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THE SCIENTIFIC USE CASE

NGC1399 Galaxy Dataset

NGC1399 (~20 Mpc) is an ideal target because
allows to probe a large fraction of the galaxy and still
resolve GC sizes.

9 HST V-band (f606w) observations, drizzled to
super-Nyquist sampling the ACS PSF (2.9 pc/pix).

Chandra ACIS-I + ACIS-S
ACS g-z colors for central region

Ground-based C-R photometry for part of the sources
over the whole field
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THE SCIENTIFIC USE CASE
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THE DATA-MINING SELECTION APPROACH 20—
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Wide-field, multi-band observations are g . 4 g
expensive. Easier to get single-band mosaics 23k )
and possibly ground-based colors, or colors on
subset of sources. #E , ey
E "o & Sources with structurol 32{':«'“ i é
Using the subsample of sources with colors, TR
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THE KNOWLEDGE BASE FOR GCs

All experiments were performed on the Knowledge Base (KB) sample presented in the
introduction, assuming that bona fide GCs are represented by sources selected according
to the discussed color cuts. We used as features (columns of patterns) the following
quantities:

&

L)

» isophotal magnitude (feature 1);

» 3 aperture magnitudes (features 2—4) obtained through circular apertures of radii 2,
6 and 20 arcsec, respectively;

» Kron radius, ellipticity and the FWHM of the image (features 5-7);

» 4 structural parameters (features 8-11) which are, respectively, the central surface

brightness, the core radius, the effective radius and the tidal radius;

One target value ONLY for training set: class labels 0 (no GC), 1 (yes GC);
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KB 24.4753,26.7468,24.3789,0.0205,3.72,0.067,4.12,16.25,-0.1139,1.822,51.29,0
24.2342,26.5263,24.1632,0.0196,3.5,0.027,4.01,16.61,0.1321,1.856,35.38,0
23.1554,25.5964,23.1654,0.016,3.5,0.032,4.09,14.47,-0.3295,2.638,129.2,1
22.6316,25.3519,22.6808,0.0151,3.5,0.039,4.69,16.33,0.8065,5.002,80.45,1
22.4708,24.4951,22.4699,0.0216,3.5,0.066,3.45,12.81,-0.3912,-7.425,5.66,0
23.9033,27.5896,23.9168,0.0255,4.49,0.272,9.63,19.99,8.397,14.79,88.5,1
2100 training 24.1972,26.4219,24.0978,0.0192,3.7,0.079,4.04,15.72,-0.1447,1.514,44.77,0
20.2423,22.1866,20.2963,0.017,3.5,0.03,3.23,6.68,-0.6999,-0.1492,1.899,0
23.5134,26.0983,23.511,0.0167,3.76,0.05,4.55,16.6,0.3777,4.75,105.8,1

L

patterns
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THE GC EXPERIMENT

http://dame.dsf.unina.it/dame gcs.html

Multi Layer Perceptron O Classification accuracy: fraction of patterns
trained by: (objects) correctly classified (either GCs or
-  Back Propagation non-GCs), with respect to the total number
B |- QuasiNewton of objects in the sample;
o |°__Genetic Algorithm O completeness: fraction of objects correctly
2100 Support Vector Machines classified as GCs;
training patterns [ GaME O contamination: fr.a.ctlon of non-GC objects
SR TL erroneously classified as GCs

5 supervised classifiers : i THHTH
3 quality evaluation criteria

425 pruning experiments (85 for each classifier), by alternately removing subsets of
features, in order to evaluate the minimal set of required (highly correlated) parameters.

v' K-fold (k=10) cross validation to avoid
Overﬂttmg’ fonthly Notices @

v’ Cross entropy formula for statistical
evaluation of training error (not simple
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QUALITY AND PRUNING RESULTS

Type of experiment  Missing features  Figure of merit MLPQNA GAME SVM MLPEP MLPGA

Complete patterns -

class.accuracy 59.9 66.2
completeness 34.1 61.4
contamination 42.2 35.1
No par. 11 11
class.accuracy 59.0 62.4
completeness 36.1 62.2
contamination 43.1 38.8
Only optical 8.9,10, 11
class.accuracy 93.9 B6.4 90.9 70.3 76.2
completeness 91.4 T8.9 88.7 54.0 65.1
contamination 5.9 13.9 8.0 332 24.6
Mixed 5.8,9,10, 11
class.accuracy 94.7 86.7 39.1 68.6 T1.5
completeness 92.3 81.5 38.6 52.8 63.8
contamination 5.0 16.6 8.1 37.6 30.1
s isophotal magnitude (feature 1);
s 3 aperture magnitudes (features 2—4) obtained through circular apertures of radii 2,

6 and 20 arcsec, respectively;

Kron radius, ellipticity and the FWHM of the image (features 5-7);

4 structural parameters (features 8-11) which are, respectively, the central surface
brightness, the core radius, the effective radius and the tidal radius;
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GAME MODEL MATHEMATICS

Given a generic dataset with N features and a target t, pat a generic input pattern of the
dataset,pat = (f1,:*, fy,t) and g(x) a generic real function, the representation of a
generic feature f; of a generic pattern, with a polynomial sequence of degree d is:

G(f;) = ag+ay g(fi) + -+ ag g*(f)

Hence, the k-th pattern (pat,) with N features may be represented by:
Out(paty) = XLy G(f) = ag + XLy X0 a; g7 () (1)

The target t,, concerning to pattern pat,, can be used to evaluate the approximation error
of the input pattern to the expected value:
Ey = (tx — Out(paty))?

With NP patterns number (k = 1, ..., NP), at the end of the “forward” phase (batch) of the
GA, we have NP expressions (1) which represent the polynomial approximation of the
dataset.

In order to evaluate the fitness of the patterns as extension of (9) Mean Square Error
(MSE) or Root Mean Square Error (RMSE) may be used:

WSE — ZE(ti-Out(pati))? Ly \/zﬁfl(tk—ow(patknz
TH NP i NP
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GAME MODEL FINAL EQUATIONS

We use the trigonometric polynomial sequence, given by the following expression,
g(x) = @ + XJymg @y cOS(M X) + X2y by Sin(m )

NUMcpromosomes = (B N) + 1 B=2

where N is the number of features of the patterns and B is a multiplicative factor that
depends from the g(x) function, in the simplest case is just 1, but can arise to 3 or 4

NUMggngs = (d-B) + 1

where d is the degree of the polynomial.

With 2100 patterns, 11 features each, the expression for the single (k-th) pattern, using (1)
with degree 6, will be:

Out(paty) = z G(f;) = ay+ ZZ ittt A zz b sin(j f;)

[eiliers =1 j=
fork=1,...,2100.
NUMcyromosomes = (2-11) +1 = 23

WSIREN wirN 2012 NUMggygs = (6-2) +1 =13



THE GAME ON GPU EXPERIMENT

The general-purpose GA has been internally designed for classification and regression problems

Genetic Algorithms are embarrassingly parallel (granularity + repetitive operations)

Start
r M Parallel on many-core GPU
Create initial population of — Generate all population of
chromasemeas randomly chromca:tsgrgee?i r;agdomly
— chﬂ.mtmmm Needed faster execution to
e | become scalable for MDS
Find the best chromosome in — Evaluate the fitness function JJ
the new population for all chromosomes in
the new population
: - S
Genetic Algorithm Modeling with GPU Paral-
Crvsd onogh lel Computing Technology
v
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THE GPU TECHNOLOGY

The Graphical Processing Unit is specialized for compute-intensive, highly parallel
computation (exactly what graphics rendering is about). So, more transistors can be
devoted to data processing rather than data caching and flow control.

Massi . Graphics
assive . "’C‘ c m
; Dat GP!
« GPU have evolved to the point where many St o oD
real world apps are easily implemented on m :
them and run significantly faster than on multi-
¢ Instruction CPU
anlrtddnttiti i _ B . ovel B (Sequential Computing)
Future computing architectures will be hybrid [k
systems with parallel-core GPUs working in Data Fits in Cache Larger Data Sets

tandem with multi-core CPUs »

Application Software
(written in C)

DAMEWARE - GAME chFTCUD:;;i:;ariescuDPP

FIRST PARALLEL PROGRAMMING EXPERIMENT

CPU Hardware | CUDA Compiler CUDA Tools

1U  PCI-E Switch C Fortran Debugger Profiler

| yRvmman
124

aélijhui,z:l‘l

mmmnmnmnmm
1aiianinam
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GPU VS CPU

Multi-core CPU

* Composed by few cores, designed to maximize
AR || ALY the sequential code efficiency;

* Large cache memory to reduce latency time to
access data and/or complex instruction
execution;

* Sophisticate control logic to handle instruction
flow (pipelining and multi-threading).

Many-core GPU

: 1111 * Composed by many cores (hundreds), designed
R to execute parallel code;
-,‘.ZZZZ.‘ZZZZZZZfZ‘
:- ‘- — * Memory structures with negligible access time to
- perform contemporary simple instructions;
[ |1 N I I N ) Y A

e Simple control logic (the only bottleneck could be
_ the communication with the CPU host);
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Multithreaded CUDA Program

e

|GPU with 2 Cores

GPU with 4 Cores

‘Cﬁnﬂ

‘Cﬁﬂ!ﬂ‘(‘nﬂl

Core 2 ‘Carc:!‘
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Host Device
Grid 1
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GAME HW PERFORMANCES

ID CPU GPU Pol. Degree

1 2.0 GHzInteli7
2630QM quad core

1 GeForce
Tesla TM
C1060
(240 cores)

2 3.4 GHzInteli7
2600 dual core

2 GeForce 8
GTX 460
(336 cores)

3 2.27 GHz Intel i5
M430 dual core

3 GeForce
GT 320M
(72 cores)
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DATASET

2100 patterns
11 features

iterations

40000

Exe time

31092 sec
(~9h)

231 sec
(~0.064 h)
0,7% of CPU
time

76000 sec
(~21 h)

165 sec
(~0.046 h)
0,2% of CPU
time

258400 sec
(~72 h)

2489 sec
(~0.691 h)
1% of CPU
time



GAME GPU TESLA VS CPU I7

polynomial degree =1 polynomial degree = 2
10000 10000
Kl | v
£ 1000 § 1000 -
-] o
£ £ .
= 100 - — W serial < 100 M serial
2 2
3 +opt E ®opt
g w0 A GPU 5 10 X 4 GPU
F
1 T T T T 1 1 T T T 1
1000 11000 21000 31000 41000 1000 11000 21000 31000 41000
Max number of iterations Max number of iterations
polynomial degree =4 polynomial degree =8
100000 100000
T 10000 T 10000
a 7]
pU8 P
£ 1000 - £ 1000
= M serial S __L___——ﬁ—_—_i M serial
2 R — 2 —
s 10 * Opt s 100 * Opt
[ *] (¥}
ks 10 A GPU z 10 - AGPU
A 4
1 T T T 1 1 T T T 1
1000 11000 21000 31000 41000 1000 11000 21000 31000 41000
Max number of iterations Max number of iterations

>S<I)KEN WIRN 2012




GAME GPU TESLA VS CPU I7

GPU Speedup * The increase of the polynomial degree

G[:12-1] vs. Serial vs. Opt enhances the speedup difference.

8X 6X : .

* |t results evident that the speedup is as
23X 16x much as highest is the complexity of the
66X 45X fitness function
200x 125x

250

200

=t
un
=]

h
/
/K
i / // M serial vs GPU
[ /.// #opt vs GPU

T T T T 1
O i 4 <1 8 10

Speedup (x)

8

polynomial degree
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DATA MINING & EXPLORATION TOOL

Inspired by human brain features: high-parallel data flow, generalization, robustness, self-
organization, pruning, associative memory, incremental learning, genetic evolution.

It is a web application for data mining experiments, based on WEB 2.0 technology

}5 PROBLEM

t ——JSemantic BoK constructior;

knowledge
Catalogs and new archives [Raaelet)

Bayesian Networks

Random Decision Forest <:I

MLP with Levenberg-Marquardt
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Selected tool

™~

_i

2

Classification
Regression

Clustering

Multi Layer Perceptron
trained by:

» Back Propagation
* Quasi Newton

* @Genetic Algorithm

Support Vector Machines

Genetic Algorithms

Self Organizing Feature Maps

K-Means

Multi-layer Clustering

Principal Probabilistic Surfaces

Feature Extraction




THE DATA MINING WEB APPLICATION

DAMEWARE - DAta Mining Web Application REsource
web-based app for massive data mining based on a suite of machine learning methods on
top of a virtualized hybrid computing infrastructure.

Intro page htp://dame.dsf.unina.it/beta info.html ==] Beta Release available

+
manuals http://dame.na.astro.it:3080/MyDameFE/
demo videos The release 1.0 will be deployed on a

http://www.youtube.com/user/DAMEmedia CLOUD, including GRID farm of S.Co.P.E.

= Private user account after
registration; [ UUS
» Data files (CSV, ASCII, FITS-image, ——

FITS_table, VOTable); " n.::““'“:::lpm quququququququ PR --[mw:im Fis Trse | Last scces o Deiste
= Classification models; £ . B -

= Regression models;
= Clustering models;

= Feature Extraction models; | prp— = —— ,‘
= Editing files for experimentsetup | e

(join, split, sort, shuffle, scale etc.); o B
=  Qutput scatter plots and text data; e ——
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KIND INVITATION

You don’t have to believe our words, but follow St. Thomas rule: try us!

3
:
:

THE PHYSICS

PROFESSCR...

http://dame.dsf.unina.it
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