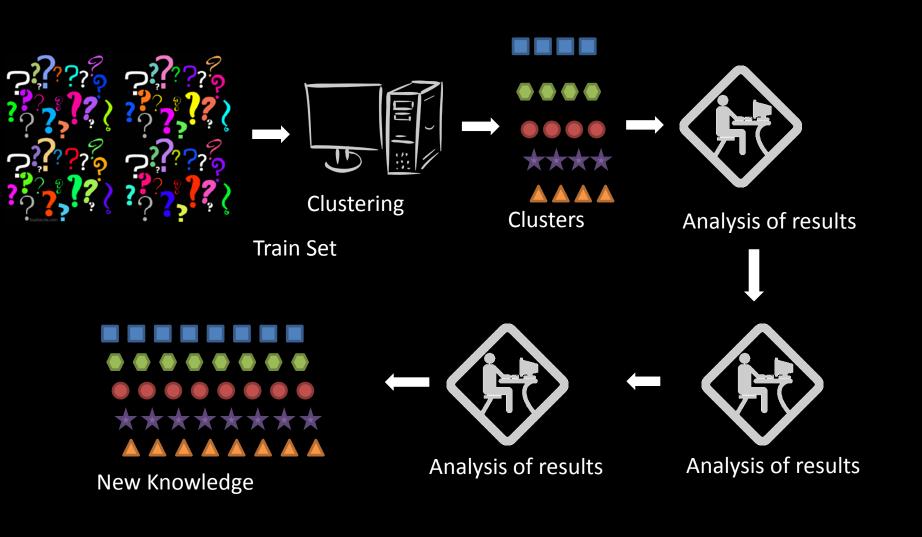
"a blind man in a dark room - looking for a black cat - which isn't there"

Charles Bowen

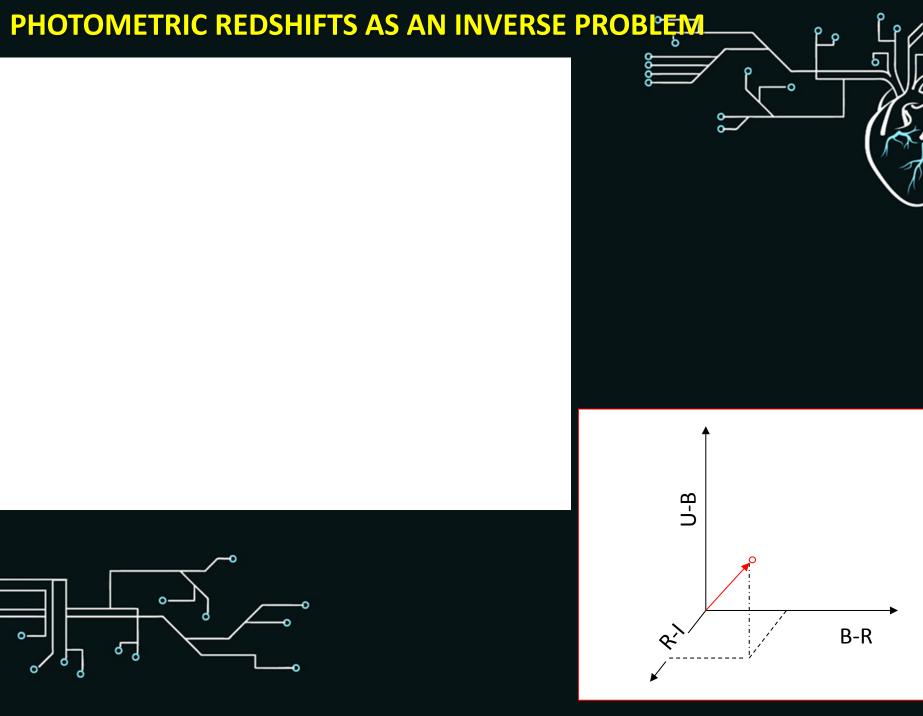
to be honest it is full of cats, the problem is to find the cat that interests us...


UM:

- need little or none a-priori knowledge;
- do not reproduce biases present in the KB;
- require more complex error evaluation (through complex statistics);
- are computationally intensive;
- are not user friendly (... more an art than a science; i.e. lot of experience required)


Machine Learning: Unsupervised

Machine Learning: Unsupervised



REGRESSION PROBLEMS:

Photometric Redshift

Galaxy and Quasars

0,0

Why do we need (photometric or spectroscopic) redshifts?

- To measure the distance of objects;
- To disentangle the degeneracies in the object classification;
- Cosmological parameters;
- Lensing Effects;
- Dark Energy;
- Dark Matter;

OK! But why are Photometric Redshifts crucial?

SDSS DR9 Facts					
Sky coverage	14,555 square degrees				
Catalog objects	932,891,133				
Galaxy spectra	1,457,002				
Quasar spectra	228,468				
Star spectra	668,054				

932,891,133 PHOTOMETRIC OBJECTS 2,353,524 SPETTROSCOPIC OBJECTS ~ 400 times more objects!!!

Photometric Redshifts: Methods

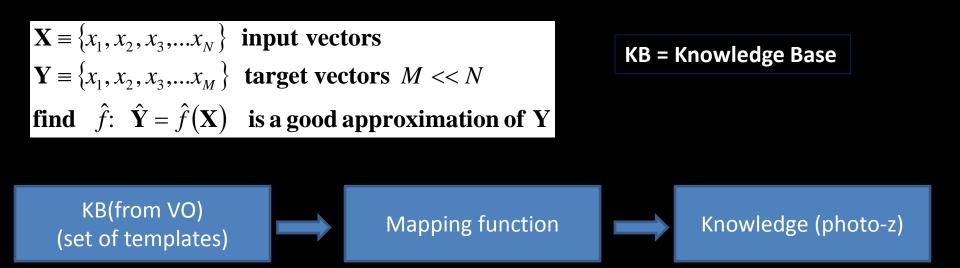
Template based:

color-space tessellation, χ2-minimization, maximum likelihood, Bayesian...

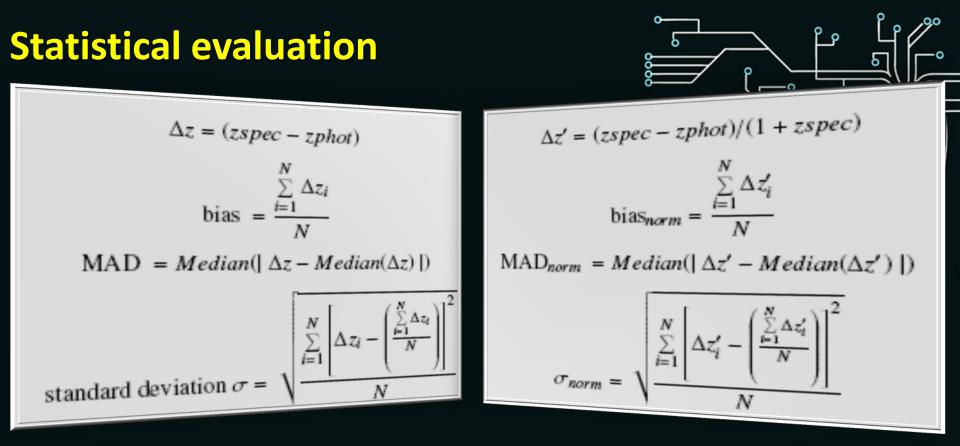
uses physical information: SED's (sizes, compactness, etc.), ... and therefore biased

extrapolates reasonably well into unknown territory

Learning based:


Nearest Neighbor, Kd-tree, Direct fitting, Neural Networks, Support Vector Machines, Kernel Regression, Regression Trees & Random Forests...

ignores physical information: and therefore unbiased,


can uncover unknown dependencies requires large training set, bad in extrapolation

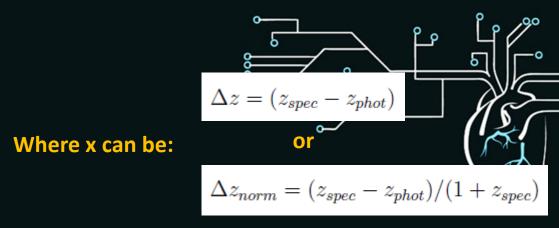
Photometric redshifts: the Data Mining approach

Photometric redshifts are treated as a regression problem (i.e. function approximation), hence a DM problem:

Average statistical indicators such as bias and standard deviation, however, provide only part of the information which allows to correctly evaluate the performances of a method and, for instance, they provide only very little evidence of the systematic trends which are observed as a sudden increase in the residuals spread over specific regions of the redshift

Statistical evaluation

 $bias(\mathbf{x}) = \frac{\sum_{i=1}^{N} x_i}{N}$


$$\sigma(x) = \sqrt{\frac{\sum_{i=1}^{N} \left[x_i - \left(\frac{\sum_{i=1}^{N} x_i}{N}\right)\right]^2}{N}}$$

$$\mathrm{MAD}(\mathbf{x}) = Median\left(|x|\right)$$

 $NMAD(x) = 1.48 \times Median(|x|)$

0-

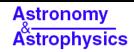
Ъ

Average statistical indicators such as bias and standard deviation, provide part of the information which allows to correctly evaluate the performances of a method and, for instance, they provide only very little evidence of the systematic trends which are observed as a sudden increase in the residuals spread over specific regions of the redshift space.

The rest of important information could be retrieved from the analysis of outliers (in particular the catastrophic ones).

Catastrophic outliers

$$|\Delta z_{norm}| > 2\sigma \left(\Delta z_{norm}\right)$$


Photo-z Accuracy Testing – PHAT1 CONTEST

The PHAT consists of a **competition** engaged by involving all relevant players (Hildebrandt et al 2010) with the "aim to evaluate different (theoretical/empirical) methods to extract photo-z from an ensemble of ground-based and space observation catalogues in several bands, composed to perform photometric redshift prediction evaluation tests of several models, both theoretical and empirical, based on the training/statistics of given spectroscopic redshifts". The imaging dataset is obtained in the **GOODS-North** (Great Observatories Origins Deep Survey Northern field). The total features of **1984 patterns** are indeed based on **18 bands**.

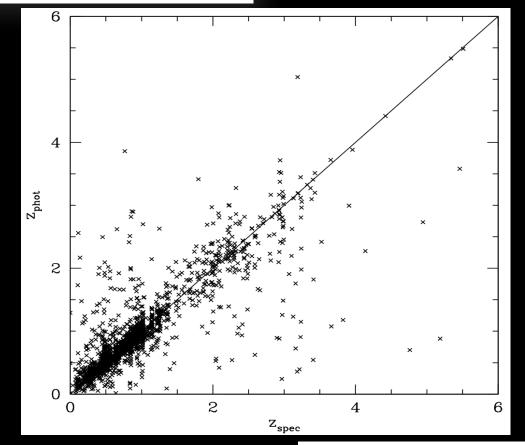
In this contest, in fact, only 515 objects were made available with the corresponding spectroscopic redshift, while for the remaining 1469 objects the related spectroscopic redshift has been hidden to all participants.

A&A 523, A31 (2010) DOI: 10.1051/0004-6361/201014885 © ESO 2010

PHAT: PHoto-z Accuracy Testing*

H. Hildebrandt¹, S. Arnouts², P. Capak³, L. A. Moustakas⁴, C. Wolf⁵, F. B. Abdalla⁶, R. J. Assef⁷, M. Banerji⁸, N. Benítez⁹, G. B. Brammer¹⁰, T. Budavári¹¹, S. Carliles¹², D. Coe⁴, T. Dahlen¹³, R. Feldmann¹⁴, D. Gerdes¹⁵, B. Gillis¹⁶, O. Ilbert¹⁷, R. Kotulla^{18,19}, O. Lahav⁶, I. H. Li²⁰, J.-M. Miralles²¹, N. Purger²², S. Schmidt²³, and J. Singal²⁴

Astronomy & Astrophysics manuscript no. aa19755-12 September 5, 2012


PHAT1 CONTEST

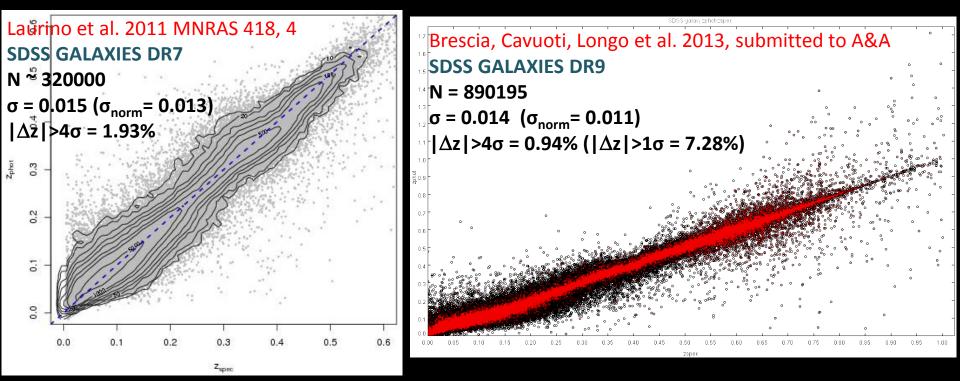
Photometric redshifts with the quasi Newton algorithm (MLPQNA). Results in the PHAT1 contest

S. Cavuoti^{1,2}, M. Brescia^{2,1}, G. Longo^{1,2,3}, and A. Mercurio²

Filter	Instrument	mlim.;AB
U	MOSAIC@KPNO-4m	27.1^{a}
В	SUPRIMECAM@Subaru	26.9^{a}
V	SUPRIMECAM@Subaru	26.8^{a}
R	SUPRIMECAM@Subaru	26.6 ^a
Ι	SUPRIMECAM@Subaru	25.6^{a}
Ζ	SUPRIMECAM@Subaru	25.4^{a}
F435W	ACS@HST	27.8^{b}
F606W	ACS@HST	27.8^{b}
F775W	ACS@HST	27.1^{b}
F850LP	ACS@HST	26.6^{b}
J	ULBCAM@UH-2.2 m	24.1 ^c
Н	ULBCAM@UH-2.2 m	23.1 ^c
HK	QUIRC@UH-2.2 m	22.1 ^c
Κ	WIRC@Hale-5 m	22.5^{d}
3.6 µm	IRAC@Spitzer	25.8 ^e
$4.5 \mu \mathrm{m}$	IRAC@Spitzer	25.8e
5.8 µm	IRAC@Spitzer	23.0 ^e
$8.0 \mu \mathrm{m}$	IRAC@Spitzer	23.0 ^e

18 bands (near UV \rightarrow mid IR)

© ESO 2012


Best among all empirical methods bias ~ 0,0006 σ_{norm} = 0.05 $|\Delta z|$ > 0.15 = 16.33%

PHAT1 CONTEST - RESULTS

18-b	and; $ \Delta z $	≤ 0.15	14-b	and; $ \Delta z $	≤ 0.15	18-band	; R < 24;	$ \Delta z \le 0.15$	14-band	; R < 24;	$ \Delta z \le 0.15$
bias	scatter	outliers %	bias	scatter	outliers %	bias	scatter	outliers %	bias	scatter	outliers %
0.0006	0.056	16.3	0.0028	0.063	19.3	0.0002	0.053	11.7	0.0016	0.060	13.7
-0.010	0.074	31.0	-0.006	0.078	38.5	-0.013	0.071	24.4	-0.007	0.076	32.8
-0.001	0.067	18.4	0.002	0.066	16.7	-0.006	0.064	14.5	-0.003	0.064	13.5
-0.009	0.052	18.0	-0.007	0.051	13.7	-0.009	0.047	10.7	-0.008	0.046	7.1
-0.009	0.066	21.4	-0.008	0.067	24.2	-0.012	0.063	16.4	-0.012	0.064	18.4
18-1	band; $ \Delta z $	≤ 0.5	14-band; $ \Delta z \le 0.5$			18-band	l; $R < 24;$	$ \Delta z \le 0.5$	14-band	l; $R < 24;$	$ \Delta z \le 0.5$
bias	scatter	outliers %	bias	scatter	outliers %	bias	scatter	outliers %	bias	scatter	outliers %
-0.0028	0.114	3.8	-0.0046	0.125	3.8	-0.0039	0.101	1.7	-0.0039	0.101	1.7
-0.036	0.151	3.1	-0.035	0.173	4.2	-0.047	0.130	1.4	-0.047	0.130	1.4
-0.007	0.120	3.6	-0.003	0.114	3.6	-0.015	0.106	1.9	-0.015	0.106	1.9
-0.013	0.124	3.1	0.001	0.107	2.3	-0.020	0.098	1.2	-0.020	0.098	1.2
-0.031	0.126	3.2	-0.028	0.137	3.6	-0.034	0.111	1.4	-0.034	0.111	1.4
18-band;	$z_{\rm sp} \leq 1.5$,	$ \Delta z \leq 0.15$	14-band;	$z_{\rm sp} \leq 1.5$,	$ \Delta z \le 0.15$	18-band;	$z_{\rm sp} > 1.5,$	$ \Delta z \le 0.15$	14-band;	$z_{sp} > 1.5$,	$ \Delta z \le 0.15$
bias	scatter	outliers %	bias	scatter	outliers %	bias	scatter	outliers %	bias	scatter	outliers %
-0.0004	0.053	14.6	0.0001	0.061	16.6	0.0074	0.072	26.3	0.0222	0.070	35.0
-0.017	0.070	27.6	-0.010	0.076	33.6	0.051	0.078	50.7	0.045	0.077	66.4
-0.003	0.065	16.1	-0.000	0.064	14.5	0.015	0.077	32.3	0.015	0.077	29.5
-0.012	0.049	12.6	-0.011	0.047	9.4	0.019	0.075	48.3	0.026	0.074	37.7
-0.016	0.062	19.6	-0.014	0.064	21.1	0.040	0.072	31.8	0.039	0.071	41.9
	bias 0.0006 -0.010 -0.009 -0.009 18-1 bias -0.0028 -0.0028 -0.007 -0.013 -0.013 -0.031 18-band; bias -0.0004 -0.017 -0.003 -0.012	biasscatter 0.0006 0.056 -0.010 0.074 -0.001 0.067 -0.009 0.052 -0.009 0.066 18 -band; $ \Delta z $ biasscatter -0.0028 0.114 -0.036 0.151 -0.007 0.120 -0.013 0.124 -0.031 0.126 18 -band; $z_{sp} \leq 1.5$,biasscatter -0.0004 0.053 -0.017 0.070 -0.003 0.065 -0.012 0.049	$\begin{array}{c cccccc} 0.0006 & 0.056 & 16.3 \\ -0.010 & 0.074 & 31.0 \\ -0.001 & 0.067 & 18.4 \\ -0.009 & 0.052 & 18.0 \\ -0.009 & 0.066 & 21.4 \\ \hline 18-\text{band}; \Delta z \leq 0.5 \\ \hline bias & \text{scatter} & \text{outliers }\% \\ \hline -0.0028 & 0.114 & 3.8 \\ -0.036 & 0.151 & 3.1 \\ -0.007 & 0.120 & 3.6 \\ -0.013 & 0.124 & 3.1 \\ -0.031 & 0.126 & 3.2 \\ \hline 18-\text{band}; z_{\text{sp}} \leq 1.5, \Delta z \leq 0.15 \\ \hline bias & \text{scatter} & \text{outliers }\% \\ \hline -0.0004 & 0.053 & 14.6 \\ -0.017 & 0.070 & 27.6 \\ -0.003 & 0.065 & 16.1 \\ -0.012 & 0.049 & 12.6 \\ \hline \end{array}$	biasscatteroutliers %bias0.00060.05616.30.0028-0.0100.07431.0-0.006-0.0010.06718.40.002-0.0090.05218.0-0.007-0.0090.06621.4-0.00818-band; $ \Delta z \leq 0.5$ 14-1biasscatteroutliers %biasscatteroutliers %-0.00280.1143.8-0.0046-0.0360.1513.1-0.035-0.0070.1203.6-0.003-0.0130.1243.10.001-0.0310.1263.2-0.02818-band; $z_{sp} \leq 1.5$, $ \Delta z \leq 0.15$ 14-band;biasscatteroutliers %bias-0.00310.06314.60.0001-0.0170.07027.6-0.010-0.0120.04912.6-0.011	biasscatteroutliers %biasscatter0.00060.05616.30.00280.063-0.0100.07431.0-0.0060.078-0.0010.06718.40.0020.066-0.0090.05218.0-0.0070.051-0.0090.06621.4-0.0080.06718-band; $ \Delta z \leq 0.5$ 14-band; $ \Delta z $ biasscatteroutliers %biasscatter-0.00280.1143.8-0.00460.125-0.0360.1513.1-0.0350.173-0.0070.1203.6-0.0030.114-0.0130.1243.10.0010.107-0.0310.1263.2-0.0280.13718-band; $z_{sp} \leq 1.5$, $ \Delta z \leq 0.15$ 14-band; $z_{sp} \leq 1.5$,biasbiasscatteroutliers %biasscatter-0.0040.05314.60.00010.061-0.0170.07027.6-0.0100.076-0.0120.04912.6-0.0110.047	biasscatteroutliers %biasscatteroutliers %0.00060.05616.30.00280.06319.3-0.0100.07431.0-0.0060.07838.5-0.0010.06718.40.0020.06616.7-0.0090.05218.0-0.0070.05113.7-0.0090.06621.4-0.0080.06724.218-band; $ \Delta z \leq 0.5$ 14-band; $ \Delta z \leq 0.5$ 5biasscatteroutliers %biasscatter-0.00280.1143.8-0.00460.1253.8-0.0070.1203.6-0.0030.1143.6-0.0130.1243.10.0010.1072.3-0.0310.1263.2-0.0280.1373.618-band; $z_{sp} \leq 1.5$, $ \Delta z \leq 0.15$ 14-band; $z_{sp} \leq 1.5$, $ \Delta z \leq 0.15$ 5biasscatteroutliers %550.0010.06516.1-0.0000.06414.5-0.0030.06516.1-0.0000.06414.5-0.0120.04912.6-0.0110.0479.4	biasscatteroutliers %biasscatteroutliers %bias0.00060.05616.30.00280.06319.30.0002-0.0100.07431.0-0.0060.07838.5-0.013-0.0010.06718.40.0020.06616.7-0.006-0.0090.05218.0-0.0070.05113.7-0.009-0.0090.06621.4-0.0080.06724.2-0.01218-band; $ \Delta z \leq 0.5$ 14-band; $ \Delta z \leq 0.5$ 18-bandbiasbiasscatteroutliers %biasscatteroutliers %bias-0.00280.1143.8-0.00460.1253.8-0.0039-0.0360.1513.1-0.0350.1734.2-0.047-0.0130.1263.2-0.0280.1373.6-0.020-0.0310.1263.2-0.0280.1373.6-0.03418-band; $z_{sp} \leq 1.5, \Delta z \leq 0.15$ 14-band; $z_{sp} \leq 1.5, \Delta z \leq 0.15$ 18-band;biasscatteroutliers %biasscatteroutliers %biasscatteroutliers %biasscatteroutliers %-0.0040.05314.60.00010.06116.60.0074-0.0170.07027.6-0.0100.07633.60.051-0.0030.06516.1-0.0000.06414.50.015-0.0120.04912.6-0.0110.0479.4 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Photo-z for SDSS DR9 Galaxies

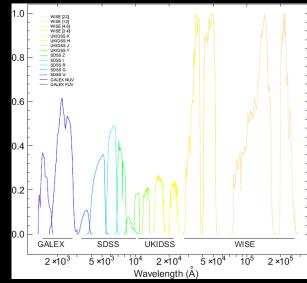
An application of a machine learning based method to the estimation of photometric redshifts for the galaxies in the SDSS Data Release 9 (SDSS-DR9). Photometric redshifts for more than 129 million galaxies were produced and made available at the URL: http://dame.dsf.unina.it/catalog/DR9PHOTOZ/

The obtained redshifts have a normalized standard deviation $\sigma_{norm} = 0.011$, which decreases to 0.009 after the rejection of catastrophic outliers. This result is better or comparable with what was already available in the literature but present a smaller number of catastrophic outliers

Photo-z for QSO

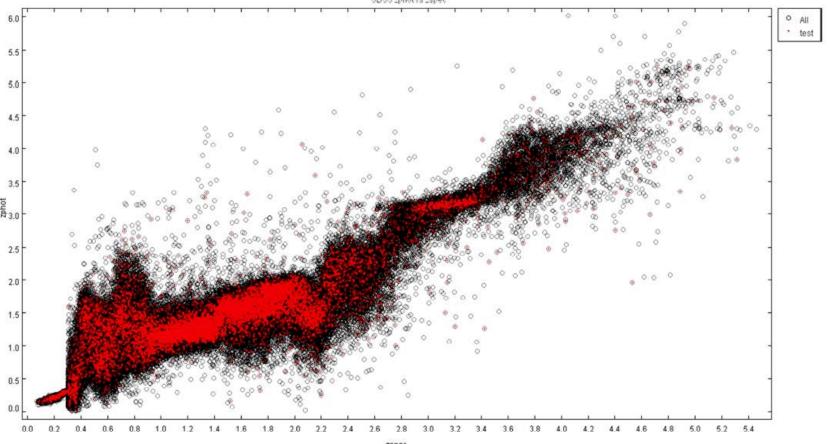
For the Quasars SDSS bands are not enough...

Thanks to the federation of database and using the VO tools we retrieve the data from four surveys: SDSS, GALEX, UKIDSS and WISE obtaining:


•	SDSS,	~100k objects	z limit ~ 5
•	SDSS+GALEX	~45k objects	z limit ~ 3.5
•	SDSS+UKIDSS	~30k objects	z limit ~ 5
•	SDSS+UKIDSS+GALEX	~15k objects	z limit ~ 2.8
•	SDSS+UKIDSS+GALEX+WISE	~14k objects	z limit ~ 2.8

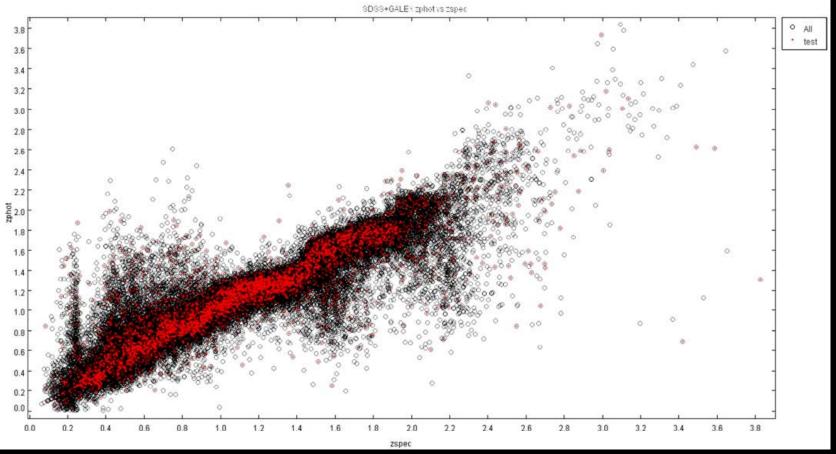
Having the data, three new questions arise...

- Which magnitudes are the best for this work?
- Is it better to use magnitudes or colors? Or a combination of both (colors + reference mag)?
- Adding bands reduces number of templates. Which factor is dominant?


And after many (ca. 100) experiments we choose:

- Color + reference mag
- 2 hidden layers
- SDSS PSF mag
- GALEX ISO mag
- UKIDSS HALL mag
- WISE ISO mag

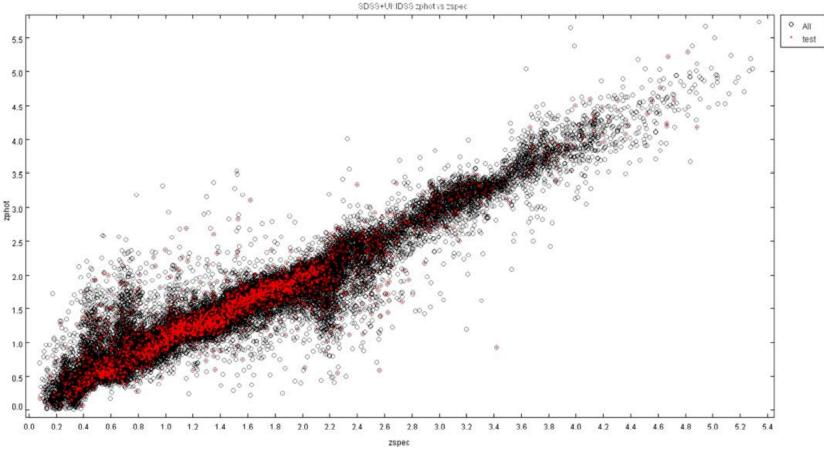
Photo-z for QSO: SDSS



-			
Z			
-		~	

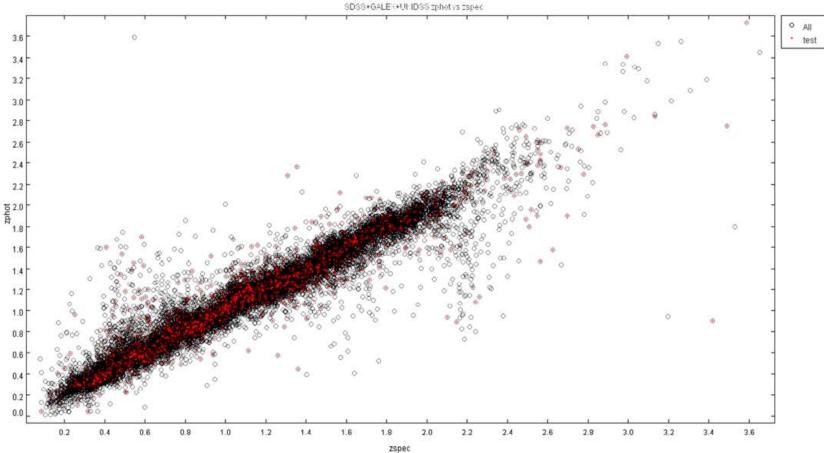
Ref.	bias	sigma	MAD	RMS	bias _{norm}	S _{norm}	MAD _{norm}	RMS _{norm}
MLPQNA	0.007	0.25	0.102	0.26	0.032	0.15	0.039	0.17
Bovy 2012		0.46						
Laurino 2011	0.210	0.28	0.110	0.35	0.095	0.16	0.041	0.19
Ball 2010		0.35			0.095	0.18		
Richards 2009		0.52			0.115	0.28		

Photo-z for QSO: SDSS + GALEX

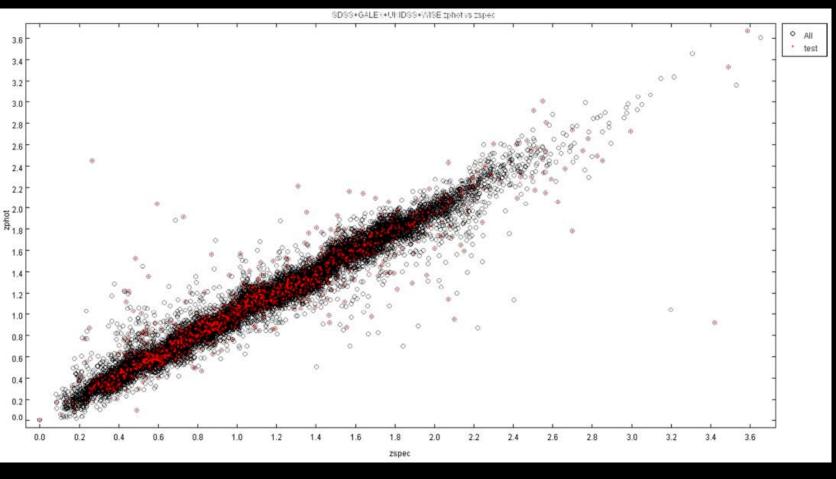


Ref.	bias	sigma	MAD	RMS	bias _{norm}	S _{norm}	MAD _{norm}	RMS _{norm}
MLPQNA	0.003	0.21	0.060	0.22	0.012	0.11	0.029	0.12
Bovy 2012		0.26						
Laurino 2011	0.13	0.21	0.061	0.25	0.058	0.29	0.029	0.11
Ball 2010		0.23			0.06	0.12		
Richards 2009		0.37			0.071	0.18		

Photo-z for QSO: SDSS + UKIDSS



Ref.	bias	sigma	MAD	RMS	bias _{norm}	S _{norm}	MAD _{norm}	RMS _{norm}
MLPQNA				0.21		0.11	0.040	0.11
Bovy 2012		0.28						


Photo-z for QSO: SDSS + UKIDSS + GALEX

Ref.	bias	sigma	MAD	RMS	bias _{norm}	S _{norm}	MAD _{norm}	RMS _{norm}
MLPQNA	0.005	0.15	0.072	0.15	0.006	0.075	0.036	0.075
Bovy 2012		0.21						

Photo-z for QSO: SDSS + UKIDSS + GALEX + WISE

Ref.	bias	sigma	MAD	RMS	biasnorm	snorm	MADnorm	RMSnorm
MLPQNA	0.003	0.15	0.063	0.15	0.005	0.15	0.063	0.15

Photo-z for QSO: overall comparison

Exp	BIAS(Dinorm)	$\sigma(\Delta z_{norm})$	$MAD(\Delta z_{norm})$	DMS(A.	
			(Achorm)	$RMS(\Delta z_{norm})$	$NMAD(\Delta z_{norm})$
			SDSS		
MLPQNA	0.032	0.15	0.039	0.17	0.058
Laurino et al.	0.095	0.16	0.041	0.19	0.058
Ball et al. Richards et al.	0.095	0.18	-	-	-
rucuarus et al.	0.115	0.28	-	-	-
		SDS	SS + GALEX		
MLPQNA	0.012	0.11	0.029	0.11	0.043
Laurino et al.	0.058	0.29	0.029	0.11	-
Ball et al.	0.06	0.12	-	-	
Richards et al.	0.071	0.18		8	
		SDS	S + UKIDSS		
MLPQNA	0.008	0.11	0.027	0.11	0.040
		SDSS + 0	GALEX + UKIDSS	6	
MLPQNA	0.005	0.087	0.022	0.088	0.032
		SDSS + GAL	EX + UKIDSS + V	WISE	
	0.004	0.069	0.020	0.069	0.029
MLPQNA	0.004	0.000			
mun dune	00001	0.069			
MLPOXA					
_		SLOG - GTT			0.032
мгъбич	Exp (Dutliers (Δz)	Out	liers (Δz_{norm})	
		$> 2\sigma(\Delta z)$	$> 4\sigma(\Delta z) > $	$2\sigma(\Delta z_{norm})$	$> 4\sigma(\Delta z_{norm})$
		SDSS			
	MLPQNA	7.68	0.38	0.80	
	Bovy et al.	1.00	0.51	6.53	1.24
	51	DSS + GALEX			
	MLPQNA	4.88	1.61	4.57	1.37
	Bovy et al.		1.86		
	SI	OSS + UKIDSS			
	MLPQNA	4.00	1.73	3.82	1.38
	Boyy et al.	4100	1.92		
	-		B .0.0		
		GALEX + UKI		2.05	0.23
	MLPQNA Bovy et al.	2.86	1.47	3.05	0.23
		LEX + UKIDSS		2.88	0.91
	MLPQNA	2.57	0.87	£.00	
					0.91
					0.01

Exp	$BIAS(\Delta z)$	$\sigma(\Delta z)$	$MAD(\Delta z)$	$RMS(\Delta z)$
		apaa		
		SDSS		0.00
MLPQNA	0.007	0.25	0.102	0.26
Boyy et al.	_	0.46	-	0.05
Laurino et al.	0.210	0.28	0.110	0.35
Ball et al.	-	0.35	-	-
Richards et al.	-	0.52	-	-
	SDSS	3 + GALE	X	
MLPQNA	0.003	0.21	0.060	0.22
Boyy et al.	-	0.26	-	-
Laurino et al.	0.13	0.21	0.061	0.25
Ball et al.	-	0.23	-	-
Richards et al.	-	0.37	-	-
	SDSS	+ UKIDS	SS	
MLPQNA	0.001	0.25	0.066	0.26
Boyy et al.	-	0.28	-	-
	SDSS + G	ALEX + U	JKIDSS	
MLPQNA	0.0009	0.18	0.043	0.19
Boyy et al.	-	0.21		-
S	SDSS + GALE	X + UKID	OSS + WISE	
MLPQNA	0.002	0.15	0.040	0.15
мгроил	0.002	0.15	0.040	0.15
			DSS + WISE	

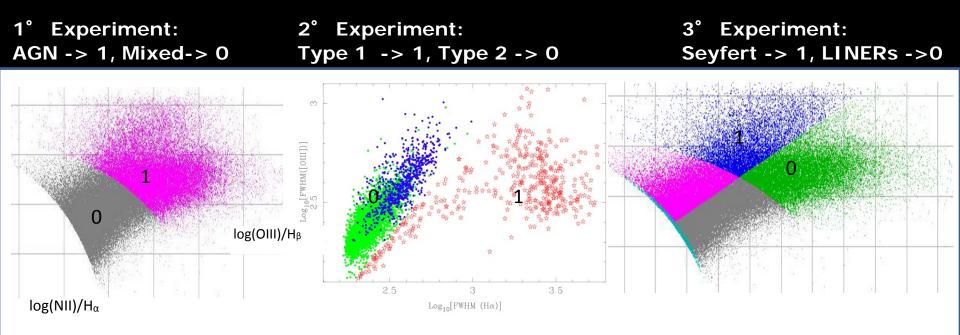
What we learned:

- Additional bands are more important than additional points in the training sets;
- Wing degeneracies fade out with wavelength coverage;
- Photometric redshifts are complex enough to require the violation of the "Haykin theorem".

Brescia, M.; Cavuoti, S.; D'Abrusco, R.; Longo, G.; Mercurio, A.; 2013, Photo-z prediction on WISE-GALEX-UKIDSS-SDSS Quasar Catalogue, based on the MLPQNA model, Apj, 772, 2, 140

CLASSIFICATION PROBLEMS:

Active Galactic Nuclei


Globular Clusters in external galaxies

AGN CLASSIFICATION

Photometric parameters used for training of the NNs and SVMs:

```
petroR50_u, petroR50_g, petroR50_r, petroR50_i, petroR50_z
concentration_index_r
fibermag_r
(u - g)_{dered}, (g - r)_{dered}, (r - i)_{dered}, (i - z)_{dered}
dered_r
```

photo_z_corr

Cavuoti, S.; Brescia, M.; D'Abrusco, R.; Longo, G.; Paolillo, M.; 2014, Photometric classification of emission line galaxies with Machine Learning methods, *MNRAS*, 437, 1, 968-975

AGN CLASSIFICATION RESULTS

Sample	Parameters	<u>KB</u>	<u>Algorithm</u>	<u>Ctot</u>
Experiment (1) AGN detection	SDSS photometric parameters + photo redshift	BPT plot +Kewley's line	SVM MLP	~74%
Experiment (2) Type 1 vs. Type 2	SDSS photometric parameters + photo redshift	•	SVM MLP	~82% e~72%
Experiment (3) Seyfert Vs. LINERs	SDSS photometric parameters + photo redshift	BPT plot+Heckma n's+Kewley's lines	SVM MLP	~78%

- Checking the trained NN with a dataset of sure not AGN, just 12.6% are false positive

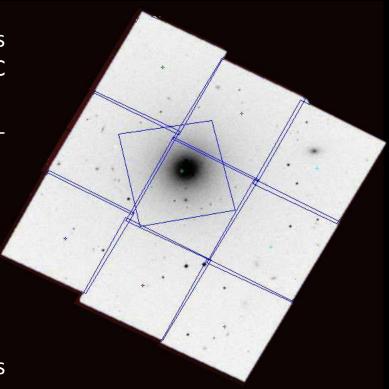
- False positive surely not AGN (according KB) are 0.89%

ONLINE CATALOG AVAILABLE AT http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/MNRAS/437/968

Globular Cluster Recognition

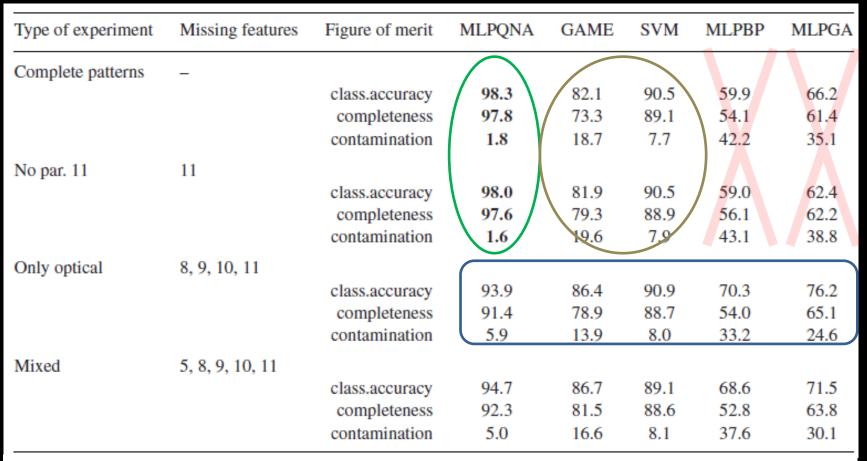
NGC1399 Dataset

NGC1399 (~20 Mpc) is an ideal target because it allows to probe a large fraction of the galaxy and still resolve GC sizes.


9 HST V-band (f606w) observations, drizzled to super-Nyquist sampling the ACS PSF (2.9 pc/pix).

Chandra ACIS-I + ACIS-S

ACS g-z colors for central region

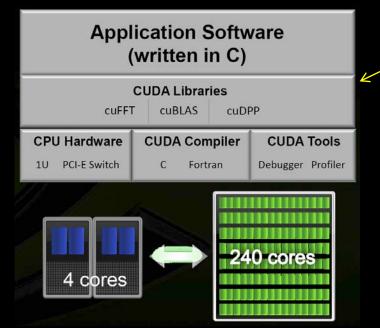

Ground-based *C-R* photometry for part of the sources over the whole field

Brescia, M.; Cavuoti, S.; Paolillo, M.; Longo, G.; Puzia, T.; 2012, The detection of Globular Clusters in galaxies as a data mining problem, MNRAS, 421, 2, 1155-1165

Quality and pruning results

- isophotal magnitude (feature 1);
- ✤ 3 aperture magnitudes (features 2–4) obtained through circular apertures of radii
 - 2, 6 and 20 arcsec, respectively;
- Kron radius, ellipticity and the FWHM of the image (features 5–7);
- 4 structural parameters (features 8–11) which are, respectively, the central surface brightness, the core radius, the effective radius and the tidal radius;

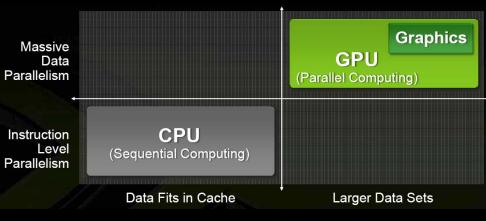
Multi Layer Perceptron


A Multi Layer Perceptron is a mathematical operator that mimics the brain behavior:

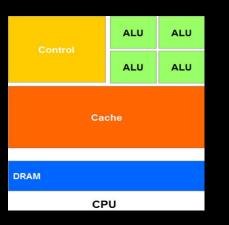
Hidden Input Output outputs) Cell Body Dendrite (inputs) Synapse Neurons are connected by «activation functions» we have different kind of MLP changing the way with they found the best solution **Training rules: INPUT** OUTPUT guess **Quasi Newton Back Propagation** $\overline{}$ feedback **Genetic Algorithm** 0 Levenberg Marquardt

... GPU technology?

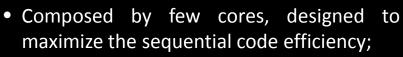
The Graphical Processing Unit is specialized in highly parallel computation (exactly what graphics rendering is about). So, more transistors can be devoted to data processing rather than data caching and flow control.


«GPU have evolved to the point where many real world apps are easily implemented on them and run significantly faster than on multi-core systems. Future computing architectures will be hybrid systems with parallel-core GPUs working in tandem with multi-core CPUs» Jack Dongarra, Director of the Innovative Computing Laboratory The University of Tennessee

DAME - FMLPGA Fast Multi Layer Perceptron Genetic Algorithm


FMLPGA is a Soft Computing model developed in order to solve supervised regression or classification problems, scalable for Massive Data Sets (MDS).

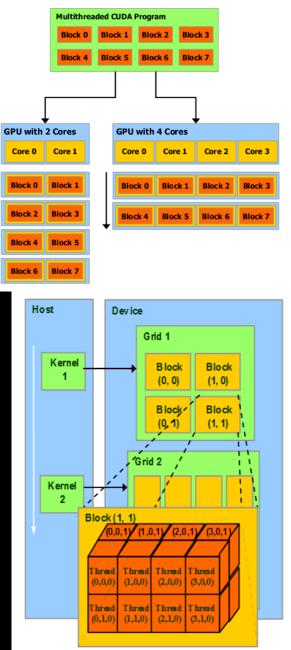
It is embarrassingly parallel.



GPU vs CPU Multi-core CPU

DRAM

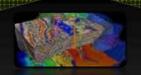
GPU



- Large cache memory to reduce latency time to access data and/or complex instruction execution;
- Sophisticate control logic to handle instruction flow (pipelining and multithreading).

- Composed by many cores (hundreds), designed to execute parallel code;
- Memory structures with negligible access time to perform contemporary simple instructions;
- Simple control logic (the only bottleneck could be the communication with the CPU host);

CUDA cost-benefit ratio



<mark> NVIDIA</mark>.

DRIVERS >	PRODUCTS >	COM	MUNITIES >	SUPPORT	SHOP AB	OUT NVIDIA ▶
BLOG	Home	Auto	Corporate	Gaming	Mobile	Enterprise
2 9 15 <		G	Roy Kim on Nover	4 WEE		DE EASY:

"The PGI compiler is now showing us just how powerful it is. On the software we are writing, it's many times faster on the NVIDIA card. We are very pleased and excited about the future uses. It's like owning a personal supercomputer."

Dr. Kerry Black University of Melbourne

Large Oil Company

3x in 7 days

Solving billions of equations iteratively for oil production at world's largest petroleum reservoirs HOUSTON

Univ. of Houston Prof. M.A. Kayali

20x in 2 days

Studying magnetic systems for innovations in magnetic storage media and memory, field sensors, and biomagnetism

Uni. Of Melbourne Prof. Kerry Black

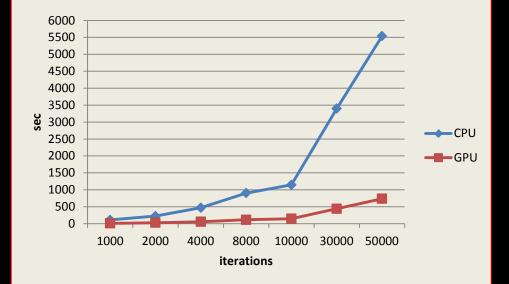
65x in 2 days

Better understand complex reasons by lifecycles of snapper fish in Port Phillip Bay

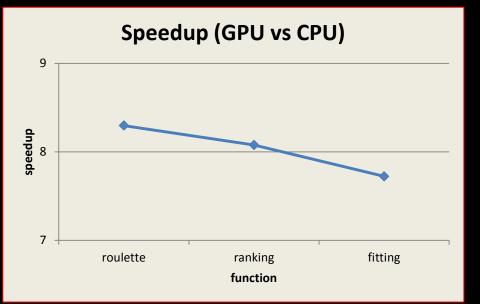
Ufa State Aviation Prof. Arthur Yuldashev

7x in 4 Weeks

Generating stochastic geological models of oilfield reservoirs with borehole data



GAMESS-UK Dr. Wilkinson, Prof. Naidoo 10x


Used for various fields such as investigating biofuel production and molecular sensors.

CUDA – Our Experience

With our first test (FMLPGA, available on DAMEWARE) we obtain a speedup of 8x during a bachelor thesis work (1 month)

CPU vs GPU

Our Tools Environment - DAME Program

DAME Program is a joint effort between University Federico II, Caltech and INAF-OACN, aimed at implementing (as web 2.0 apps and services) a scientific gateway for data exploration on top of a virtualized distributed computing environment.

Multi-purpose data mining with machine learning Web App REsource

Specialized services:

text mining (VOGCLUSTERS) Transient classification (STraDiWA) **EUCLID Mission Data Quality**

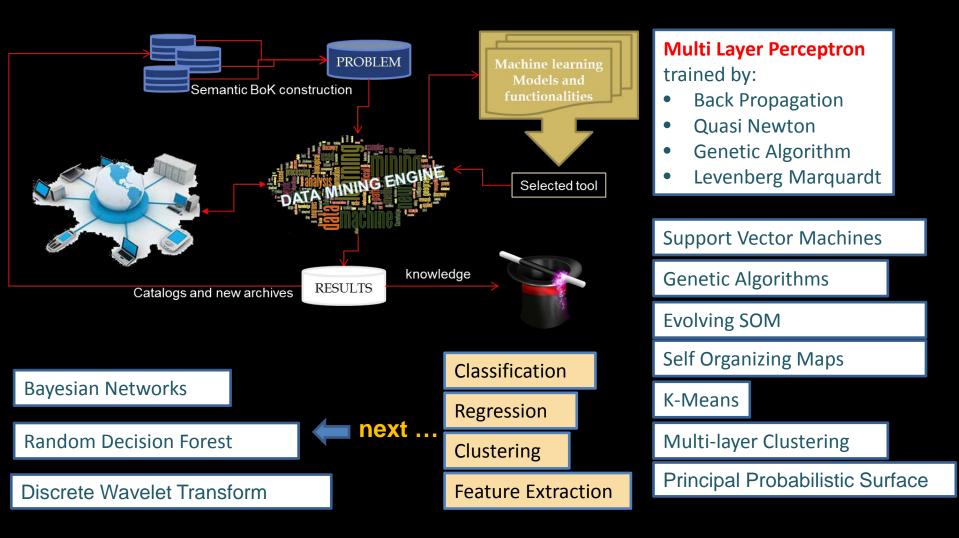
Extensions DAME-KNIME ML Model plugin

http://dame.dsf.unina.it/

Science and management

- Documents
- Science cases
- Newsletters

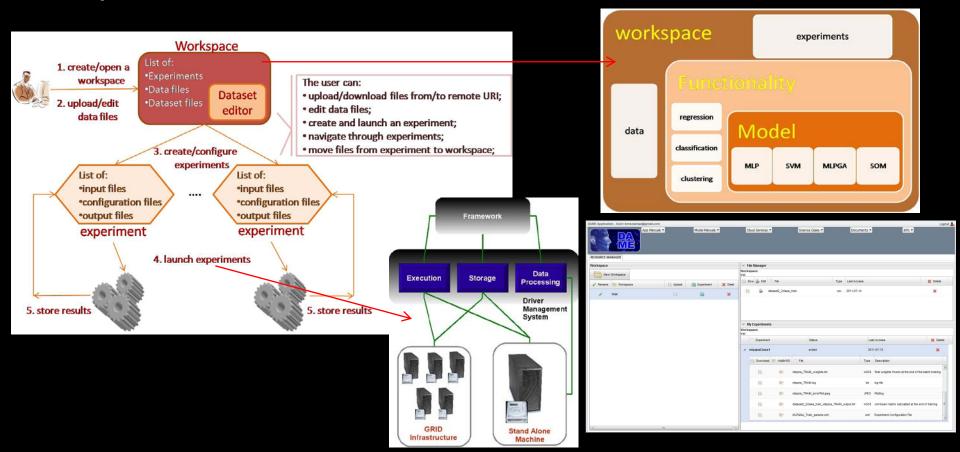
http://www.youtube.com/user/DAMEmedia **DAMEWARE Web Application media channel**



- **CLASH-VLT Data Archive**
 - **PhotoRaptor**
 - **GPU-based models**

DAMEWARE

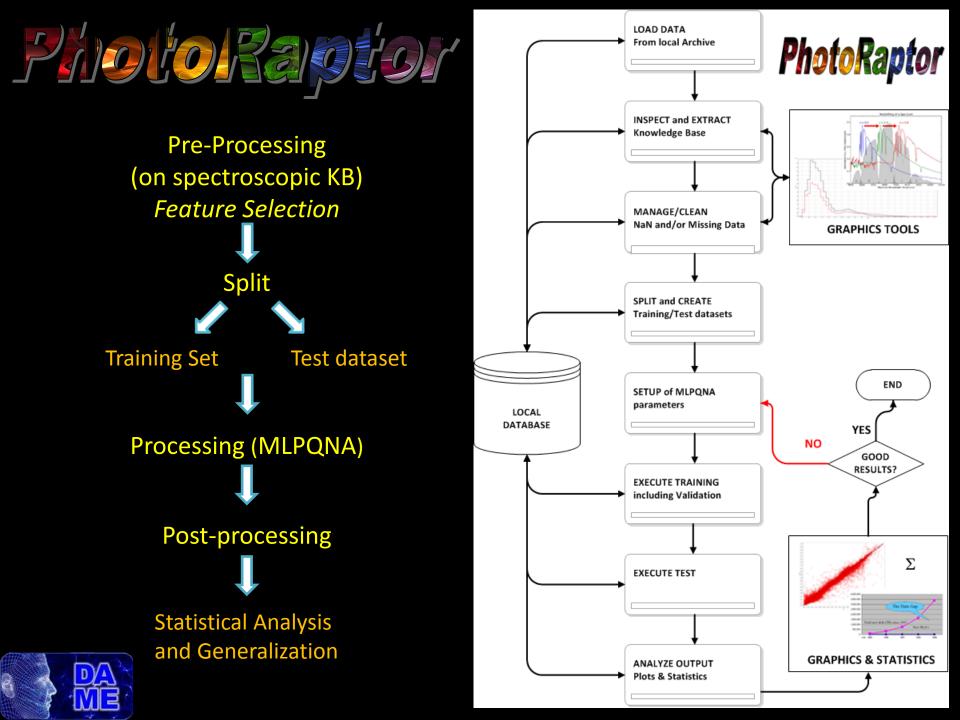
Inspired by human brain features: high-parallel data flow, generalization, robustness, selforganization, pruning, associative memory, incremental learning, genetic evolution.


DAMEWARE

Based on the X-Informatics paradigm, it is multi-disciplinary platform (until now X = Astro)

End users can remotely exploit high computing and storage power to process massive datasets (in principle they can do data mining on their smartphone...)

User can automatically plug-in his own algorithm and launch experiments through the Suite via a simple web browser


(Photometric Research Application To Redshifts)

Java Desktop Application (multi-platform, Win7/8, Linux, Mac) Dataset manipulation (plotting, editing, split, metadata selection, ordering, shuffling...) MLPQNA-based photo-z estimation General-purpose classification/regression problem solving Post-processing (visualizing, statistical analysis)

Originally developed for Redshift, it became a multipurpose Desktop Application First official release planned at the end of February 2014

2. PhotoRApToR10				×	State of the second sec
File Table Classification	Regression Plot Help		🐇 My Dialog		18
Open Save Display Table	e Netadata photo-z HistoPiot Scab	ter Pot. 30 Plut			18
Table List	Table Properties		Select Input F	Format 🔽	
	Name :		Select Input F		10
	Path:	4 PhotoRApToR 10	Brow ASCII	PhotoRApToR 10 File Table Classification Regression Plot Help	
	Rows :	File Table Classification Regression Plot Help		Open Save Display Table Metadata shoto-z Histo Piot Scatter Piot 3D Piot	
	NVOP.	Open Save Display Table Metadata photo-z Histo Plot Scatter Plot 3D Plot	FITS	Table List Table Properties	
		Table List Table Properties	VOTABLE	Table Properates	
	Table Editing	demonstration fits Name : demonstration fits		Name :	
	Name	train fits test Rs Path: C:UsersiShadow/Desktopica	Haprovaly CSV	Puth :	
			alamns : 6	Rows : Colu	nna 🗤 🖓 👘 🖉 👘 🖓 👘 🖓 👘 🖓 👘 🖓 👘
		Table Editing		Table Editing	10
		Check Name	Class	Name Class	
		1 peñtag	Float Row Shuttle		🗔 Rew Shuffe
	8	2 puttag 3 puttag 4 pottag 5 puttag	Float		
		4psMag_ 5psMag_	Float		
Split Table Insert output filenames with	Codit Tabla	6 extinction	u Float		
	() () () () () () () () () ()	Select All Des	APPLY	Select All Deselect	AB APPLY
	Constraint Constraint Constraint				
		Split Table		Split Table	
	insert output filenames without extension.		Insert output filenames without extension:		
				50	50
	0 50 10	train 80	st 20		59
			Spit	· · · · · · · · · · · · · · · · · · ·	Spit
	J_ L	0 50 100	50 100	0 50 100 0	50 100
					J

Conclusions, in the middle of the white Rabbit Hole...

Well, in conclusion... we have not yet (we'll never do) concluded, in reality: we just started...

We obtained a lot of great results about redshifts and about the other issues, but this is not the core of this talk.

THE CORE IS:

For the Red Pill consumers: YES

Astroinformatics is opening a new wide and encouraging door, and a new era of observational Astronomy has started.

For the **Blue Pill** consumers:

Don't worry, tomorrow you forget everything, you'll just have a déjà vu...

N-N-NO TIME, NO TIME, NO TIME! HELLO, GOOD BYE, I AM LATE, I AM LATE.... **Big Bang**

Radiation era

~300,000 years: "Dark ages" begin

JUST TIME FOR A FEW QUESTIONS!

Catales evolve

~400 million years: Stars and nascent galaxies form

~1 billion years: Dark ages end

~9.2 billion years: Sun, Earth, and solar system have formed

~13.7 billion years: Present

References

- Cavuoti, S.; Garofalo, M.; Brescia, M.; Paolillo, M.; Pescape', A.; Longo, G.; Ventre, G.; 2014 New Astronomy 26, 12-22
- ✓ Cavuoti, S.; Brescia, M.; D'Abrusco, R.; Longo, G.; Paolillo, M.; 2014, MNRAS 437, 1, 968-975
- ✓ Brescia, M.; Cavuoti, S.; D'Abrusco, R.; Longo, G.; Mercurio, A.; 2013, ApJ 772, 2, 140
- ✓ Annunziatella, M.; Mercurio, A.; Brescia, M.; Cavuoti, S.; Longo, G.; 2012, PASP 125, 923, 68-82
- Cavuoti, S.; Brescia, M.; Longo, G.; Mercurio, A.; 2012, A&A 546, A13, 1-8
- Brescia, M.; Cavuoti, S.; Paolillo, M.; Longo, G.; Puzia, T.; 2012, MNRAS 421, 2, 1155-1165
- Brescia, M.; Cavuoti, S.; Longo, G., V. De Stefano, 2014, Photometric Redshifts for all galaxies in the SDSS DR9 with the MLPQNA method", submitted to A&A
- Brescia, M.; Longo, G.; Cavuoti, S.; Djorgovski, G.S.; Donalek, C.; Mahabal, A.A.; Garofalo, M.; Nocella, A.; Guglielmo, M.; Albano, G.; Esposito, F.; Manna, F.; Di Guido, A.; D'Abrusco, R.; Fiore, M.; 2014, *Mining massive astronomical data sets. The DAMEWARE framework*, Submitted to Computing in Astronomy, Special Issue of Computer Journal, IEEE, ISSN: 0018-9162
- Brescia, M.; Cavuoti, S.; Garofalo, M.; Guglielmo, M.; Longo, G.; Nocella, A.; Riccardi, S.; Vellucci, C.; Djorgovski, G.S.; Donalek, C.; Mahabal, A. *Data Mining in Astronomy with DAME* In prep. to be Submitted to PASP
- De Stefano, V.; Cavuoti, S.; Brescia, M.; Longo, G.; 2014, *Photometric redshift estimation with PhotoRApToR*, in prep. To be submitted to Astronomy & Computing