Acceleration of Machine Learning Models based on GPGPU technology

for fast data mining in multidisciplinary physical environments

Mauro Garofalo

University of Naples Federico II

Guarino, D.; Brescia, M.; Cavuoti, S.; Pescapè, A.; Longo, G.; Ventre G.

I've seen things you people wouldn't believe. Attack ships on fire off the shoulder of Orion. I've watched c-beams glitter in the dark near the Tannhäuser Gate. All those ... moments will be lost in time, like tears...in rain. Time to die...

ROY EFFECT: (Blade Runner) MOST DATA WILL NEVER BE SEEN BY HUMANS!!!

Data quantity and complexity

	TB	Total	Epochs	Parameters	
VST	0.15 TB/day	100 TB	tens	S>100	
HST		120 TB	few	>100	
PANSTARRS		600 TB	Few-many	>>100	
LSST	30 TB/day	> 10 PB	hundreds	>>100	
GAIA		1 PB	many	>>100 heterogeneous	
SKA	1.5 PB/day		>> 10^2	hundreds	

Data, Data everywhere, yet ...

I can't *find* the data I *need*

Data is scattered over the network
many versions and formats

I can't **get** the data I **need**

need an expert to get the data

I can't understand the data I found

✤ available data poorly documented

I can't **use** the data I **found**

- results are unexpected
- data needs to be transformed from one form to other
- classic tools can't handle data dimension

Machine Learning

Machine learning: Field of study that gives computers the ability to learn without being explicitly programmed.

Arthur Samuel (1959).

February 24, 1956, Arthur Samuel's Checkers program, which was developed for play on the IBM 701, was demonstrated to the public on television.

In 1962, self-proclaimed checkers master Robert Nealey played the game on an IBM 7094 computer...

May 11, 1997 – Deep Blue defeats Kasparov

...the computer won!

How to Accelerate?

3 Ways to Accelerate Applications

Application

Scien	tific Problem	Model	CUDA Platform	
Actrophysics	Globular Cluster Classification	GA	Thrust	
AStrophysics	Photometric Redshift <i>Estimation</i>	MLPGA	CUDA C	
Computer Network	Network Traffic Classification	MLPGA	OpenACC	
Medical Alzheimer Disease Prediction		SVM	Hybrid	

Development Environment: DAME Program

Newsletters

Brescia, M.; Cavuoti, S.; Nocella, A.; Garofalo, M. et al 2014 PASP. Vol. 126, No. 942 pp 783-797

Genetic Algorithm

- Search algorithms that mimics natural selection;
- A Population of individuals evolves to promoting survival and reproduction to better fit the properties of a given environment;
- GAME has been designed to solve optimization problems for classification and regression;
- Their functional structure naturally lends itself to be implemented on parallel architectures.

Biology	Math
Individual	Vector x
Adaptation to Environment	Fitness Function f(x)
Competition	Selection Function
Reproduction	Crossover and Mutation
Survival of fittest	Better Solution

Correspondence between biological and mathematical model

Accelerating with Thrust

GAME Algorithm

Globular Cluster Recognition

NGC1399 Dataset

- 7 optical parameters (Magnitude at various apertures and image FWHM) (feature 1-7);
- 4 structural parameters (radii and brightness) (features 8-11);
- The label of the class, 0 (no GC), 1 (yes GC) (last column);

	Classification Accuracy
CPU	86%
CPU+GPU	84%

Brescia, M.; Cavuoti, S.; Paolillo, M. et al.; 2012, MNRAS, 421, 2, 1155-1165

GAME Performance Test

Speedup: up to 200x

Cavuoti, S.; Garofalo, M.; Brescia, M.; et al. 2012, Proceedings of WIRN, Springer Vol. 19 Cavuoti, S.; Garofalo, M.; Brescia, M.; et al. 2014, New Astronomy Vol. 26 pp 12-22

MLPGA Model

- Hybrid model NN (MLP) + GA
- Supervised machine learning model (provides a training phase with input data + known targets)
- Weights evolution using GA instead of Back Propagation
- High generalization capability on unknown data
- Solve classification and regression problems

The training phase is very slow and the model does not scale with the input data.

Accelerating with CUDA C

FMLPGA

Photometric Redshifts: as an Inverse Problem

FMLPGA Scientific Validation

zspec vs zphoto scatter plot best result with ROULETTE selection function

Standard deviation: < 0.02

FMLPGA Performance tests

Dataset: 1000 patterns - 11 features

Epochs: from 1000 to 50000

Selection functions: Roulette, Ranking and Fitting

Accelerating with OpenACC

MLPGA-Acc

Network Traffic Classification

	Port-based	Payload inspection	Flow-based	ML-based	
Method	Port number Inspection	Protocol Signature search	Header Inspection	Association trained by data	
Pro	Simple	Simple Precision		model-data independence	
Con	n • IANA Standard Ports • Tunneling • Privacy • Cryptography • New Application		Requires all flow's packets	ground truth needed	

Network Traffic Classification

- 20251 patterns: bi-flows;
- 5 Target Classes: 17 applications grouped by class
- 4 features : Time Elapsed, Byte, UpPackets, DownPackets;

MLPGA-Acc – Scientific Validation

Mean Accuracy: CPU vs GPU

Worst Accuracy: 71%

Better Accuracy: 95%

MLPGA-ACC – Performance Test

Test platform: AMD Opteron 6220 1.4Ghz 8-core NVIDIA TESLA K20c 2496 core

FMLPGA

1000 patterns and 11 features

MLPGA-ACC

270-2107 patterns and 4 features

	NETWORK TRAFFIC CLASSIFICATION										
80% train - 20% test			Speed up								
U.C.	lter	Br-MI	Br-PP	Br-Sk	Br-TC	MI-PP	MI-Sk	MI-TC	PP-Sk	PP-TC	Sk-TC
	2500	1,4	1,6	1,6	1,9	1,5	1,4	1,9	1,6	1,7	1,8
Croadur	5000	1,6	1,5	1,5	1,6	1,4	1,5	1,5	1,6	1,6	1,6
Speed up	10000	1,5	1,3	1,5	1,7	1,5	1,5	1,5	1,6	1,6	1,5
	20000	1,6	1,5	1,5	1,6	1,3	1,4	1,5	1,5	1,5	1,5
NUM PA	TTERNS	1192	921	300	197	2107	619	306	392	270	328

Speedup: 7.6 - 8.3 Line of code: 1000

Speedup: 1.4 - 1.9

Lines of code: 2

Reduced development time paid in terms of loss of performance

SVM

$$\min_{\alpha} \frac{1}{2} \bar{\alpha}^{T} \hat{Q} \bar{\alpha} - \bar{e}^{T} \bar{\alpha}$$

subject to $\bar{y}^{T} \bar{\alpha} = 0$
 $0 \le \bar{\alpha} \le C \quad i = 1, ... l$
 $\bar{\alpha} = [1, ... 1]^{T}$

Kernel function

$$Q_{i,j} \equiv y_i y_j K(\bar{x}_i, \bar{x}_j)$$

$$K(\bar{x}_i, \bar{x}_j) \equiv \phi(\bar{x}_i)^T \phi(\bar{x}_j)$$

- polynomial: $K(x_i,x_j)=(\gamma x_i^T x_j+r)^d, \gamma>0$
- radial basis function (RBF): $K(x_i,x_j) = \exp(-\gamma \parallel x_i x_j \parallel^2), \gamma > 0$
- sigmoid: $K(x_i, x_j) = \tanh(\gamma x_i^T x_j + r)$

The input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Accelerating with ALL

Implementazione Fast SVM

LIBSVM - SVM

Machine % Accuracy

Alzheimer Disease Prediction

Hippocampus volume classification through MRI of human brain

Hippocampus and AD Cortical and Hippocampal Atrophy

Normal

Diseased

The growing volume of the hippocampus is statistically correlated to the pathology of Alzheimer's disease.

Fully define the volume of interest (VOI) from 3D MRI is important for early diagnosis.

The manual analysis is very time consuming and highly dependent on the experience of the specialist and the machinery used.

The idea is to eliminate the human intervention, delegating the classification in automated systems.

Dataset

Haralik and Haar-Like Features:

- 1 position
- 2 gray level
- 66 gradients 3x3 mask
- 66 gradients 5x5 mask
- 66 gradients 7x7 mask
- 66 gradients 9x9 mask
- 49 texture 3D features

Total: 315 feature

FEATURE SELECTION

315 Features	Completeness	Purity	Contamination
Positive	81,80%	77,40%	22,60%
Negative	83,50%	86,90%	13,10%
Accuracy		82,80%	

36 Features	Completeness	Purity	Contamination	
Positive	79,60%	72,70%	27,30%	
Negative	80,50%	85,80%	14,20%	
Accuracy	80,20%			

Comparing Acceleration Approaches

Conclusion and Future Work

We obtained good results about redshift estimation and other issues

We aim to improve all models in Dameware exploiting the power and flexibility of the GPGPU

So, in conclusion we have not yet concluded, actually just started!