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ABSTRACT
We present an application of self-adaptive supervised learning classifiers derived from
the Machine Learning paradigm, to the identification of candidate Globular Clus-
ters in deep, wide-field, single band HST images. Several methods provided by the
DAME (Data Mining & Exploration) web application, were tested and compared on
the NGC1399 HST data described in Paolillo et al. (2011). The best results were ob-
tained using a Multi Layer Perceptron with Quasi Newton learning rule which achieved
a classification accuracy of 98.3%, with a completeness of 97.8% and 1.6% contami-
nation. An extensive set of experiments revealed that the use of accurate structural
parameters (effective radius, central surface brightness) does improve the final result,
but only by ∼ 5%. It is also shown that the method is capable to retrieve also extreme
sources (for instance, very extended objects) which are missed by more traditional
approaches.
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1 INTRODUCTION

The need to effectively exploit the scientific information
contained in current and future synoptic surveys has led
to a renaissance of interest in the application of Data
Mining (DM) methods to astronomical programs. DM,
in fact, seems among the few, if not the only, ways to
cope with the complexity and size of existing and fore-
seen massive data sets such as, for instance, those ex-
pected to be provided by the LSST. The DM methods,
however, are also very useful to capture the complexity of
small data sets and, therefore, can be effectively used to
tackle problems of much smaller scale. In this paper we
used a variety of methods provided by the DAta Mining
& Exploration Web Application REsource (DAMEWARE,
http://dame.dsf.unina.it/beta info.html) for the identifica-
tion of Globular Clusters (GCs) in the galaxy NGC1399 us-
ing single band photometric data obtained with the Hubble
Space Telescope (HST).

The identification and physical characterization of
Globular Cluster (GC) populations in external galaxies is
of interest to many astrophysical fields: from cosmology, to
the evolution of star clusters and galaxies, to the forma-

tion and evolution of binary systems. The identification of
Globular Clusters in external galaxies usually requires the
use of wide-field, multi-band photometry since in galaxies
located more than a few Mpc away they appear as unre-
solved sources in ground-based astronomical images and are
thus hardly distinguishable from background galaxies which
introduce significant contamination problems. For such rea-
son, GCs are traditionally selected using methods based on
their colors and luminosities. However, in order to minimize
contamination and to measure GC properties such as sizes
and structural parameters (core radius, concentration, etc.),
high-resolution data are required as well which, for star clus-
ters outside the Local Group, are available only through the
use of space facilities (i.e. Hubble Space Telescope, HST).
Obtaining suitable HST data is however challenging in terms
of observing time since the optimal datasets should be: i)
deep, in order to sample the majority of the GC population
and ensure the high S/N required to measure structural pa-
rameters (see e.g. Carlson & Holtzman 2001); ii) with wide-
field coverage, in order to minimize projection effects as well
as to study the overall properties of the GC populations,
which often differ from those inferred from observations of

c© 2011 RAS



2 Brescia M. et al. 2011

the central region of a galaxy only; and iii) multi-band, to
effectively select GC based on colors.

It is apparent that, in order to reduce observing costs, it
would be much more effective to use single-band HST data.
Such approach however requires to carefully select the can-
didate GCs based on the available photometric and morpho-
logical parameters in order to avoid introducing biases in the
final sample (see below). Here we intend to show that the use
of properly tuned DM algorithms can yield very complete
datasets with low contamination even with single band pho-
tometry, thus minimizing the observing time requirements
and allowing to extend such studies to larger areas and to
the outskirts of nearby galaxies.

The paper is structured as follows: in Sect. 2 we describe
the data used to test of the various method; in Sect. 3 we
provide a short methodological and technical introduction
to DAMEWARE and to some classification methods tested
for the first time in an astronomical context. In Sect. 4 and
5 we describe the results of the experiments and draw our
conclusions.

2 THE DATA

The dataset used in this experiment consists of wide field
HST observations of the giant elliptical NGC1399 located
at the heart of the Fornax cluster. This galaxy represents
an ideal test case since, due to its distance (20 Mpc), it is
possible to cover a large fraction of its GC system (out to
> 5Re) with a limited number of observations. Furthermore,
it is particularly challenging because, at this distance, GCs
are only marginally resolved even by HST. This dataset was
used by Paolillo et al. (2011) to study the GC-LMXB con-
nection and by Puzia et al. (2011, in preparation) to study
the structural properties of the GC population. We summa-
rize below the main properties of the dataset, and refer to
these works for a more detailed description of the observa-
tions and of data analysis.

The optical data were taken with the HST Advanced
Camera for Surveys (ACS, program GO-10129, PI T.Puzia),
in the F606W (broad V band) filter, with integration time of
2108 seconds for each field. The observations were arranged
in a 3x3 ACS mosaic, and combined into a single image using
the MultiDrizzle routine (Koekemoer et al. 2002). The final
scale of the images is 0.03′′/pix, providing Nyquist sampling
of the ACS PSF. The field of view of the ACS mosaic covers
100 square arcmin (Figure 1) extending out to a projected
galactocentric distance of ∼ 55 kpc, i.e. 4.9re of the GC
system (∼ 5.7rgal

e ). The source catalog was generated with
SExtractor by imposing a minimum area of 20 pixels: it
contains 12915 sources and reaches 7σ detection at mV =
27.5, i.e. 4 mag below the GC luminosity function turnover,
thus allowing to sample the entire GC population (see Figure
2). The catalog astrometric solution was registered to the
USNO-B1 reference frame, obtaining a final accuracy of 0.2”
r.m.s.

For 4239 sources we were able to measure structural
parameters (which require very high S/N, see Carlson &
Holtzman 2001 and Puzia et al. 2011), fitting King surface
brightness profile models with the Galfit software (Peng et
al. 2002), and deriving tidal, core, effective radii and central
surface brightness values for each cluster. The accuracy of

Figure 1. The field of view covered by the 3x3 HST/ACS mosaic
in the F606W band. The central field, with a different orientation,
shows the region covered by previous archival ASC observations
in g and z bands.

these measurements was estimated simulating several thou-
sand artificial GCs with the Multiking code (available at:
http://people.na.infn.it/paolillo/Software.html) specifically
written to account for ACS field distortion, PSF variation,
dithering pattern (Paolillo et al. 2011, Puzia et al. 2011).

The NGC1399 region covered by our mosaic lacks color
informations for all HST F606W sources. In this paper we
shall therefore make use of two ancillary multiwavelength
datasets: archival HST g − z observations (Kundu et al.
2005), which cover the very central region of the galaxy (10%
of the sample, see Figure 1), and C −T1 ground based pho-
tometry from Bassino et al. (2006), covering the whole mo-
saic. The latter is only available for ∼ 14% of our sources,
and due to background light contamination it is very in-
complete in the proximity of the galaxy center. In total
2740 sources of the catalog have multi-band (either g − z
or C − T1) photometry.

Finally, the subsample of sources used to build our
Knowledge Base (KB, see §3) to train the DM algorithms, is
composed by the 2100 sources with all photometric and mor-
phological informations: isophotal magnitude, kron radius,
aperture magnitudes within a 2, 6 and 20 pixels (correspond-
ing to 0.06′′, 0.18′′, and 0.6′′) diameter, ellipticity, position
angle, FWHM, SExtractor stellarity index, King’s tidal
and core radii, effective radii, central surface brightness, and
either g − z or C − T1 color. The magnitude distribution of
such subsample is shown in Figure 2 as a dashed line.

The typical choice to select GCs based on multi-band
photometry would be to adopt the magnitude and color cuts
reported in Table 1, and highlighted in Figure 3 with a
dashed line; the magnitude limit z < 22.5 does not exploit
the full depth of the HST data but is adopted to be con-
sistent with the T1 < 23 limit used for the ground-based
colors, thus ensuring a uniform limit across the whole field-
of-view. In the following we thus assume that bona-fide GCs
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Figure 2. Luminosity distributions of all detected (dotted line)
and point-like (e.g. with stellarity index > 0.9, solid gray line)
sources within the HST FOV. Also shown are the two additional
subsamples discussed in §2 and §4: the KB composed of sources
with both color and structural parameters (dashed line), and the
subset of bona-fide color-selected GCs based on Table 1 (solid
black line).

Table 1. Photometric selection criteria for GC candidates

color cut magnitude cut

Ground-based 1.0 � C−T1 < 2.2 T1 < 23
data

HST data 1.3 � g−z < 2.5 z < 22.5

are represented by such sources, in order to explore how well
different selection methods based on single band photome-
try are able to retrieve the correct population of objects.
The F606W magnitude distribution of color-selected GCs is
shown in Figure 2 as a black solid line.

3 SOME CONSIDERATIONS ON DATA
MINING

DAMEWARE (Brescia et al. 2010) is one of the main
products made available through the DAME (Data Mining
& Exploration) Program Collaboration. It provides a web
browser based front-end, able to configure data mining ex-
periments on massive data sets and to execute them on a dis-
tributed computing infrastructure (cloud/grid hybrid plat-
form). DAMEWARE offers the possibility to access different
DM functionalities (supervised classification, regression and
clustering) implemented with different methods (traditional
MLPs, Support Vector Machines, etc.). Even though specifi-
cally designed to deal with massive data sets, DAMEWARE
can also be used on small ones. It needs however to be taken

into account that, due to the poor coverage of the parame-
ter space by the KB, DM on small data sets requires special
care. In what follows we shall outline the main strategy be-
hind our procedure.

The problem tackled in this work is a typical supervised
classification task and therefore, while referring the reader to
Duda (2004) and Bishop (1995) for a general introduction
to DM, we shall shortly summarise some aspects which are
relevant to the experiments described in the next paragraph.

First of all, it needs to be kept in mind that in the
data mining practice, there is no way to a priori select the
algorithm which offers the best performances for a given task
and that therefore a number of trial-and-error experiments
must be performed in order to identify the method with the
best performances. From a logical point of view, effective
supervised classification is based on the following steps:

(i) To select and create the data parameter space, i.e. to
create the data input patterns (or features) to be submitted
to the classifiers. It is important in this phase to build ho-
mogeneous patterns, i.e. with each pattern having the same
type and number of parameters;

(ii) to prepare the datasets which are needed for the dif-
ferent experiment steps: training, validation and test sets
(the dataset must include also target values for each in-
put pattern, i.e. the desired output values, coming from any
available knowledge source), by splitting the KB into vari-
able subsets to be submitted at each phase;

(iii) to analyze and select classification model, based on
theoretical principles and on the user experience about the
content of the KB;

(iv) to perform complete sequences of experiments with
all model candidates and compare their results in terms of
training error, learning robustness, output correctness (this
phase might also require a pruning of the parameter space);

(v) finally, to identify the best model which will then be
adopted as the final classifier to be applied to the entire
dataset.

Optionally (either because some methods do not require it
or simply as an user choice) a validation procedure may
be introduced. Validation is the process of checking whether
the classifier meets some criterion of generality when dealing
with unseen data in order to avoid over-fitting or to stop the
training on the base of an ”objective” criterion. Here ”ob-
jective” implies a criterion which is not based on the same
data used for the training procedure. Obviously, validation
requires an additional data set which can be prepared by
the user directly or in an automatic fashion.

When the training set is of limited size - such as the one
used in this paper - it is almost unavoidable to adopt a ”sub-
set validation” procedure. This implies the partitioning of a
sample of data into subsets, such that the analysis is initially
performed on a single subset, while the other subset(s) are
retained for subsequent use in confirming and validating the
initial analysis. In practice, the data sample is divided into
N subsets, some of which are used for the training phase
(training set), while the others are employed, as validation
sets, to compare the model prediction capability. By vary-
ing the value of N (different splitting of the data sets) it is
possible to evaluate the prediction accuracy of the trained
model (Kotsiantis 2007).

The so called K-fold cross-validation divides the whole
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dataset into K subsets, each of them is alternately excluded
from the validation set. In practice all data are used for
the training and test phases in an independent way. In this
case we obtain K classifiers (2 � K � n) whose outputs can
be used to obtain a mean evaluation. The downside of this
method is that it is very expensive in terms of computing
time in the case of massive datasets.

As it was briefly mentioned, in a supervised machine
learning scheme, the training is done by means of a mech-
anism in which the model output is compared with the de-
sired target output for each input pattern. The choice of
the metric function used for the comparison determines the
evaluation criteria and the learning rule of the model. Dif-
ferent error evaluation metrics exist in literature, depending
on the problem complexity to be solved. In our experiments
we used several methods.

The most common metric is the MSE (Mean Square Error)
of the difference between model and target outputs. Super-
vised neural networks that use MSE cost function can use
formal statistical methods to determine the confidence of
the trained model (Yang & Shanna 1991) while the MSE
computed on a validation set can be used as an estimate of
the variance. This value can then be used to calculate the
confidence interval of the output of the network assuming
a normal distribution. A confidence analysis made in this
way is statistically significant as long as the output proba-
bility distribution remains the same and the network is not
modified.

By assigning a softmax activation function (Bishop
1995) on the output layer of the neural network (or a soft-
max component in a component-based neural network) for
categorical target variables, the outputs can be interpreted
as posterior probabilities (Sutton & Barto 1998). This is
very useful in classification as it gives a certainty measure
on classifications.

Many supervised models also support the use of the
Cross Entropy error function for addressing classification
problems in a consistent statistical fashion (Rubinstein et
al. 2004).

The Cross Entropy method consists of two phases:
1- Generate a random data sample (trajectories, vectors,
etc.) according to a specified mechanism;
2- Update the parameters of the random mechanism based
on the data to produce a ”better” sample in the next
iteration.

In practice a data model is created based on the training set,
and its cross-entropy is measured on a test set to assess how
accurate the model is in predicting the test data. In practice,
the method compares two probability distributions, p the
true distribution of data in any corpus, and q which is the
distribution of data as predicted by the model. Since the true
distribution is unknown, cross-entropy cannot be directly
calculated and, an estimate of cross-entropy is calculated
using the following formula:

H (T, q) = −
NX

i=1

1

N
log2q (xi)

where N is the number of objects in the test set, and q (x)

is the probability of the event x estimated from the training
set.

Due to the supervised nature of the classification task,
the system performance can be measured by means of a test
set during the testing procedure, in which unseen data are
given to the system to be labelled. The overall error some-
how integrates information about the classification good-
ness. However, when a data set is unbalanced (i.e. when the
number of samples in different classes varies greatly) the
error rate of a classifier is not representative of the true per-
formance of the classifier itself.

For the specific problem addressed in this paper
we used five among the different classification methods
available in DAMEWARE. Namely: MLP-BP (Multi Layer
Perceptron trained by Back Propagation), SVM (Support
Vector Machines), GAME (Genetic Algorithm Model
Experiment), MLPGA (MLP with Genetic Algorithms),
and MLPQNA (Multi Layer Perceptron trained by Quasi
Newton).

MLP-BP and SVM have already been described several
times in the astronomical literature and therefore we refer
the reader to Bishop (1995) and Chang & Lin (2011).
For what the other methods are concerned, since they are
used for the first time in an astronomical context, we shall
provide some further details.

3.1 The Multi Layer Perceptron trained by
Genetic Algorithms

Genetic Algorithms (GA) are computational methods in-
spired to Darwin’s evolutionary mechanism (Holland 1975).
GA are particularly powerful in solving problems where the
solution space is not well defined. When they are embed-
ded into a MLP network, the resulting learning algorithm
(named MLPGA model) consists mainly in the cyclic explo-
ration of the parameter space aimed at discovering the best
solution (Meng & Fan 2009).
In a Genetic Algorithm each element of a population (i.e.
each data point) is called chromosome and is composed by a
set of genes (features) that represents its DNA. From a more
traditional point of view, each DNA can be therefore con-
sidered as a possible solution to the problem. The starting
point of the method consists in the random generation of a
population of chromosomes, for example by using normal or
uniform statistical distributions. Then the method proceeds
by cyclic variation and combination of the initial popula-
tion, modifying their DNA’s (neuron weights) according the
standard feed-forward MLP calculations on input patterns.
The final goal is to find the best population (best problem
solution) where “best” is defined according to some fitness
criterium.

In other words, at each evolutionary step (backward
phase of the MLPGA model), the output chromosomes are
obtained by applying several genetic operators to the in-
put population and by evaluating through a specific fitness
function the goodness of the newly generated population.
The fitness function provides a method to discard the worst
chromosomes from the population thus allowing only the
best candidates to evolve to the next generation (similarly
to what happens in natural selection). The entire cycle is
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iterated until the chromosome with the desired fitness is
found (i.e. the best solution to the classification problem).
The training error calculation follows the MSE criterion.

3.2 The Genetic Algorithm Model Experiment

As it was briefly mentioned above, this machine learn-
ing model arises from an original customization, made by
DAME group, of the standard generalized GA model. All
basic theoretical aspects for a generic GA have already been
presented in the MLPGA section. The idea behind the Ge-
netic Algorithm Model Experiment (GAME model) is to
create a special fitness function, based on a polynomial ex-
pansion approximation, able to perform supervised adaptive
learning on MDS. The analytical expression used to solve
classification problem is the trigonometric series expansion
of each input pattern features, compared with the corre-
sponding known pattern target value. Then the whole error
(MSE, Mean Square Error), which is the fitness function, is
calculated at each cycle for all input patterns and the pop-
ulation of genetic chromosomes is updated according the
classical genetic operators (crossover and mutation). This
loop ends when the minimum error is found (below a chosen
error threshold) or if the maximum number of iteration is
reached.

3.3 The Multi Layer Perceptron trained by Quasi
Newton rule

Quasi-Newton Algorithms (QNA) are variable metric meth-
ods for finding local maxima and minima of functions (Davi-
don 1991). The model based on this learning rule and on
the MLP network topology is then called MLPQNA. QNA
are based on Newton’s method to find the stationary (i.e.
the zero gradient) point of a function. Newton’s method as-
sumes that the function can be considered as quadratic in
a narrow region around the optimum and uses the first and
second derivatives (gradient and Hessian) to find the sta-
tionary point. In QNA the Hessian matrix of second deriva-
tives of the function to be minimized, does not need to be
computed and can be derived by analyzing successive gra-
dient vectors. QNA is a generalization of the secant method
to find the root of the first derivative for multidimensional
problems. In multi-dimensions the secant equation is under-
determined, and quasi-Newton methods differ in how they
constrain the solution, typically by adding a simple low-rank
update to the current estimate of the Hessian. Since as it will
be shown, this model performed the best in the GC classi-
fication problem discussed in this paper, we shall discuss it
in more detail.

In DAMEWARE the Quasi-Newton method has been
implemented by following the known L-BFGS algorithm
(Byrd et al. 1994). The QNA is an optimization of Newton
based learning rule, also because, as described below, the
implementation is based on a statistical approximation of
the Hessian by a cyclic gradient calculation, that is at the
base of Back Propagation method. By using a local square
approximation of the error function, we can obtain an ex-
pression for the minimum position. The gradient in every
point w is in fact given by:

g = ∇E = H × (w − w∗)

where w∗ corresponds to the minimum of the error function,
which satisfies the condition:

w∗ = w − H−1 × g

The vector −H−1g is known as Newton direction and it
is the base for a variety of optimization strategies, such as
the Quasi Newton Algorithm (QNA) which instead of cal-
culating the H matrix and then its inverse, uses a series of
intermediate steps of lower computational cost to generate
a sequence of matrices which are more and more accurate
approximations of H−1, These matrices are computed using
only information related to the first derivative of the error
function.

The Newton direction can be used in a line search (op-
timization problem) method when the Hessian matrix H is
positive definite, because under such requirement it is a de-
scent direction. When the Hessian is not positive definite,
the Newton direction may not be defined, because its in-
verse matrix may not exist. But, in addition, also when it is
definite, it may not satisfy the descent trend. In particular,
the main drawback of the Newton direction is the need for
the exact Hessian matrix formulation, which is described in
more detail in Appendix A.

As a matter of fact, this method was designed to op-
timize the functions of a number of arguments (hundreds
to thousands), because in this case it is worth having an
increased iteration number due to the lower approximation
precision because the overheads become much lower. This
is particularly useful in astrophysical data mining problems,
where usually the parameter space is dimensionally huge and
is often afflicted with a low signal-to-noise ratio.

4 RESULTS

As discussed in the Introduction, the purpose of this work
was to implement an alternative, DM based, method to se-
lect globular clusters in single band HST images, thus saving
the observing time needed to obtain complete sets of multi-
band data. In this section we shortly summarize the results
of the series of (numerical) ”experiments” which were per-
formed to determine the best model and the best combina-
tion of features, while in next section we discuss the overall
properties of the sample obtained with the DM algorithms,
in comparison with traditional selection methods.

Terms like completeness, contamination, accuracy etc.
are differently defined by astronomers and ”data miners”. In
what follows we use the following definitions. Classification
accuracy: fraction of patterns (objects) which are correctly
classified (either GCs or non-GCs) with respect to the total
number of objects in the sample; completeness: fraction of
GCs which are correctly classified as such; contamination:
fraction of non-GC objects which are erroneously classified
as GCs.

All experiments were performed on the KB sample pre-
sented in §2, assuming that bona-fide GCs are represented
by sources selected according to the color cuts in Table 1.
We used as features the following quantities:

• The isophotal magnitude (Feature 1).
• Three aperture magnitudes (features 2–4) obtained

through circular apertures of radii 2, 6, and 20 arcsec re-
spectively;
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Figure 3. Color-magnitude diagrams using C−T1 ground-based (left panel) and g−z HST photometry (right panel). Ground-based
photometry covers the whole FOV of our ACS mosaic, while HST colors are limited to the central ACS field (∼200′′×200′′, Figure 1).
Open grey dots represent all sources in color catalogs while solid ones refer to the subsample with both color and structural parameters
that represents our Knowledge Base. Blue squares mark pointlike sources, i.e. sources with stellarity index > 0.9, while the dashed line
highlights the parameter space (Table 1) used to select bona-fide GC.

type of experiment missing features figure of merit MLPQNA GAME SVM MLPBP MLPGA

complete patterns –
class.accuracy 98.3 82.1 90.5 59.9 66.2
completeness 97.8 73.3 89.1 54.1 61.4

contamination 1.8 18.7 7.7 42.2 35.1

no par. 11 11
class.accuracy 98.0 81.9 90.5 59.0 62.4
completeness 97.6 79.3 88.9 56.1 62.2

contamination 1.6 19.6 7.9 43.1 38.8

only optical 8, 9, 10, 11
class.accuracy 93.9 86.4 90.9 70.3 76.2
completeness 91.4 78.9 88.7 54.0 65.1

contamination 5.9 13.9 8.0 33.2 24.6

mixed 5, 8, 9, 10, 11
class.accuracy 94.7 86.7 89.1 68.6 71.5
completeness 92.3 81.5 88.6 52.8 63.8

contamination 5.0 16.6 8.1 37.6 30.1

Table 2. Summary of the performances (in percentage) of the five classifiers. For each entry the first line refers to the classification
accuracy, while the second and third refer to completeness and contamination, respectively.

• The Kron radius, the ellepticity and the FWHM of the
image (features 5-7);

• The structural parameters (features 8-11) which are,
respectively, the central surface brightness, the core radius,
the effective radius and the tidal radius.

By making an exhaustive pruning test on all 11 dataset
parameters, with the 5 machine learning models previously
introduced, we collected a total of 425 experiments (85 per

model). The details of the experiment setup can be found in
Appendix B.

Table 2 summarizes the most relevant results: in terms
of classification accuracy and completeness, the best results
(98.3% and 97.8% respectively) are obtained by MLPQNA
using all parameters; using all available features but the
number 11 (the tidal radius) we obtain marginally worse re-
sults, as can be expected given the high noise present in this
last parameter, which is affected by the large background
due to the host galaxy light. In terms of contamination com-
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parable results (� 2%) are obtained with the same model
both with or without feature 11. We point out that since the
experiment without feature 11 provides results comparable
to the one using all features, but requires less information
and is less computationally demanding, we consider the lat-
ter to be the case providing the highest overall performance,
as usually done in DM experiments. In other words the ex-
periment without feature 11 represents the best compromise
between required overall performance and complexity of the
KB.

The best result obtained without using the structural
parameters is 93.9% (classification accuracy) thus indicat-
ing that the availability of detailed structural parameters
does indeed help to improve the results, but only by ∼ 5%.
Moreover, the pruning in the mixed cases (by excluding some
structural and optical features) revealed a similar behavior
in all models, in terms of quantity of correlated information
introduced by individual features in the patterns. Five opti-
cal features (namely the isophotal and aperture magnitudes
and the FWHM of the image) were recognized as the most
relevant by all models. Among the structural parameters,
the central surface brightness and the core radius were rec-
ognized as relevant by all models but the SVM and MLPGA
models. In all other cases, other residual optical and struc-
tural parameters were evaluated low carriers of correlated
information.

5 DISCUSSION

In order to test the effectiveness of our method, we need to
compare its performances with those offered by more tra-
ditional approaches. For homogeneity (same data set) we
shall use as template the method discussed in Paolillo et
al. (2011) which used a selection criteria based on mag-
nitude and morphology. Figure 2 shows that sources with
SExtractor stellarity index > 0.9 (grey solid line) are dis-
tributed as the GC luminosity function down to mV = 26,
while at fainter magnitudes background unresolved sources
dominate the overall sample. Based on these considerations
Paolillo et al. choose as GC candidates sources having stel-
larity index > 0.9 and mV < 26 mag. Clearly a more sophis-
ticated selection process, based on complex combinations
of photometric and structural parameters (see for instance
Puzia et al. 2011), could be adopted but any such approach
requires anyway extensive testing to verify what biases are
introduced in the final sample and it is not clear how such
biases can be evaluated and corrected for without the avail-
ability of additional data (e.g. more uniform color coverage
or random background fields to compare with).

From Figure 3 it can be seen that although the use of the
stellarity and magnitude criteria effectively selects the bulk
of the color-selected GC population, there are sources con-
sistent with GC colors, which are missed by this approach;
on the other hand this subsample includes many objects out-
side the allowed color range. We can calculate the level of
completeness and contamination resulting from the simple
approach of Paolillo et al. (2011), as done in §4 for the DM
methods. We derive two different estimates: i) for the central
region covered by the more accurate g and z HST photome-
try and, ii) for the entire field covered by the ground based
C and T1 data. Within the central region 92% of our GC

candidates (within mV < 26 by definition) are consistent
with the 1.3 � g − z < 2.5 color cut and z < 22.5. Us-
ing the C − T1 photometry instead, which extends over the
whole HST mosaic we find that 82% of the GC candidates
are consistent with the 1.0 � C−T1 < 2.2 color and T1 < 23
magnitude cuts. On the other hand, ∼ 4% and ∼ 9% of the
GC candidates have respectively g − z and C − T1 colors
outside the allowed range as given in Table 1.

When these numbers are compared with those pre-
sented in Table 1, we see that the MLPQNA outperforms the
simpler approach used by Paolillo et al. (2011) both in the
central region and across the whole field, in the sense that it
results in higher completeness, retrieving a larger fraction of
the color-selected sources using only single band photome-
try. GAME and SVM may still perform better in the galaxy
outskirts, although in the galaxy center they are slightly less
accurate. In terms of contamination the MLPQNA again
performs better than the Paolillo et al. (2011) approach,
yielding < 2% spurious sources in the two best experiments
(complete patterns and no par.11 ). The other MLPQNA ex-
periments and all SVM cases are still competitive in the
galaxy outskirts.

The performance of the MLPQNA method is better un-
derstood looking at the color-magnitude plot shown in Fig.
4. The MLPQNA sample reproduces the properties of the
color-selected GC population with much less contaminants
than, e.g., the pointlike population shown in Fig. 3, and
less outliers. In Fig. 5 we show the luminosity distribution
of the MLPQNA sample: the MLPQNA approach (dashed
red line) is able to retrieve almost the entirety of the color-
selected GC population (solid black line). We point out that
the luminosity limit at mV ∼ 24 is due to the magnitude
threshold imposed on the color-selected sample (Table 1) in
order to get a uniform limit across the whole color range
(Figure 4) and FOV, and is thus not an intrinsic feature of
the GC luminosity function which extends down to mV � 26
mag.

Furthermore, comparing the structural parameters of
pointlike sources with mV < 26 mag with those of the
color-selected subsample (Figure 6, left panel), we find that
the Paolillo et al. (2011) selection criteria misses extended
sources with Reff � 5 pc, as it can be expected given the
compactness requirement (stellarity index > 0.9); such sam-
ple will thus not include the most extended GCs similar to,
e.g., the Galactic GC ω-Cen. The right panel of the same
Figure shows that the MLPQNA methods is instead able to
retrieve also the most extended GCs.

Applying the same algorithm to the larger ensamble of
sources with structural parameters (but no color informa-
tion) we are now able to retrieve more objects than available
in the color-selected subsample, sharing very similar prop-
erties to the latter population. The population of MLPQNA
selected GCs identified within the whole population is shown
in Figure 5 and Figure 6 (right panel) as a dot-dashed line.
In our specific test case (e.g. NGC1399) this method allows
to identify ∼ 30% more GCs than relying the subsample
of sources with color; this larger sample closely follow the
GC LF down to the magnitude limit imposed by the color
selection, as well as the structural properties of the bona-
fide GC population. Thus the gain with respect to other
selection techniques is in the ability to retrieve a larger pop-
ulation with well defined properties, at lower observational
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Figure 4. Same as Figure 3 showing the color distribution of the MLPQNA selected sample. The MLPQNA sample (blue squares)
reproduces the properties of the color-selected GC population (i.e. the KB) with much less contaminants than, e.g., the pointlike
population shown in Figure 3.

Figure 5. Same as Figure 2 but for the MLPQNA selected sam-
ples. The MLPQNA approach (dashed red line) is able to retrieve
almost the entirety of the color-selected GC population (solid

black line); applying the same algorithm to all sources with struc-
tural parameters (but no color, blue dot-dashed line) we can thus
retrieve many more objects than available in the color-selected
subsample, sharing the same luminosity distribution of the latter
population.

cost. In other programs the gain can be much larger: for in-
stance in cases of large surveys where DM algorithms can
be trained on a KB consisting on a limited number of multi-
band observations covering only a small fraction of the FOV;

the trained algorithm will then allow to extract statistically
equivalent samples from the entire survey.

6 CONCLUSION

We performed an experiment showing that the use of Data
Mining techniques on small datasets, allows to solve com-
plex astronomical problems such as the selection of Globu-
lar Cluster candidates in external galaxies, from single band
images, provided that a subsample of sources can be used to
train the DM algorithm. Since such methods do not assume
any a-priori model of the population we are looking for, they
allow to retrieve samples which share the same properties of
the training sample and are affected by less biases than re-
sult in using simpler selection techniques.

In principle we could use more refined approaches than
those tested here, such as the use of radial velocity (RV)
measurements, but any such approach would again require
the availability of additional data i.e., in this particular case,
spectroscopic observations. Such type of data are difficult
to obtain and expensive in terms of observing time, thus
justifying the DM methods proposed in this work. Obviously
in some instances these data could already be available in the
archives and could be, in principle, used in order to further
improve the reliability of the Knowledge Base. In our specific
case however, although those RV data are available for NGC
1399, their selection function would introduce unpredictable
biases in the KB.

As a closing remark, we can safely state that, in the
emerging scenario of the data-driven science, a Data Mining
based approach to data analysis and interpretation seems to
provide a large competitive edge over classical methods in
particular for what concerns the ability to recognize patterns
and derive correlations in high dimensionality dataset that
are not easily handled by human perception.
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Figure 6. Left panel: Half-light radius distribution for the entire ACS optical catalog (solid line), compared to Paolillo et al. (2011) GC
candidates, i.e. pointlike sources with mV < 26 (dotted line). Restricting the sample to color-confirmed GCs (dashed and dot-dashed
lines) shows that the Paolillo et al. (2011) selection criteria misses very extended GCs with Reff > 5 pc. The shaded region highlights
the region where our size measurement are poorly constrained (see Paolillo et al. 2011; Puzia et al. 2011). Right panel: Same as left
panel but for the MLPQNA selected samples. The MLPQNA selected sample (dotted red line) reproduces the size distribution of the the
color-selected GC population (dashed black line), thus avoiding the size biases resulting from the simpler Paolillo et al. (2011) selection
criteria; the same is true when applying the MLPQNA algorithm to the larger subsample with structural parameters (blue dot-dashed
line).
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APPENDIX A: QUASI-NEWTON LEARNING
RULE

Quasi-Newton direction search methods provide a very use-
ful alternative in that they do not require a precise calcula-
tion of the Hessian. In place of the Hessian matrix Hk, they
use an approximation matrix Ak, updated after each iter-
ation k, to take into account of the additional information
gain obtained. The cyclic updates make use of the gradient
changes, which at each step k provides information about
the second derivative of the error function fk along the op-
timization search direction. More rigorously, given xk a par-
tial solution to the optimization problem at the iteration
k (we want to converge to the optimal solution x∗), when
xk and xk+1 lie near the optimal solution x∗, within which
H(x) is positive definite, we can write:

Hk (xk+1 − xk) = ∇2fk (xk+1 − xk) ∼ ∇fk+1 −∇fk

The Quasi-Newton method chooses the Hessian approxima-
tion Ak+1 so that it can well represent the true Hessian.
In other words we require to follow the well-known secant
equation condition:

Ak+1 (xk+1 − xk) = ∇fk+1 −∇fk

For completeness we recall also that the previous equation
is intrinsically defined under additional conditions, such as
symmetry (typically assumed by the exact Hessian) and the
low rank of the difference between successive approximations
Ak and Ak+1. In the MLPQNA model we apply the Hessian
approximation known as the BFGS formula, named after its
discoverers (Broyden 1970; Fletcher 1970; Goldfarb 1970;
Shanno & David 1970). This is defined by the following
equation: Let us call solk = x(k+1) −xk and gk = ∇f(k+1) −
∇fk, the respective matrix terms of the Eq. 2 we obtain the
following rank-two matrix

Ak+1 = Ak − Ak solTk Ak

solTk Aksolk
+

gkgT
k

gT
k solk

The BFGS formula generates positive definite approx-
imation matrices under the condition that the initial ap-
proximation matrix A0 is positive definite and the term
gT

k solk > 0 L-BFGS. From a computational point of view,
the BFGS formula is time-consuming and requires storing
at each step a dense N × N approximation matrix. Dealing
with massive data optimization problems, in order to over-
come such requirements, we decided to implement a limited-
memory algorithm, known as L-BFGS (Zhu et al. 1997).
The L-BFGS stores at each step only few vectors of length
n that represent the approximations implicitly. Despite this
improvement in the storage requirements, it yields an ac-
ceptable (almost linear) rate of convergence. The main idea
of this method is to use error function curvature informa-
tion from only the most recent iterations to construct the
Hessian approximation. Of course, the final result will not
be the Hessian itself but just an approximation. Surprisingly
enough, while the convergence slows down, performances are
not affected much and may even improve since it depends
on the number of processor’s time units spent to calculate
the result.

APPENDIX B: SETUP OF THE EXPERIMENTS

In the following sections the feature are referred to the
cardinal number (feature 1: MAG ISO, etc). For each model
we choose the configuration parameters in order to perform
the best results.

B1 Multi Layer Perceptron trained by Back
Propagation (MLP-BP)

• Input Nodes (equivalent to the number of features con-
sidered in the dataset patterns) max number: 11 (com-
plete patterns); min number: 4 (pruning on optical fea-
tures);nominal number: 7 (complete optical dataset);

• Hidden Nodes (depending on the number of features
considered in the dataset patterns). Max number: 23 (with
input nodes in [8, 11]); min number: 15 (with input nodes
in [4, 7]);

• Output Nodes (based on crispy classification): 2 (1 0
GC, 0 1 not GC);

• Activation Functions (neuron function type, used to
provide its output, by processing inputs). input layer: (no
input processing, just propagate it); hidden layer: nonlinear
hyperbolic tangent of input; output layer: linear with soft-
max normalization (outputs sums up to 1.0 and converge to
posterior probabilities);

• Learning Rule Parameters. Output Error Type: Cross
Entropy; Training Mode: Batch (weights update after each
whole dataset patterns calculation); Training Rule: Back
Propagation with Conjugated Descent Gradient; Error Loop
Threshold: 0.001 (one of the stopping criteria); Number of
Iterations: 10000 (one of the stopping criteria);

B2 Support Vector Machines (SVM)

• Model: C-Support Vector Classification (C-SVC); Ker-
nel: Radial Basis Function;

• Gamma (for each experiment we have a multiplica-
tive step). Min number: 2−15; max number: 223; step:
4(multiplicative). C (for each experiment we have a mul-
tiplicative step). Min number: 2−5; max number: 215; step:
4 (multiplicative);

• Error Tolerance: 0,001;
• Cache: 100MB;
• Shrinking: On;
• Probability Estimates: Off;
• Cross Validation: k-fold (k = 5);
• Weights: 1;

B3 Genetic Algorithm Model Experiment
(GAME)

• Model: Genetic algorithm with fitness based on trigono-
metric polynomial expansion;

• Topology: population of chromosomes, each of them
composed by genes;

• Input features (depending on the number of features
considered in the dataset patterns). Max number: 11 (com-
plete dataset); min number: 4 (pruning on optical features);
nominal number: 7 (complete optical dataset);
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• Genetic Population Size (depending on the number of
features and polynomial order). Max number: 67 (with 11
features); min number: 25 (with 4 features);

• population size: (polynomialorder ∗ numfeatures) + 1;

• Genetic Chromosome Size (depending on the polyno-
mial order). Number: 13 (with polynomial order = 6); chro-
mosome size: (2 × polynomialorder) + 1;

• Output (based on crispy classification). Number in
BoK: 1 (0 if no GC; 1 else);

• Output Error Type: TMSE (Thresholded Mean Square
Error) with threshold 0,4;

• Error Loop Threshold: 0,001 (one of the stopping crite-
ria);

• Polynomial Order: 6;

• Tournament Selection (based on the Wheel Roulette,
max probability on the entire population fitness). Number
of Tournament Chromosomes: 2;

• Genetic Operators. Crossover Probability: 0,9; Muta-
tion Probability: 0,2; Elitism Factor: 2;

• Initial Population Distribution: gaussian standard, with
all values generated into range [-1, +1];

• Number of Iterations: 10000 (one of the stopping crite-
ria);

B4 Multi Layer Perceptron trained by Quasi
Newton (MLPQNA)

• Input Nodes (depending on the number of features con-
sidered in the dataset patterns). Max number: 11 (complete
dataset); min number: 4 (pruning on optical features); nom-
inal number: 7 (complete optical dataset);

• Hidden Nodes (depending on the number of features
considered in the dataset patterns). Max number: 23 (with
input nodes in [8, 11]); min number: 15 (with input nodes
in [4, 7] );

• Output Nodes (based on crispy classification): number
in BoK: 1 (0 if no GC; 1 else);

• Activation Functions (neuron function type used to pro-
vide its output, by processing inputs). Input layer: no input
processing, just propagate it; hidden layer: not linear hy-
perbolic tangent of input; output layer: linear with softmax
normalization (outputs sums up to 1.0 and converge to pos-
terior probabilities).

Learning Rule Parameters

• Output Error Type: Cross Entropy;

• Training Mode: Batch (weights update after each whole
dataset patterns calculation);

• Training Rule: Quasi Newton (inverse hessian approxi-
mation by error function gradients);

• QNA Implementation Rule: based on L-BCFG method
(L is for Limited memory);

• QNA Parameters. Decay: 0,001 (weight decay during
gradient approximation); Restarts: 20 (random restarts for
each Approximation Step); Wstep: 0,01 (stopping thresh-
old, min error for each Step); MaxIts: 1500 (max number of
Iterations for each Approx. Step);

B5 Multi Layer Perceptron trained by Genetic
Algorithms (MLPGA)

• Input Nodes (depending on the number of features con-
sidered in the dataset patterns). Max number: 11 (complete
dataset); min number: 4 (pruning on optical features ); nom-
inal number: 7 (complete optical dataset);

• Hidden Nodes (depending on the number of features
considered in the dataset patterns) max number: 23 (with
input nodes in [8, 11]); min number: 15 (with input nodes
in [4, 7]);

• Output Nodes (based on crispy classification). number
in BoK: 1 (0 if no GC; 1 else);

• Activation Functions (neuron function type used to pro-
vide its output, by processing inputs). Input layer: no input
processing, just propagate it; hidden layer: nonlinear hyper-
bolic tangent of input; output layer: nonlinear hyperbolic
tangent of input;

• Learning Rule Parameters. Output Error Type: MSE;
Training Mode: Batch (weights update after each whole
dataset patterns calculation); Training Rule: Genetic Algo-
rithm with Roulette Wheel selection function and fitness
based on the MSE between target and output of dataset
patterns;

• MLPGA Parameters. Genetic Population Size: 25; Ge-
netic Chromosome Size: 13; Error Loop Threshold: 0,001;
Tournament Selection: based on the Wheel Roulette method
(max probability on the entire population fitness); Number
of Tournament Chromosomes: 2; Crossover Probability: 0,9;
Mutation Probability: 0,2; Elitism Factor: 2; Initial Popula-
tion Distribution: gaussian standard, with all values gener-
ated into range [-1, +1]; Number of Iterations: 10000 (one
of the stopping criteria).

c© 2011 RAS, MNRAS 000, 1–11


