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Introduction

Astronomy has a long history of acquiring, systematizing and interpreting large
quantities of data. Starting from the earliest sky maps through the first major
photographic sky surveys of the 20-th century, the acquisition is continuing to-
day at an ever increasing rate. Thanks to the advances in telescope, detector
and computer technology, today astronomers can map the universe systemati-
cally, and in a panchromatic manner. This will enable new science items, from
statistical studies of our Galaxy and of the large-scale structure in the universe,
to the discoveries of rare or even completely new types of astronomical objects
and phenomena.

Indeed, astronomers can now explore all regions of the electromagnetic spec-
trum, from gamma rays up to radio wavelengths. Besides, computational ad-
vances have enabled detailed physical simulations similars to the largest obser-
vational datasets in terms of complexity. In order to investigate our cosmos, we
need to assimilate all of this data, each presenting its own physical view of the
Universe and requiring its own technology.

Astronomical data and its subsequent analysis can be broadly classified into
five domains.

� Imaging data is the fundamental constituent of astronomical observa-
tions, capturing a two-dimensional spatial picture of the Universe within
a narrow wavelength region at a particular instant of time. Astronomical
images can be acquired directly, i.e. with imaging arrays such as CCDs, or
synthesized from interferometric observations, as is done in radio astron-
omy. Since different physical processes emit radiation at different wave-
lengths, most astronomical images are obtained through specific filters,
depending on the primary purpose of the observations and the type of
recording device.

� Catalogs are generated by processing the imaging data. Each detected
source can have a large number of measured parameters, for example co-
ordinates, flux quantities and morphological information.
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6 Introduction

� Spectroscopy, Polarization and other measurements provide detailed
physical quantification of the systems, including information on the dis-
tance (redshift), chemical composition (abundances of heavier elements
compared to hydrogen) and measurements of the physical fields (electro-
magnetic or gravitational) in the source.

� Studying the time domain provides important information about the
nature of the Universe because it allows to identify moving objects (near-
Earth objects or comets), variable sources (e.g. pulsating stars) or transient
objects (supernovae and gamma ray bursts). They require multiple epoch
observations of fields (which is possible in the overlap regions of surveys)
or a dedicated synoptic survey. In either case, the data volume and thus
the difficulty in handling and analyzing them increases significantly.

� Numerical Simulations are theoretical tools which must be compared
with observational data. Examples include simulations of the formation
and evolution of large scale structure in the Universe, star formation in our
Galaxy, supernova explosions, etc. Many of the physical processes that are
involved in these studies are very complex, so this tools use both direct
analytic solutions and numerical analysis.

Most of data are obtained in the form of images; the sensor output is processed
removing instrumental signatures and performing calibrations. These first order
data are then stored in local archives as raw data. Then they are processed to
construct the catalogue related to all the object observed in the running. These
informations will be stored in archives and freely accessible online.

In their motion the objects tends to modify their spectral features; studying
the difference between the colors of the spectrum over time, astronomers can
study theri evolution. This difference is usually known as redshift, a shift in
the lines of the spectrum of an astronomical object towards a longer wavelength
(the red end of an optical spectrum): this is usually due to the Doppler effect
caused by the object’s movement away from the viewer.

Usually the redshift is measured spectroscopically: emission or absorption
lines are identified and their wavelengths are measured. The measured wave-
lengths are then compared with the rest wavelengths to determine the redshift.
In spectroscopy, the light from the galaxy is separated into narrow wavelength
bins with few angstroms width, so each bin receives only a small fraction of the
total light from the galaxy. To achieve a sufficiently high signal-to-noise ratio in
each bin, very long integration times are required. For photometry, the bins are
much larger requiring a short exposure time to reach the same signal-to-noise
ratio. In addition, imaging detectors generally cover a greater area of the sky
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Figure 1: A multiwavelength view of the Crab nebula, a supernova remnant that was first
sighted by Chinese astronomers in 1054 AD. Image Credit: NASA/CXC/SAO.

than multi-object spectrographs Connolly et al. (1997).

As result, photometric redshifts can be measured much faster and in larger
quantities than their spectroscopic counterparts.
Photometric redshift was a viable technique in the 1960s, but it was largely
replaced in the 1970s and 1980s by spectroscopic redshifts. This technique re-
cently have experienced a burst of interest because deep multicolour photometric
surveys have been carried out, with a large number of objects inaccessible to spec-
troscopic observations.
Photometric redshifts were originally determined by calculating the expected ob-
served data from a known emission spectrum at a range of redshifts. In recent
years, Bayesian statistical methods and artificial neural networks have been used
to estimate redshifts from photometric data.
In the last decades data volumes from multiple sky surveys have grown up to

terabytes, and will grow up to tens (or hundreds) of petabytes in the next decade.
This exponential growth of data both enables and challenges effective astronom-
ical research, requiring new approaches. So advance in information technology
have been profoundly involved in the last science researches, also to store and
analyze the huge amount of simulated data necessary to the development of new
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Figure 2: The Data Gap: Data growth in the ESO case, credit of ESO.

models.
According to the Moore’s Law, computing power doubles every 18 months, cor-
responding to a factor of 100 in ten years. By comparison, data volumes appear
to double every year, giving a factor 1000 in ten years: this makes very difficult
for us to access and analyze our data collections. In astronomy in particular,
advances in three technology areas (telescopes, detectors and computation) have
continued unabated, leading to more and more data.
The trend in Fig. 2 shows how much a typical astronomical archive has increases

in size over the last thirty years; such exponential growth is not matched by an
equivalent increase in the number of data analyst and already now data analysis
requirements have largely exceeded the power of dedicated human brains.

In 2009 Tony Hey analysed the problem of data in the book “The Fourth
Paradigm” Hey et al. (2009) saying that data analysis needs to be considered
the fourth independent methodological pillar of modern science after experiment,
theory and simulation. Indeed, data taken for a specific purpose can be re-used,
allowing the possibility of developing new sciences. As for examples, the time
variability of phenomena or the comparison of phenomena in different energy
bands (multi-wavelength astronomy, see Fig. 1).
To make the best use of all available data, new generations of astronomers will
need to know more about data fusion, virtual working environments, web 2.0
technologies, machine learning and data mining, disciplines belonging to the
emerging field of Astroinformatics Borne (2009): a new discipline between
traditional astronomy, applied mathematics, computer science and Informatic
and Communication Technology (ICT).
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The topic of this thesis is to calculate the photometric redshift for an huge
dataset extracted from the SDSS Data Release 9. The evaluation has been done
using an empirical method based on artificial neural networks: the MLPQNA,
originally created for the integration in DAMEWARE tools (DAta Mining & Ex-
ploration Web Application REsource) Cavuoti et al. (2012b).
In addition I have realized a Java desktop application that calculates the redshift
for all the objects in an user’s dataset and that allows to load, edit and display
data in most common file format.

The application of the method presented in this work, has produced a refereed
article, currently under revision by the editor Brescia et al. (2013b). Furthermore,
there is also another manuscript in preparation, whose topic is the PhotoRAp-
ToR application [De Stefano et al. 2013, in preparation].

The present work is structured as follow: in Chapter 1, I describe the im-
portance of Photometric Redshift estimation and the ways to obtain this infor-
mation; in Chapter 2, I show the procedure followed to extract my own dataset
from SDSS DR9 archive; in Chapter 3, I give a short overview of data mining
and the problem of the Massive Data Sets. I also describe MLPQNA: the ma-
chine learning method used in my Java application; in Chapter 4, I present the
Java Desktop Application (PhotoRApToR 1.0) that I realized. The last Chapter
describes the application of PhotoRApToR to a real science case and shows the
results. Finally in section 5.3 I show some conclusions and discuss some future
developments.





Chapter 1

Photometric Redshift

According to the different excitation levels, each element in the periodic table
emits photons only at certain wavelengths. This is reported as either emission
or absorption lines in the spectrum of the astronomical objects; measuring the
position of these spectral lines, we can determine which elements are present in
the object itself or are interposed along the line of sight.
But with this analysis, the astronomers note that, for almost all extragalactic
objects, the observed spectral lines are shifted to longer (redder) wavelengths:
this phenomenon is known as “redshift” and, in general, also if the radiation is
not within the visible spectrum, “redder” means an increase in wavelength, that
corresponds to a lower frequency and photon energy.
There are two distinct causes for the spectral shift of the light emitted (or ab-
sorbed) by a galaxy: the kinematical Doppler effect of special relativity (SR)
and the redshift caused by the expansion of the universe, governed by general
relativity (GR). These two effects cannot be distinguished from one another by
observing the spectrum of the galaxy or other light source.
The Doppler shift of SR is due to the relative velocity between the source and
the observer and can be negative (blueshift) or positive (redshift), depending on
whether the galaxy moves radially toward or away from us. It consists in the
variation of frequency ν (or wavelength λ = c/ν, where c is the light speed) of an
electromagnetic wave (see Fig. 1.1). The first Doppler redshift was described by
French physicist Hippolyte Fizeau in 1848, who pointed to the shift in spectral
lines seen in stars as being due to the Doppler effect.
The redshift z is defined as

z ≡ ∆λ

λ
=
λobs − λrest

λrest
(1.1)

11



12 Photometric Redshift

Figure 1.1: The dark absorption lines of a star at rest (up) get shifted towards red if the star
is moving away from Earth (bottom). Credit: Wikipedia

where λobs is the observed wavelength and λrest is the emitted/absorbed wave-
length; for small velocities (v � c):

z =
v

c
(1.2)

where v is the radial velocity between the source and the obsrver and c is the
speed of light. At larger distances the velocity increases and the theory of special
relativity must be taken into account.

Assume the observer and the source are moving away from each other with a
relative velocity v. Considering the problem in the reference frame of the source,
let us suppose that one wavefront arrives at the observer. The next wavefront is
then at a distance λrest = c/νrest, away from him (νrest is the frequency of the
wave the source emitted). Since the wavefront moves with velocity c, and the
observer escapes with velocity v, the time between crest arrivals at the observer
is

t =
λ

c− v
=

c

(c− v)νrest
=

1

(1− β)νrest
, (1.3)
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where β = v/c, is the velocity of the observer in terms of the speed of light.
Due to the relativistic time dilation, the observer will measure this time to be

tobs =
t

γ
, where

γ =
1√

1− β2

is the Lorentz factor. The corresponding observed frequency is

νobs =
1

tobs
= γ(1− β)νrest =

√
1− β
1 + β

νrest. (1.4)

So it is possible to calculate the ratio

νrest
νobs

=

√
1 + β

1− β

νrest
νobs

=
λobs
λrest

=

√
1 + β

1− β

So the standard special relativistic expression for the Doppler shift is

1 + z =
λobs
λrest

=

√
1 + β

1− β
=

=

√
1 + v

c

1− v
c

(1.5)

and finally

z =

√
c+ v

c− v
− 1 (1.6)

The Eq. 1.5 can be inverted to give the relative velocity as a function of z:

v(z)

c
=

2z + z2

2 + 2z + z2
(1.7)

By expanding Eq. 1.7 in a Taylor series around z = 0, we obtain

v

c
= z − z2

2
+
z4

4
... (1.8)

justifying the approximation v ≈ cz for small z.
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Figure 1.2: Edwin Hubble found a correlation between distance to a galaxy (horizontal axis)
and how quickly it’s moving away from Earth (vertical axis). The movement of galaxies in a
nearby cluster adds some noise to this plot. Credit: William C. Keel (via Wikipedia)

In the early part of the twentieth century, Slipher, Hubble and others made
the first measurements of the “red” and “blue” shifts of galaxies beyond the
Milky Way. They interpreted the redshifts and blueshifts as solely due to the
Doppler effect, but later first Lundmark and then Hubble (see Fig. 1.2) discov-
ered a rough correlation between the redshifts and the distance of galaxies.

Theorists almost immediately realized that these observations could be ex-
plained by a different mechanism causing redshifts (the Cosmological redshift)
and constructed a cosmological model starting from Hubble’s correlation law be-
tween redshifts and distances.
Outside the nearby Universe redshifts or apparent radial velocities are domi-
nated by the cosmological expansion. This expansion is properly described as
the stretching of the metric.
In the standard mathematical description of cosmology, the Friedmann-Lemaitre-
Robertson- Walker model, distances are defined in terms of the Robertson-Walker
metric, which is the most general mathematical description for a uniform, homo-
geneous space that is expanding or contracting.
The RobertsonWalker line element is given by

ds2 = c2dt2 −R2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(1.9)

for spherical coordinate r, θ, φ and time coordinate ct. k is the curvature con-
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stant, being -1, 1, or 0 for an open, closed or flat space geometry and R(t) is
the scale factor, a function of time which represents the relative expansion of the
universe: it increases as the universe expands in a manner that depends upon
the cosmological model selected. Its meaning is that all measured distances D(t)
between co-moving points increase proportionally to R

d(t) = R(t)d0

where d(t) is the proper distance at epoch t, d0 is the distance at the reference
time t0. Thus, by definition, R(t0) = 1.
Considering an electromagnetic wave moving toward the observer along the ra-
dius r (so θ = 0 and φ = 0), in this case ds2 = 0 and Eq. 1.9 becomes

c2dt2 = R2(t)
dr2

1− kr2
(1.10)

and
cdt

R(t)
= − 1√

1− kr2
dr (1.11)

because the wave moves toward the origin of coordinate system. Now consider
two waves separated in time by ∆t, integrating the Eq. 1.11

wave1

∫ t0

t1

cdt

R(t)
= −

∫ r

0

1√
1− kr2

dr

wave2

∫ t0+∆t0

t1+∆t1

cdt

R(t)
= −

∫ r

0

1√
1− kr2

dr

where t1 and t0 are the times of emission from the source and arrival to the
observer.
Subtracting one from the other∫ t0+∆t0

t1+∆t1

cdt

R(t)
−
∫ t0

t1

cdt

R(t)
= 0 (1.12)

The first integral becomes∫ t0+∆t0

t1+∆t1

=

∫ t0

t1

+

∫ t0+∆t0

t0

−
∫ t1+∆t1

t1

(1.13)
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Figure 1.3: Cosmological Redshift. A distant galaxy emits light towards us. The light waves
with their crests are carried by space towards us. For a distant galaxy, it can take a very long
time for the light to reach us. During that time, the cosmic expansion of space proceeds. The
effect is that the waves of the light signal get stretched with space. So the wavelength of the
light increases and its frequency decreases. It becomes red shifted.

So we get ∫ t1+∆t1

t1

cdt

R(t)
=

∫ t0+∆t0

t0

cdt

R(t)∫ ∆t1

0

cdt

R(t)
=

∫ ∆t0

0

cdt

R(t)

∆t1
R(t1)

=
∆t0
R(t0)

∆t1
∆t0

=
R(t1)

R(t0)
(1.14)

Remembering that λ = c∆t the redshift relation (Eq. 1.1) can be written as

z =
λ0 − λ1

λ1

=
∆t0 −∆t1

∆t1
(1.15)

and finally,

z =
R(t0)

R(t1)
− 1 (1.16)

Therefore, redshift is related to the expansion factor of the Universe. If we mea-
sure a redshift of z = 2, the Universe is 3x bigger now than it was when that
photon was emitted because of the variation of the scale factor.
Although cosmological redshift at first appears to be a similar effect to the more

familiar Doppler shift, there is a distinction. In Doppler shift, the wavelength of
the emitted radiation depends on the motion of the object at the instant the pho-
tons are emitted. If the object is travelling towards us, the wavelength is shifted
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Figure 1.4: The same slice of the universe from CfA2 redshift survey (down) and the SDSS
data (up). The famous Great Wall and the SLOAN Great Wall are clearly visible. The ”wall”
is more than 200 million light-years away, and stretches across roughly 600 million light-years.

towards the blue, while if the object is travelling away from us, the wavelength
is shifted towards the red. Cosmological redshift results from the expansion of
space itself and not from the motion of any individual body, so the wavelength
at which the radiation is originally emitted is lengthened as it travels through
(expanding) space (Fig. 1.3).

For example, in an extragalactic binary system it is theoretically possible to
measure both a Doppler shift and a cosmological redshift. The Doppler shift
would be determined by the motions of the individual stars in the binary sys-
tem, in their approaching or receding at the time the photons were emitted. The
cosmological redshift would be determined by how far away the system was when
the photons were emitted. Increasing the distance to the system, the emitted
photons have travelled longer through expanding space and higher is the mea-
sured cosmological redshift.
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Figure 1.5: Rendering of the 2dF Galaxy Redshift Survey data.

With advent of automated telescopes and improvements in spectroscopes, a num-
ber of experiments have been made to map the universe in redshift space: by
combining redshift with angular position data has obtained a 3D distribution
of matter. These observations are used to measure the properties of the large-
scale structure of the universe. The Great Wall (Fig. 1.4), a vast supercluster
of galaxies over 500 million light-years wide, provides a dramatic example of a
large-scale structure that redshift surveys can detect. The first redshift survey
was the CfA Redshift Survey, started in 1977 with the initial data collection
completed in 1982. More recently, the 2dF Galaxy Redshift Survey (Fig. 1.5)
determined the large-scale structure of one section of the Universe, measuring
redshifts for over 220000 galaxies; data collection was completed in 2002 and the
final data set was released 30 June 2003. The Sloan Digital Sky Survey (SDSS)
is still ongoing and aims to measure the redshifts of around 3 million objects.
SDSS has recorded redshifts for galaxies up to z = 0.8, and has been involved in
the detection of quasars beyond z = 6.

1.1 The need for photo-z

When only photometric observations are available, the problem becomes more
complicated due to the lack of spectral features. In this case, because of the
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Figure 1.6: The spectrum of the star Vega (α-Lyr) at three different redshifts. The SDSS
ugriz filters are shown in gray for reference. At redshift z = 0, the spectrum is bright in the
u and g filters, but dim in the i and z filters. At redshift z = 0:8, the opposite is the case.
This suggests the possibility of determining redshift from photometry alone. The situation is
complicated by the fact that each individual source has unique spectral characteristics, but
nevertheless, these photometric redshifts are often used in astronomical applications.
Credit of: Pedregosa et al. (2011)

spectrum shift, an identical source at different redshifts will have a different
color through each pair of filters as illustrated in Fig. 1.6.
Technical advances in the instrumentation, combined with the development of 10
m class telescopes, guarantee a large increase in the number of detected galaxies,
bright and faint, for which spectroscopic redshifts will be obtained in the near
future. In spite of the progress in the numbers of available spectra, the I ≈ 24
limit is likely to stand for awhile yet: from this value in magnitude then even the
best instruments available produce spectra that are susceptible to line misiden-
tification, even when carefully analyzed by expert observers. This means that
most of the galaxies detected in very deep exposures are in practice inaccessible
to spectroscopic analysis. The best example is the Hubble Deep Field North
(HDF-N; Williams et al. (1996)): after several years of intensive efforts by the
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astronomical community, the spectroscopic sample only comprises ≈ 20% of the
I < 27 galaxies detected in that field. Very few areas of the sky will be investi-
gated in a similar way in the near future, so this value in magnitude is considered
as a limit for any spectroscopic survey. In contrast, accurate photometric red-
shifts were quickly obtained for most of the HDF-N galaxies (notably by Sawicki
et al. (1997); see also Lanzetta et al. (1996); Gwyn & Hartwick (1996)).
One of the fundamental issues in oservational astronomy is the estimation of
redshifts for celestial objects, with the advent of modern multiband digital sky
surveys, photometric redshifts (photo-z) have become crucial because provides
redshift estimates for objects fainter than the spectroscopic limit and turn out
to be much more efficient in terms of the number of objects per telescope time
with respect to spectroscopic ones (spec-z).
The photometric redshift estimation is a long time problem (Baum (1962); Puschell
et al. (1982); Koo (1985); Loh & Spillar (1986); Connolly et al. (1995)). It started
as a rarely used technique for special kinds of objects and now is a tool widely
used for a moltitude of observational programmes. From their beginning, pho-
tometric redshifts have been seen as an efficient way to study the statistical
properties of galaxies and their evolution. They are essentially a technique for
inverting a set of observable parameters (e.g. colors) into estimates of the phys-
ical properties of galaxies (e.g. redshift, type and luminosity).
Redshift for fainter objects are now accessible by photometry thanks to the im-
proving telescope technology. This makes photo-z extremely attractive for ob-
serving programmes depending on redshifts especially with the advent of modern
panchromatic digital surveys. For instance, they are essential in constraining
dark matter and dark energy through weak gravitational lensing, for the iden-
tification of galaxy clusters and groups (e.g. Capozzi et al. (2009)), for type Ia
supernovae, and for the study of the mass function of galaxy clusters (Albrecht
et al. (2006); Peacock et al. (2006); Keiichi et al. (2012)).
There are many aspects which influence the performances of photo-z’s. The ob-
serving strategy sets the theoretical limit for the accuracy: choice of the filters
and the distribution of the available observing time over the different filters to
reach certain depths can have a great impact on photo-z. Both the accurate
photometric calibration and the removal of effects of the different point-spread-
function (PSF) in the different bands are fundamental.
The need for fast and reliable methods of photo-z evaluation is important for
improving ongoing and planned surveys; in fact, future large-field public imag-
ing projects, such as KiDS (Kilo-Degree Survey), DES (Dark Energy Survey),
LSST (Large Synoptic Survey Telescope) and Euclid (Euclid Red Book (2011))
require extremely accurate photo-z to obtain accurate measurements that do not
compromise the survey’s scientific goals.
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1.2 Methods

Although originally the photo-z idea (Baum (1962)) was received with skepti-
cism, the next generation telescopes plan to perform photometric observations
completely based on these estimation techniques for most of their key science
projects including cosmology and large-scale structure.
The evaluation of photo-z is possible thanks to the complex correlation between
the fluxes, as measured in broad band photometry, the morphological types of
the galaxies and their distance. The search for such a correlation (a nonlinear
mapping between the photometric parameter space and the redshift values) is
particularly suited to data mining methods.
The challenge is to constrain physical properties of sources with some observ-
ables in a data set denoted by Q : {yq}, starting from a training set, T : {x, ξ},
since model spectra would never be perfectly suitable for all desired parameters.
In general, let be x a set of observables in the training set T that contains in-
formation about the physical properties ξ , and let y denote the observables of
the query set Q. The model M can predict the observables x and y for a given
parameter basing on the density p(x, y | θ,M) and has a prior on its parameters
p(θ |M)1.
The goal is to derive the probability density function (PDF) of the physical prop-
erties ξ for a given query point q with yq observations using the model M . This
function, p(ξ | yq,M), is the solution of the generalized photometric inversion
problem.
The first step is to establish the connection between the observables. It can be
done formally by calculating the probability density of x for the query point q,
according to the following formula

p(x | yq,M) =
p(x, yq |M)

p(yq |M)
(1.17)

where

p(x, yq |M) =

∫
dθ p(θ |M)p(x, yq | θ,M)

p(yq |M) =

∫
dx p(x, yq |M).

Traditionally the relation between the observable and the desired physical param-
eters assumes the properties of interest as a function of the observables. Some of
the existing methods utilize explicit functions such as a polynomial or piecewise

1p(θ |M) = p(θ,M)
p(M)
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linear, while others use mappings such as a decision tree or an artificial neural
net. They are assuming a fitting function

ξ = ξ̂(x), (1.18)

tuned to reproduce the elements of the training set as well as possible. Since of
the presence of degenerancies in most data sets, the Eq. 1.18 cannot guarantee
that the same x observables always correspond to the same ξ properties. Clearly,
the Eq. 1.18 is an unnecessary restriction over the general relation of x and ξ
denoted by p(ξ | x). Using Dirac’s δ symbol, the traditional model prescript that

p(ξ | x) = δ(|ξ − ξ̂(x)|) (1.19)

A better way is not to restrict the distribution arbitrarily to an unknown surface
by observing that

p(ξ | x) =
p(ξ, x)

p(x)
(1.20)

where both the densities in the ratio can be estimated from the training set.
Using the Eq. 1.20, one can compute the final PDF of interest as the integral
over the possible observables in the training set

p(ξ | yq,M) =

∫
dx p(ξ | x) p(x | yq,M) (1.21)

Photometric redshifts and other such properties are often used in statistical stud-
ies thanks to their availability for a large number of sources, even though they
provide relatively loose constraints on individual objects. The full PDFs of the
sources are best suited to derive the ensemble properties of entire catalogs or
even specific subsamples. The distribution of the properties over a set of mea-
surements Q is given by the average

p(ξ | Q,M) = 〈p(ξ | yq,M)〉 (1.22)

Essentially all currently existing implementations can be categorized into two
classes of methods: theoretical and empirical.

Theoretical methods use templates, such as libraries of either observed galaxy
spectra or model spectral energy distributions (SEDs). These templates can be
shifted to any redshift and then convolved with the transmission curves of the
filters used in the photometric survey to create the template set for the redshift
estimators (e.g. Koo (1999), Massarotti et al. (2001a), Massarotti et al. (2001b),
Csabai et al. (2003)). Photometric redshifts can be obtained by comparing ob-
served galaxy fluxes at the ith photometric band, f obs

i , with a library of reference
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fluxes, f templ
i (z, T ) depending on redshift z on a set of parameters T , that ac-

counts for galaxy morphological type, age, metallicity, dust reddening etc. For
each galaxy a χ2 confidence test provides the values of z and T that minimize
flux residuals between observations and reference templates.
However, for datasets in which accurate and multiband photometry for a large
number of objects are complemented by spectroscopic redshifts, and for a sta-
tistically significant subsample of the same objects, the empirical methods offer
greater accuracy. These methods use the subsample of the photometric survey
with spectroscopically-measured redshifts as a training set to constrain the pa-
rameters of a fit mapping the photometric data as redshift estimators.
The variety of methods and approaches and their application to different types
of datasets, as well as the adoption of different and often not comparable statis-
tical indicators, make it difficult to evaluate and compare performances. Blind
tests of photo-z have been performed in Hogg et al. (1998) on spectroscopic data
from the Keck telescope on the Hubble Deep Field (HDF), in Hildebrandt et al.
(2008) on spectroscopic data from the VIMOS VLT Deep Survey (VVDS) and
the FORS Deep Field (FDF; Noll et al. (2004), and in Abdalla et al. (2008)) on
the sample of luminous red galaxies from the SDSS-DR6.
A significant advance in comparing different methods has been introduced by
Hildebrandt and collaborators (Hildebrandt et al. (2010)), with the so-called
PHAT (PHoto-z Accuracy Testing) contest, which adopts a black-box approach
typical of benchmarking. They performed a homogeneous comparison of the per-
formances, concentrating the analysis on the photo-z methods themselves that
will be analyzed in next paragraphs.

1.2.1 Theoretical Methods

Template based techniques are free from the limitation of a training set and can
be applied over a wide range of redshifts and intrinsic colors. They rely, however,
on having a set of galaxy templates that accurately map the true distribution of
galaxy spectral energy distributions (and their evolution with redshift) and on
the assumption that the photometric calibration of the data is free from system-
atics. This approach simply compares the expected colors of a galaxy (derived
from template spectral energy distributions) with those observed for an individ-
ual galaxy.
The standard scenario for template fitting is to take a small number of spectral
templates T (e.g. E, Sbc, Scd and Irr galaxies) and choose the best fit by with a
likelihood method for redshift, type and luminosity. Variations on this approach
have been developed in the last few decades, as example one that use a continu-
ous distribution of spectral templates enabling the error function in redshift and
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type to be well defined.
A representative set of spectrophotometrically calibrated spectral templates is
not easy to obtain. Firstly, because it is complex to calibrate them spectropho-
tometrically over the full spectral range, secondly because of the redshift of a
galaxy, we need spectra over a wavelength range that is wider than the range of
actual optical filters (3000 - 12000 Å). Such spectra cannot therefore be measured
by a single spectrograph. The alternative to empirical templates is to use the
outputs of spectral synthesis models that provides the spectral energy distribu-
tions (SED) for the different objects.
As a first step, the SED fitting algorithms convert the galaxy observed magni-
tudes for each i-th photometric band into incoming apparent flux, f obs

i (λ). This
is equivalent to reconstructing the SED of target galaxies at very low spectral
resolution by sampling their luminosity at the effective wavelength of the avail-
able photometric bands.
For each object, the sampled flux has to be compared with the reference spec-
tral libraries of template galaxies, f templ

i (z, T ), computing the χ2 of the fitting
residuals such as

χ2 =
N∑
i=1

[f obs
i − sf templ

i (z, T )]2

σ2
i

(1.23)

where, N is the number of photometric bands, i is the number of band and s is
the scale factor chosen in such a way as to minimize the χ2 for each template:

s =

∑N
i=1 f

obs
i f templ

i (z, T )/σ2
i∑N

i=1 f
templ
i (z, T )/σ2

i

.

The selection of the reference flux library is very impotant in SED fitting meth-
ods. In particular, one has to decide whether it is more appropriate to use
empirical or synthetic galaxy templates. The major advantage of the first choice
is that the observed SEDs for a suitable set of local galaxies, spanning the whole
range of Hubble morphological types, gives by definition a physically consistent
picture of the real galaxies, at least the nearby ones. On the other hand, there is
no obvious argument supporting a straightforward extension of the current galaxy
properties to highredshift objects. At earlier cosmological epochs, evolution could
play a substantial role in changing both morphological and spectrophotometric
properties of distant galaxies (Buzzoni (1998)). To take into account evolution,
synthesis models should be preferred; of course, some differences exist among
current theoretical codes, especially in the SED predictions for the UV range
(Charlot et al. (1996)).
In Fig. 1.7 are respectively shown the results of the template fitting technique

using one of the most frequently used SED contained in Coleman, Wu & Weed-
man CWW (1980) on the left and a set of SEDs from the spectral synthesis
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Figure 1.7: On the left: Photometric redshift estimation using the CWW spectral energy
distributions. On the right: Photometric redshift estimation using the Bruzual and Charlot
spectral energy distribution.

models of Bruzual & Charlot Bruzual & Charlot (1993) on the right. The dis-
persion about this relation is 0.062 and 0.051 for the CWW and BC templates
respectively Csabai et al. (2003). The CWW templates produce a photomet-
ric redshift relation where the majority of galaxies have a systematically lower
redshift than that given by the spectroscopic data (by approximately 0.03 in
redshift) and there is a broad tail of galaxies of low z, for which the photomet-
ric redshifts are systematically overestimated. For the BC templates the galaxy
redshifts tend to be systematically underestimated, with a greater dispersion for
redshifts z > 0.3).
An improvement over standard template methods is the introduction of magni-
tude priors within a Bayesian framework Benitez (2000).

BPZ

Bayesian Photo-z, BPZ Benitez (2000), introduced the use of Bayesian inference
and priors to photometric redshift estimation. The code uses a prior P (z;T | m0)
which gives the likelihood that given an apparent magnitude m0 for a galaxy with
redshift z and SED type T . For each galaxy, this information is combined (in a
Bayesian manner) with the likelihood P (C | z;T ) of observing the galaxy colours
C for each redshift and SED pair, yielding the final P (z;T | C;m0).
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EAZY

Easy and Accurate Redshifts from Yale, EAZY Brammer et al. (2008), is a
template-fitting code designed to produce un-biased photometric redshift es-
timates for deep multi-wavelength surveys that lack representative calibration
samples with spectroscopic redshifts.
EAZY uses a unique template set derived using the non-negative matrix fac-
torisation algorithm (Sha et al. (2007); Blanton & Roweis (2007)) trained on
synthetic photometry from the semi-analytic light-cone produced by De Lucia
& Blaizot (2007). These templates can be considered the principal component
spectra of all galaxies at 0 < z < 4 in the light-cone, allowing for subtle differ-
ences between local and high-redshift galaxy samples. EAZY is able to reproduce
complex star-formation histories by fitting non-negative linear combinations of
the templates, wich include emission lines following the prescription of Ilbert et
al. (2009).

Hyperz

Hyperz Bolzonella et al. (2000) is a publicly available code based on SED tem-
plates fitting using a standard χ2 minimisation method. The codes uses the
observed fluxes of an object in a set of given filters and compares them with the
theoretical fluxes of galaxies in the same filters obtained from template spectra,
either synthetic or empirical, taking into account the observational uncertainties
but also the possible observational hidden effects such as reddening. It computes
not only a best-fit solution which minimises the differences, therefore a most
probable photometric redshift, but also a full probability function depending on
the redshift.
Hyperz uses a given set of templates, filters, reddening laws and Lyman forest
modelling and can be easily adapted to use any kind of parameters that would
fit the needs of the user.

Le Phare

The public code Le Phare, PHotometric Analysis for Redshift Estimate (Arnouts
et al. (2008); Ilbert et al. (2006)) is primarily dedicated to estimate photo-z, but
it can also be used to estimate other physical parameters like stellar masses
and infrared luminosities. Le Phare is based on a standard template fitting
procedure; the templates are redshifted and integrated through the instrumental
transmission curves. The opacity of the intergalactic medium (IGM) is taken
into account and internal extinction could be added as a free parameter to each
galaxy. The photo-zs are obtained by comparing the modelled fluxes and the
observed fluxes with a χ2 merit function.
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LRT

Low-Resolution Spectral Templates, LRT (Assef et al. (2008), Assef et al. (2010)),
is a set of subroutines intended to estimate K−corrections2 and photometric
redshifts on the basis of empirical low resolution SED templates (hence LRT)
for galaxies and AGNs. Every galaxy is represented by a non-negative linear
combination of three empirically determined SED templates that resemble an
elliptical, an Sbc spiral and an Im irregular galaxy.

ZEBRA

Zurich Extragalactic Bayesian Redshift Analyzer, ZEBRA Feldmann et al. (2006),
is an open source photometric redshift code based on a SED template-fitting ap-
proach. Built on top of a traditional Maximum Likelihood approach it introduces
and combines several novel methods that help to improve the accuracy of pho-
tometric redshift estimates for galaxies and AGNs (Oesch et al. (2010); Luo et
al. (2010), for some recent applications). ZEBRA is able to detect and correct
photometric offsets in the input catalogue and can use spectroscopic redshifts on
a small fraction of the photometric sample to iteratively correct the original set
of input templates. This correction allow the decrease of the bias, the scatter,
and the number of outliers in the redshift estimation. When run in Bayesian
mode, ZEBRA computes the prior in redshift-template space in a self-consistent
manner from the input catalogues and the redshift-template likelihood functions.
This prior is consequently used to derive the posterior probability distribution
of each input object.

1.2.2 Empirical Methods

Empirical approach can be tipically applied to galaxies with colors that lie within
the range of colors and redshifts found within the training set. One of the first

2The K−correction can be defined as the correction needed to transform the observed
magnitude through bandpass b of an object at redshift z to the magnitude we would measure
for an object with the same SED and the same apparent bolometric magnitude but located at
redshift z0.

mb(z) = mb(z0) +Kb

and the K−correction Kb is defined

Kb = −2.5log

[
(1 + z)

(1 + z0)

∫∞
0

Rb(λ)
λ f [(1 + z)ν]dλ∫∞

0
Rb(λ)
λ f [(1 + z0)ν]dλ

]

where f(ν) is the rest frame SED and Rb is the filter bandpass response per photon of wave-
length λ. Usually z0 = 0 so that magnitude is corrected to the rest frame.
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Figure 1.8: The photometric redshift estimations with the simple empirical methods.

successful empirical methods is based on fitting the relation between the spec-
troscopic redshift of a galaxy and its colors or magnitudes Connolly et al. (1995).
The fitting function is typically a 2nd or 3rd order polynomial. Fig. 1.8 shows
the photometric vs. the spectroscopic redshifts using data from Early Data Re-
lease of the SDSS (EDR main galaxy and Luminous Red Galaxy spectroscopic
samples Csabai et al. (2003). As the size of the training set is large (more than
30,000 objects) when compared to the number of fitted parameters (21), we can
expect that this fit will work likewise as long as the data are selected over the
same color and redshift range as the training set. One of the most important
uncertainty within this technique comes from the fact that the fitting function is
just an approximation of the more complex relation between colors and redshift
of a galaxy. We would, therefore, expect the fitting function to accurately follow
the redshift-color relation over a narrow range of redshift otherwise one can use
separate functions in different redshift (Brunner et al. (1999)) or color ranges.
A second empirical estimator is the “nearest neighbour” method. In the train-
ing it finds the galaxy within the set with the smallest distance in the color (or
magnitude) space (weighted by the errors) and its redshift is assigned to the test
galaxy. In the ideal case the training set contains sufficient galaxies to find a
close neighbour for each unknown object. In Fig. 1.9 we see that redshift es-
timation error increases with the distance from the nearest neighbour in color
space. Obviously, a larger dataset correspond to a better accurancy, as long
as that all galaxy types are represented in the training set. By larger training
sets mean that the search time increases so it has needed to use an efficient
multidimensional search technique (e.g. kd-trees) instead of a standard linear
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search. The comparison between the estimated and spectroscopic redshifts for
the nearest-neighbour technique is given in Fig. 1.8. The dispersion about this
relation is σz = 0.033.
A natural limitation of the nearest neighbour technique is that a large number
of training galaxies alone is not enough to cover the range of the colors of the
unknown objects in a more or less uniform way. To resolve this problem one
can search for more than one nearest neighbour and apply an interpolation or a
fitting function, solving also a second problem, namely that because of the finite
number of objects in the training set, the photometric redshifts will have discrete
values making them problematic to use in some statistical studies. First results
from the PHAT contest, presented in Hildebrandt et al. (2010), described the
pro’s and con’s of many other different empirical methods.

Figure 1.9: The dependence of redshift average estimation error on the color space distance
from the nearest reference object (solid line). As expected, smaller distances result smaller
error. The dashed line is for the histogram of number of objects with a given nearest neighbour
distance. One can see, that for most of the objects the nearest neighbour is not close enough
to get the best estimation.
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ANNz

ANNz Collister & Lahav (2004) is an empirical photo-z code based on Artificial
Neural Networks, made up of several layers, each consisting of a number of
nodes. The first layer receives the galaxy magnitudes as inputs, while the last
layer outputs the estimated photometric redshift. The layers contains the nodes
wich are inter-connected and carries a “weight” which is a free parameter in the
parametrisation. When a network is trained the weights of all node connections
are determined by minimising a cost function E. Then the algorithm is applied
on the sample for redshift estimation. Neural networks have been used e.g.
for estimation of photo-z for the SDSS (Collister et al. (2007); Abdalla et al.
(2008)), as well as forecasts of photometric redshifts for future surveys like the
Dark Energy Survey Banerji et al. (2008) and Euclid Abdalla et al. (2008).

Boosted Decision Tree (BDT) algorithm

The Boosted Decision Tree (BDT) algorithm Gerdes et al. (2010) combines an
ensemble of weak classifiers into a single powerful classifier. The spectroscopic
training set is first divided into redshift bins whose width is approximately half
the expected photo-z resolution of the algorithm for the given sample. For each
bin, a set of trees is trained labeling as “signal” those galaxies whose redshift falls
within the bin in question, and “background” those that fall more than 2σ away
from the signal bin, where σ is the iteratively-determined photo-z resolution. As
training variables are used the observed magnitudes in each band. The result is a
tree containing nodes with predominantly signal and predominantly background
galaxies. The process of boosting iteratively repeats this process, giving higher
weight to galaxies that were initially misclassified. The method produces a photo-
z probability for each galaxy as a function of redshift. This method provides an
estimate of the best photo-z, of the error and a reconstruction of the full redshift
PDF. In Gerdes et al. (2010) it was shown that the BDT algorithm improves
upon the default photo-z in the SDSS spectroscopic sample and that the PDFs
yield a more accurate reconstruction of the redshift distribution.

Purger (Nearest-Neighbour Fit)

This empirical method compares the observed colours to the reference set. The
estimation method first searches the colour space for the k nearest neighbours
of every object in the estimation set (i.e. the galaxies for which we want to
estimate redshift) and then estimates the redshift by fitting a local low order
polynomial to these points. An improved version of this code is using a k-d
tree index for fast nearest neighbour search Csabai et al. (2007). It was used
to calculate photometric redshifts for the SDSS Data Release 7 Abazajian et al.



1.2 Methods 31

(2009). The advantage of this method versus a template-based method might be
the better estimation accuracy, but it cannot extrapolate so the completeness of
the reference set is crucial.

Random Forest for Photometric Redshifts

The method by Carliles et al. (2010) is based on Random Forests which are
an empirical, non-parametric regression technique. A Random Forest builds an
ensemble average of randomised regression tree redshift estimates. Bootstrap
samples are extracted from the training set and each regression tree is trained
on its own bootstrap sample. Given a new test object, each regression tree
produces its own redshift estimate; all the estimates are averaged to yield the
final Random Forest redshift estimate. This technique also results in Gaussian
errors and this behaviour has a strong theoretical statistical explanation. For a
new galaxy one can hypothesise the existence of a distribution which reflects the
similarity of the new galaxy to any given point in the event space. The Random
Forest approximates this distribution per object and the process results in easily
computable per-object error parameter estimates.

MLPQNA

Given the huge dataset collected for this thesis (see Ch.§2) the better method to
evaluate photo-z is the empirical one. In this thesis I used a machine learning
technique called MLPQNA. It is a Multi Layer Perceptron Bishop (2006) imple-
mented with a learning rule based on the Quasi Newton Algorithm (QNA).
A Multi-Layer Perceptron may be represented by an input layer, with a number
of perceptrons equal to the number of input variables, an output layer, with as
many neurons as the output variables; the network may have an arbitrary num-
ber of hidden layers (in most cases one) which in turn may have an arbitrary
number of perceptrons. In a fully connected feed-forward network each node of
a layer is connected to all nodes in the adjacent layers representing an adaptive
weight calculated on the strength of the synaptic connection between neurons.
In order to find the model that best fits the data, one has to provide the network
with a set of examples.
In general Quasi Newton Algorithms (QNA) are variable metric methods used
to find local maxima and minima of functions Davidon (1968) and, in the case
of MLP’s they can be used to find the stationary (i.e. the zero gradient) point of
the learning function. QNA are based on Newton’s method to find the station-
ary point of a function, where the gradient is 0. The Hessian matrix of second
derivatives of the function to be minimized does not need to be computed, but
is updated by analyzing successive gradient vectors instead.
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The workflow to determine phot-z is the follow: extraction of the Knowledge
Base (KB), i.e. the training set, determination of the optimal model parameter
setup and application of the tuned model to the whole dataset.

A more accurate characterization of functionalities of the MLPQNA has been
described in Ch.§3.



Chapter 2

Experimental Data

The first systematic survey of all that is visible by the naked eye was performed
by Hipparchus in the 2nd century BC: he drew up a catalog including about 850
stars. After more than a thousand years, in 1968, using the telescope Galileo
began a revolution for astronomical observations: for the first time the craters
of the Moon and the Jupiter’s moons of Jupiter were observed.

In 1917, a new telescope was built on Mount Wilson in California; it was
the largest ever built in the world and it unveiled an entirely new picture of the
universe. Thanks to this giant telescope astronomers discovered that many of
the nebulae were other galaxies like our own Milky Way.
Although spacecraft missions have revolutionized our understanding of the solar
system, ground-based telescopes continue to play a very important role in making
new discoveries. During the 1970s, NASA constructed ground-based telescopes
to support its planetary missions; it funded the construction of the 2.7 m Mc-
Donald telescope, the University of Hawaii 2.2 m telescope and the 3.0 m NASA
Infrared Telescope Facility (IRTF) to provide mission support.

Cosmology had seen the demise of the perfect cosmological principle in 1929,
with Edwin Hubble’s discovery that universe is expanding and therefore changes
over time, but the Universe is yet considered homogeneous and isotropic. To
demonstrate the validity of this basic assumption it is necessary to be able to
find some volumes of the Universe that are representative of the whole. We know
that telescopes are designed to collect and focus starlight onto a detector, while
ground-based observers have to contend with limitations imposed by physics, the
atmosphere and technology: for this purpose it is clear that very large galaxy
surveys are crucical.

The advent of the new class of 10 m ground-based telescopes is having a
strong impact on the study of galaxy evolution. Sky surveys and so-called deep

33
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fields represent different strategies for studying extraterrestrial objects. In par-
ticular sky surveys include projects performing photometric and/or spectral
observations of a significant fraction of the sky. The effective depth of surveys
is z ∼ 0.1 or several hundred megaparsecs (Mpc). Surveys are often restricted
to one band of the electromagnetic spectrum due to instrumental limitations,
although multiwavelength surveys can be made by using multiple detectors, sen-
sitive to different bandwidths.

Digital sky surveys are essentially changing the field of research of astronom-
ical data because of the sheer quantity of data being generated over multiple
wavelengths and the homogeneity of the data within each survey. The feder-
ation of different surveys would further improve the efficacy of future ground-
and space-based targeted experiments and also open up entirely new avenues for
research.

Photographic plates have long endured as efficient mechanisms for recording
surveys; indeed, they have useful lifetimes and offer superb information stor-
age capacity, but unfortunately they are not directly computer-accessible and
must be digitized before being put to a modern scientific use. Their supremacy
in a digital world, however, is being challenged by new technologies. Indeed,
many photographic surveys have been performed, for example from the Palomar
Schmidt telescope in California and the UK Schmidt telescope in New South
Wales (Australia), but their data become most useful when the plates are digi-
tized and catalogued.

Traditional ground-based observatories have been saved data, mainly as emer-
gency backups for the users, for a significant time, accumulating impressive
quantities of highly valuable and heterogeneous data. Unfortunately the lack
of adequate funding have limited the efforts to properly archive this wealth of
information and make it easily available to the broad astronomical community.

There is a large number of experiments and surveys; as it is impossible to
describe here all of them, I will report only an example of valuable and useful
sky surveys that fills archives with their images.

DPOSS - The Digitized Palomar Observatory Sky Survey is a digital survey
of the entire Northern Sky in three visible-light bands, formally indicated
by g, r and i (bluegreen, red and nearinfrared respectively).
It is based on the photographic sky atlas, POSSII, the second Palomar Ob-
servatory Sky Survey, which was completed at the Palomar 48inch Oschin
SchmidtTelescope Reid et al. (1991). It consist of a set of three photo-
graphic plates, one for filter, each covering 36 square degrees. It takes at
each of 894 pointings spaced by 5 degree covering the Northern sky, al-
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though many of these were repeated exposures, due to various artifacts
such as the aircraft trails, plate defects, etc. The plates were then digitized
at the Space Telescope Science Institute (STScI) and scanned producing
about 1 Gb per plate or about 3 Tb of pixel data in total.
These scans were processed independently at STScI, to construct a new
guide star catalog for the HST and at Caltech, for the DPOSS project.
Catalogs of all the detected objects on each plate were generated, down
to the flux limit of the plates which roughly corresponds to the equivalent
blue limiting magnitude of approximately 22.

2MASS - The Two Micron All Sky Survey project is designed to close the
gap between our current technical capability and the knowledge of the
near-infrared sky. In addition to provide a context for the interpretation of
results obtained at infrared and other wavelengths, 2MASS is giving direct
answers to immediate questions on the large-scale structure of the Milky
Way and the Local Universe. The optimal use of the next generation of
infrared space missions, such as HST/NICMOS, the Space Infrared Tele-
scope Facility (SIRTF) and the Next Generation Space Telescope (NGST),
as well as powerful ground-based facilities, such as Keck I, Keck II and
Gemini, require a new census with vastly improved sensitivity and astro-
metric accuracy greater than previously available.
To achieve these goals, 2MASS has uniformly scanned the entire sky in
three near-infrared bands to detect and characterize point sources brighter
than about 1 mJy, with signal-to-noise ratio (SNR) greater than 10, using
a pixel size of 2.0”.
2MASS used two highly-automated 1.3 m telescopes, one at Mt. Hopkins
(Arizona) and one at CTIO (Chile). Each telescope was equipped with a
three-channel camera, each one consisting of a 256× 256 array of HgCdTe
detectors, capable of observing the sky simultaneously at J (1.25 microns),
H (1.65 microns) and Ks (2.17 microns). The northern 2MASS facility
began routine operations in 1997 June and the southern facility in 1998
March. Survey operations were complete for both hemispheres on 2001
February 15.

In the next section the focus will be on the Sloan Digital Sky Survey (SDSS),
in particular on its Ninth Data Release (DR9), because data used during this
thesis were extracted from DR9 catalogues.
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2.1 SDSS

The Sloan Digital Sky Survey started as a large astronomical collaboration fo-
cused on constructing the first CCD photometric survey of the North Galactic
hemisphere (10000 square degrees, ∼ 1/4 of the entire sky). So for the SDSS is
the most ambitious and important survey in the history of astronomy.
It uses a dedicated wide-field 2.5 m telescope Gunn et al. (2006) at Apache Point
Observatory (APO) in the Sacramento Mountains (Southern New Mexico). It
was originally instrumented with a wide-field imaging camera with an effective
area of 1.5 deg2 Gunn et al. (1998) and a pair of double spectrographs fed by 640
fibers Smee et al. (2013). The initial survey York et al. (2000) carried out imag-
ing in five broad bands (ugriz ) Fukugita et al. (1996) to a depth of r ∼ 22.5 over
11,663 deg2 of high-latitude sky and spectroscopy of 1.6 million galaxy, quasar
and stellar targets over 9380 deg2. The spectra were calibrated and redshifts
and classifications determined Bolton et al. (2012). The data have been released
publicly in a series of roughly annual data releases as the project went through
two funding phases, named SDSS-I (2000-2005) and SDSS-II (2005-2008). Over
eight years of operations it obtained deep, multi-color images covering more
than a quarter of the sky and created 3-dimensional maps containing more than
930,000 galaxies and more than 120,000 quasars.
In 2008, the SDSS entered a new phase with four components, designated SDSS-
III Eisenstein et al. (2011), currently operating: a total of 1,231,051,050 imaging
data are catalogued (469,053,874 object, removing all duplicates and overlaps)
and the last Data Release (DR10) includes a total of 1,507,954 BOSS spectra,
comprising 927,844 galaxy spectra, 182,009 quasar spectra and 159,327 stellar
spectra.

� The Baryon Oscillation Spectroscopic Survey (BOSS) Dawson et al. (2013)
has substituted the spectrographs to improve the rate of work and increase
the number of fibers to 1000 Smee et al. (2013). BOSS enlarged the imaging
footprint of SDSS to 14,555 deg2, it is obtaining spectra of galaxies and
quasars with the primary goal of measuring the oscillation signature in the
clustering of matter as a cosmic measure to constrain cosmological models.

� The Sloan Extension for Galactic Understanding and Exploration 2
(SEGUE-2), an expansion of a similar project carried out in SDSS-II
Yanny et al. (2009), used the SDSS spectrographs to obtain spectra of
about 119,000 stars, mostly at high Galactic latitudes.

� The Apache Point Observatory Galactic Evolution Experiment
(APOGEE) uses a 300-fiber spectrograph to observe bright (H < 13.8
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mag) stars in the H band at high resolution (R ∼ 22, 500) for accurate
radial velocities and detailed elemental abundance determinations.

� The Multi-Object APO Radial Velocity Exoplanet Large-area Survey
(MARVELS), which finished its data-taking in 2012, used a 60-fiber inter-
ferometric spectrograph to measure high-precision radial velocities of stars
in a search for planets and brown dwarfs.

SDSS-III began observations in July 2008 and gave the Eighth Data Release
(DR8) Aihara et al. (2011) in January 2011. included all data from the SEGUE-2
survey, as well as ∼ 2500 deg2 of new imaging data in the Southern Galactic Cap
as part of BOSS.
The Ninth Data Release (DR9) Ahn et al. (2012) included the first spectroscopic
data from the BOSS survey: over 800,000 spectra selected from 3275 deg2 of sky.
The Tenth Data Release (DR10) given to the public on 31 July 2013, offers the
latest data from the Sloan Digital Sky Survey. DR10 includes almost 680,000
new BOSS spectra, covering an additional 3100 deg2 of sky. It also includes the
first public release of APOGEE spectra, with almost 180,000 spectra of more
than 57,000 stars in a wide range of Galactic environments, in addition to all
imaging and spectra from prior SDSS data releases.
DR11 will be an internal release only; for a public release would occur only six
months before the final public data release for SDSS-III, DR12, which will be
released in December 2014 and will contain all of data taken during the six years
of the project. All data released are publicly available on the SDSS-III website1.

For the analysis described in this work the catalogues contained in DR9,
released in August 2012, were used.

2.1.1 The Ninth Data Release

DR9 presents the release of the first 1.5 years of data from the SDSS-III BOSS
spectroscopic survey. BOSS began survey-quality observations on the night of
2009 December 5. DR9 contains all processed data until the telescope shutdown
occurred in 2011 July2, included the spectroscopic data from SDSS-I/II and
SEGUE2; the details of the data included in DR9 are summarized in Table 2.1.1.
The imaging data and catalogs are the same present in DR8, with an improved
astrometric solution that correct an error affecting objects at high declinations
Aihara et al. (2011b).

1http://www.sdss3.org/
2The SDSS telescope pauses science operations during the monsoon in July/August in the

southwestern United States. This time is used for telescope maintenance and engineering work.
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Imaginga

Total Uniqueb

Area Imaged 31,637 deg2 14,555 deg2

Cataloged Objects 1,231,051,050 469,053,874

New BOSS Spectroscopy

Total Uniqueb

Spectroscopic Footprint effective area ... 3275 deg2

Plates 831 819

Specta Observed 829,073 763,425

Galaxies 535,995 493,845

CMASS galaxies 336,695 309,307

LOWZ galaxies 110,427 102,890

ALL Quasars 102,100 93,003

Main Quasars 85,977 79,570

Main Quasars, 2.15 < z < 3.5 59,783 55,047

Ancillary program spectra 32,381 28,968

Stars 90,897 82,645

Standard stars 16,905 14,915

Sky spectra 78,573 75,850

All spectroscopyy from SDSS-I/II/III

Total number of spectra 2,674,200

Total number of useful spectrac 2,598,033

Galaxies 1,457,002

Quasars 228, 468

Stars 668,054

Sky 181,619

Unclassifiedd 62,890

Table 2.1.1: Contents of DR9. a) These numbers are unchanged since DR8. b) Removing
all duplicates and overlaps. c) Spectra on good or marginal plates. Spectrum refers to a
combined set of sub-exposures that define a completed plate. Duplicates are from plates that
were observed more than once, or are objects that were observed on overlapping plates. d)
Non-sky spectra for which the automated redshift/classification pipeline Bolton et al. (2012)
gave unreliable results, as indicated by the ZWARNING flag.
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Figure 2.1: The sky coverage of DR9.

The SDSS is targeted on different items.
BOSS aims to measure spectra and redshifts for a sample of 1.5 million galaxies
extending to z = 0.8 over 10,000 deg2. In addition, 150,000 quasars with z > 2.15
will be observed to measure the clustering of the Lyman-α forest and to deter-
mine the baryon oscillation scale at z ∼ 2.5, the era preceding the domination of
the dark energy in the expansion of the universe.
BOSS aims also to measure large-scale clustering of galaxies at higher redshifts
and at lower luminosities: so it samples the density field at higher space density
and can target significantly fainter galaxies.
The samples of galaxies and quasars needed to carry out this program are sig-
nificantly fainter than those targeted in SDSS-I and SDSS-II Eisenstein et al.
(2001); Strauss et al. (2002); Richards et al. (2002) and have an higher density
on the sky. So, the SDSS spectrographs and the related infrastructure were ex-
tensively rebuilt to increase observing efficiency, as described in detail in Smee
et al. (2013).
In BOSS data we can select four categories: galaxies, quasars Ross et al. (2012),
ancillary targets and standards and calibrations Dawson et al. (2013). The SDSS-
III Data Release 9 presents the first data from the BOSS survey, with ∼ 102, 000
new quasar spectra, ∼ 91, 000 new stellar spectra and ∼ 536, 000 new galaxy
spectra. We will focusing on the objects selected with the data queries carried
out in this thesis.
The SDSS-I/II Legacy survey have labeled the galaxies into two categories: a
magnitude-limited sample of galaxies in the r band Strauss et al. (2002), with a
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median redshift of z ∼ 0.10 and a sample of fainter galaxies limited in magnitude
and color designed to select the most luminous red galaxies (LRG) at each red-
shift Eisenstein et al. (2001). The LRG sample is approximately volume-limited
to z ∼ 0.38 and includes galaxies to z ∼ 0.55.
The galaxy target selection algorithm uses the DR8 imaging catalog: it selects
two categories of objects using the different colors of the galaxy population evo-
lution with redshift Maraston et al. (2009). The LOWZ subsample, containing
about a quarter of all galaxies in BOSS, targets galaxies with 0.15 < z < 0.4 with
colors similar to LRGs, but with lower luminosity. The constant-mass (CMASS
sample), contains three times more galaxies than LOWZ and is designed to se-
lect galaxies with 0.4 < z < 0.8. The rest-frame color distribution of this sample
is significantly broader than that of the LRG sample, thus CMASS contains a
nearly complete sample of massive galaxies above the magnitude limit of the
survey.
The galaxies contained in the BOSS sample have a magnitude fainter than the
SDSS-I/II LRG sample and thus the ratio S/N of the spectra tends to be lower,
despite the higher throughput of the spectrographs. Nevertheless, in DR9 the
vast majority of the galaxy targets are confirmed galaxies with confidently mea-
sured redshifts: 95.4% of all CMASS and 99.2% of LOWZ. The 4.6% of unsuc-
cessful galaxy redshifts for CMASS targets are mostly erroneously targeted red
stars.
The BOSS spectrographs include 1000 fibers in each plate, in comparison with
the 640 fibers per plate in SDSS-I/II. In addition, the spectral coverage has been
increased from 3800-9200 Å to 3600-10,400 Å. The median resolution of the BOSS
spectra remains R = λ/∆λ ≈ 2000 as in SDSS-I/II, with a similar wavelength
dependence Smee et al. (2013); in particular the resolution goes from R ≈ 1500
at 3700 Å, to R ≈ 2500 at 9500 Å.
The diameter of the spectroscopic fibers in BOSS has been decreased in size
from 3” to 2”; this improves the S/N ratio for point-like objects and smaller
galaxies (due to decreased sky background relative to the source signal), but the
smaller fiber size affects the spectrophotometry and is more subject to differential
chromatic aberration and seeing effects. As in SDSS-I/II, the spectrophotome-
try is bound to the PSF photometry of stars on each plate. In SDSS-I/II, the
Root Mean Square (RMS) scatter between the PSF photometry and synthesized
photometry from the calibrated spectra was of order 4% Adelman-McCarthy et
al. (2008); with BOSS, it is closer to 6% Dawson et al. (2013). The photo-
metric catalog released in DR8 and DR9 provides the 2” photometry (termed
FIBER2MAG) for each object to complement 3” photometry (FIBERMAG).
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Figure 2.2: Final spectra for SEGUE-2 were released with DR8 in 2011 January. The
MARVELS and BOSS spectroscopic surveys began in 2008 and 2009 and APOGEE began
in 2011. SDSS-III will be busy taking data through the summer of 2014. The BOSS and
SEGUE-2 programs require “dark” time when the Moon is less than 60% illuminated, or below
the horizon. The APOGEE and MARVELS programs are executed during the remaining
“bright” time.

2.1.2 Data Extraction

All DR9 data are available through data access tools reported on its website.
Data Release 9 includes images, spectra and catalog data. The data are

stored both in the Science Archive Server (SAS) and in the Catalog Archive
Server (CAS). A number of different interfaces are available, each designed to
accomplish a specific task; as example:

1. color images of sky regions in JPEG format, based on the g, r and i images
Lupton et al. (2004) can be viewed in a web browser with the SkyServer
Navigate tool;

2. FITS images can be downloaded through the SAS;

3. complete catalog information (astrometry, photometry etc.) of any imaging
object can be viewed through the SkyServer Explore tool;

4. FITS files of the spectra can be downloaded through the SAS.

Catalog data contain quantities measured from the images and spectra such
as magnitudes, redshifts and object classifications. These are available either
from the CAS database or as binary tables in FITS file format. As the aim of
this thesis is to show the application of a photometric redshift evaluation method
on real data objects, it has been necessary to create a dataset from the entire
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catalog.
Different catalog search tools are available through the SkyServer interface to
the CAS, each of which returns catalog data for objects that match supplied cri-
teria. For more advanced queries, a powerful and flexible catalog search website
called “CasJobs” allows users to create the own data sets. The DR9 web site
also contains data access tutorials, a glossary of SDSS terms and a detailed doc-
umentation about the algorithms used to process the imaging and spectroscopic
data and select spectroscopic targets. Imaging and spectroscopic data from all
prior data releases are also available through DR9 data access tools.

CASJOBS Query Construction

CasJobs is an online workspace for large scientific catalogs, designed to emulate
and enhance local free-form query access in a web environment.

This application includes, as example:

� synchronous and asynchronous query execution, in the form of ‘quick’ and
‘long’ jobs;

� a query ‘History’ that records the queries and their status;

� a server-side, personalized user database, called MyDB, enabling persistant
table/function/procedure creation;

� data sharing between users, via the ‘Groups’ mechanism;

� data download, via MyDB table extraction, in various formats;

� multiple interface options, including a browser client as well as a java-based
command line tool.

In our specific case, the data needed for photo-z evaluation were the magni-
tudes of all galaxies in DR9 archives. So, 38 queries were executed to cover all
the DR9 map (see Fig.2.1) with the following stracture.

SELECT objID, ra, dec, psfMag u, psfMag g, psfMag r, psfMag i,
psfMag z, psfMagErr u, psfMagErr g, psfMagErr r, psfMagErr i,
psfMagErr z, extinction u, extinction g, extinction r, extinction i,
extinction z

FROM Galaxy

WHERE (dec between * and *)
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AND clean = 1

AND psfMag r < 23.6

The SELECT command allows to choose which parameters will compose the
final dataset. In this case is possible to recognize:

objID, the SDSS object’s identifier;

ra, dec, the right ascension and declination in J2000 coordinates;

psfMag, the magnitudes in the different bands (ugriz);

psfMagErr, the magnitude errors;

extinction, the extinction corrections in magnitudes at the position of each
object.

All that parameters are selected from a specific table in the SDSS archive
with the FROM command. Galaxy is a view that contains the photometric
parameters (no redshifts or spectroscopic parameters) measured for resolved pri-
mary objects. In fact this view is derived from PhotoPrimary that contains
only one primary object associated with each physical object on the sky; upon
subsequent observations secondary objects are generated, but are excluded from
PhotoPrimary view of the table. On the other hand PhotoObjAll contains all
photo objects (Star, Galaxy, Sky and Unknown).
To limit the dimension of the outputs, for every query were selected little decli-
nation ranges to cover all the DR9 Sky Coverage Map. The WHERE command
allow to take a selection using one parameter’s value, in this case, the declina-
tion range of values. In addition there are two other constrains clean = 1 limits
searches to return only objects that have clean photometry, ensuring to have a
good sample and psfMag r< 23.6 puts a magnitude limit in R band.

2.1.3 Resulting Dataset

All the object resulting by the 38 queries are 133925700 within a declination
range [-30°, +85°] and a magnitude R < 23.6.
A filter is applied to clean the dataset from the NaN objects, that represents the
0.0015% of the total number of available objects.
The resulting table informations are reported in Fig.2.3.
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Figure 2.3: Information on original downloaded files. The last column reports the total
number of objects containing various combinations of the detected NaN among their bands.
The RA and DEC ranges are reported for the cleaned objects (i.e. after NaN removal).



Chapter 3

Data Mining in Astronomy

Scientific data mining is fundamental in AstroInformatic.
With the advent of synoptic sky surveys, which cover large areas of the sky there
has been a great increase in the amount of available data. It is not just the
data abundance that is fueling this ongoing revolution, but also Internet-enabled
data access, and data re-use: in most cases, researchers who obtain the data can
only extract a small fraction of the science that is enabled by it. Since physical
understanding comes from the confrontation of experiment and theory, and both
are now expressed as ever larger and more complex data sets, science is truly
becoming data-driven in the ways that are both quantitatively and qualitatively
different from the past.

The goal is to provide standards that describe all astronomical information
resources worldwide and to enable standardized access to these collections. The
astronomical community has responded to the complexity of this problem in the
late 90s with the concept of a Virtual Observatory (VO): a web-based research
environment for astronomy where there is a collection of interoperating data
archives, information infrastructures and specific tools by which data can be an-
alyzed. VO also supposed to facilitate the transition from old data poverty regime
to the overwhelming data abundance; a number of national VOs are now active
and are now federated through the International Virtual Observatory Alliance1

(IVOA); in Italy, the VO is currently embodied as Italian Virtual Observatory2.
The various astronomical catalogs, databases and observation logs have a

large variety in schema, metadata, information content and knowledge represen-
tation. In most cases, the data are high-dimensional, thus requiring efficient and
effective approaches (algorithms and data structures) for managing, mining, vi-
sualizing and analyzing high-dimension data sets.
The implementation of the VO framework over the past decade was focused on

1http://ivoa.net
2http://vobs.astro.it/
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Name Description

Simple Cone Search (SCS) Retrieve all objects
within a circular region on the sky

Simple Image Access (SIA) Retrieve all images of
objects within a region on the sky

Simple Spectral Access (SSA) Retrieve all spectra of
objects within a region on the sky

Simple Line Access (SLA) Retrieve spectral line data
Simulations (SIMDAL) Retrieve simulation data

Table Access (TAP) Retrieve tabular data

Table 3.0.1: Different types of data access protocol defined by the International Virtual
Observatory Alliance (IVOA).

the production of the necessary data infrastructure, interoperability, protocols
and even a few useful data federation and analysis services. Although much still
remains to be done, data discovery and access in astronomy have never been
easier and the established infrastructure can at least in principle expand to the
next generation of sky surveys and space missions
Even before the VO astronomers had already done very successful attempts to-
ward standardization, for instance the fact that they adopted early universal
standards for data exchange, such as the Flexible Image Transport System (FITS;
Wells et al. 1981).

Within the VO a common set of data access protocols ensures that the same
interface is employed across all data archives to perform the same type of data
query (see Tab. 3.0.1 for a summary of those defined). Common data models
define the shared elements across data and metadata collections and provide a
framework for describing relationships between them, so different representations
can interoperate in a transparent manner. When individual measurements of ar-
bitrarily named quantities are reported, either as a group of parameters or in
a table, their broader context within a standard data model can be established
through the IVOA Utypes mechanism. These strings act as reference pointers
to individual elements within a data model thus identifying the concept that the
reported value represents.
Working with large amounts of data also requires proper infrastructure compo-
nents: the VO provides a common interface “VOSpace” to the host of data
storage solutions that are available, ranging in scale from a local filesystem on
a laptop to a data farm in the cloud. It does not define how data is stored or
transferred, only the control messages to gain access to data and manage data
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flows, such as online analysis of large distributed data sets. Finally, the IVOA
provides a Registry tool where descriptions of available data archives and services
can be found, i.e. catalogs of white dwarfs or photometric redshift services.
The key to further progress is the availability of data exploration and analysis
tools capable to operate on the Terascale data sets and beyond.

3.1 Machine Learning

“Knowledge Discovery in Databases” (KDD) or Data Mining (DM) regards the
discovery of “models” for data. There are, however, many different methods
which can be used to discover these underlying models: statistical pattern recog-
nition, machine learning, summarization, etc.
Large data volumes tend to preclude direct human examination of all data and
thus an automatization of these processes is needed, requiring use of Machine
Learning (ML) techniques.

Machine learning is a scientific discipline concerned with the design and de-
velopment of algorithms that allow computers to evolve behaviours based on
empirical data. Usually what we can easily verify is not if a computer is able to
learn, but mostly if it is able to give correct answers to specific questions.Indeed
to verify that a machine gives correct answers to direct questions, used to train
it, is only the preliminary step of its complete learning, because the crucial point
is the machine behaviour in unpredicted situations, i.e. those never submitted
to the machine during training. A “learner” can take advantage of examples
(data) to capture characteristics of interest of their unknown underlying proba-
bility distribution. These data form the so called Knowledge Base (KB): a fairly
large set of examples to be used for training and to test the performances. Hence
the learner must possess some generalization capabilities in order to be able to
produce useful outputs when it encountred new instances. So, if DM is the
automatic (or semi-automatic) process of information discovery within massive
data sets, ML has the following definition: “a machine has learned if it is able
to modify own behaviour in an autonomous way such that it can obtain the best
performance in terms of answer to external stimuli”Brescia (2012).

A large family of ML methods (the so called supervised ones) require the avail-
ability of relatively large and well characterized Knowledge Bases from which the
ML methods can learn the underlying patterns and trends. In supervised ML
we have a set of data points or observations for which we know the desired out-
put, expressed in terms of categorical classes, numerical or logical variables or as
generic observed description of any real problem. Finally, when the algorithm is
able to correctly predict observations, we define it a classifier. Some classifiers
are also capable of providing results with a regression giving a probability of
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Figure 3.1: A workflow based on supervised learning models.

a data point belonging to class. We usually refer to such model behaviour as
regression.
The supervised algorithm (see Fig. 3.1 can be described by the following steps:

1. Pre-processing of data: which includes scaling and preparation of data
to built the input patterns.

2. Creation of data sets for training and evaluation: data are randomly
splitted in a “training set” to learn their internal feature correlations and
an “evaluation set” that is used to validate the already trained model in
order to get an error rate (or other validation measures) that can help to
identify the performance and accuracy of the classifier.

3. Training of the model: in this step the model is executed on the training
data set. The output result consists of a model that (in the successful
case) has learned how to predict the outcome when new unknown data are
submitted.

4. Validation: to verify and measure the generalization capabilities of the
model. The model is applied on new data, if the classification error of the
validation set is higher than the training error, then we have to go back
and adjust model parameters.
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5. Use: if validation was successful, the model has correctly learned the un-
derlying real problem. So far we can proceed to use the model to clas-
sify/predict new data.

For unsupervised algorithms there exist different problems. Indeed, instead
of trying to predict a set of known classes, they are trying to identify the patterns
inherent in the data that separate similar observations in one way or another. In
other words, the main difference is that we are not providing a target variable
like we did in supervised learning.
This marks a fundamental difference in how both types of algorithms operate.
On one hand, we have supervised algorithms which try to minimize the error in
classifying observations, while unsupervised learning algorithms don’t have such
gain, because there are no outcomes or target labels. Unsupervised algorithms
try to create clusters of data that are inherently similar. In some cases we don’t
necessarily know what makes them similar, but the algorithms are capable of
finding relationships between data points and group them in possible significant
ways.
For unsupervised learning, the process follows these items:

1. Pre-processing of data, as with supervised learners;

2. Execution of model training, where the unsupervised algorithm is runned
on the scaled data set to get groups of similar observations;

3. Validation, to verify if the data are clusterized in significant ways. This
includes the calculation of a set of statistics on the resulting outcomes, as
well as analysis based on domain knowledge.

Most ML algorithms used so far by the astronomers cannot deal well with
missing data (i.e. no measurement was obtained for a given attribute) or with
upper limits (a measurement was obtained, but there is no detection at some level
of significance). While in many other fields this is only a minor problem, since
the data are often redundant and can be cleaned of all records having incomplete
or missing information, in astronomy all data recorded, including those with an
incomplete information, are potentially scientifically interesting and cannot be
ignored.

Examples of early uses of modern ML tools for analysis of massive astro-
nomical data sets include automated classification of sources detected in sky
surveys as stars (i.e., unresolved) vs. galaxies (resolved morphology), using Arti-
ficial Neural Nets (ANN, see Fig.3.2) or Decision Trees (DT) Weir et al. (1995).
Brescia et al. (2012) have recently used several ML method for a different type
of resolved/unresolved objects separation, namely the identification of globular
clusters in external galaxies. Another set of ML applications is in classification
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Figure 3.2: Examples of sources from the Palomar-Quest survey, classified using ANN tech-
niques. Top row: sources classified as stars with a probability p* > 90%; bottom row: sources
classified as galaxies, with p* < 10%; middle row: intermediate-classification sources with
p*≈ 50%.

or selection of objects of a given type in some parameter space, for example
colors that are the ratios of fluxes measured at different wavelengths. This is
particularly well suited for the identification of quasars and other active galactic
nuclei, which are morphologically indistinguishable from normal stars, but rep-
resent largely different physical phenomena.

This work of thesis is concentrated on another application of these methods:
the estimation of the photometric redshift, that are derived from colors rather
than from spectroscopy (much more costly in terms of the observing time). ANN
have performed very well in this task (Tagliaferri et al. (2002); Firth et al. (2003);
Hildebrandt et al. (2010); Cavuoti et al. (2012a)).

Classification is a procedure in which individual items are placed into groups
based on quantitative information using the knowledge contained in a train-
ing set of previously labeled items (KB). Because of the supervised nature of
the classification task, the system performance can be measured by means
of a test set during the testing procedure, in which unseen data are given to
the system to be labelled. Typical astrophysical problems which have been
addressed with this functionality are the so called “star/galaxy” separa-
tion (which would be better called resolved-unresolved objects separation),
morphological classification of galaxies, classification of stellar spectra, etc.

Regression is instead generally intended as the supervised search for a map-
ping from a domain in Rn to a domain in Rm, where m < n. Regression
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methods bring out relations between variables, especially whose relation is
not surjective, i.e it has not one y for each given x. The most common
astrophysical example of a regression problem is the evaluation of photo-
metric redshifts of galaxies from a limited but statistically sufficient KB
based on spectroscopic redshift samples.

Clustering is a division of data into groups of similar objects. Representing
the data by fewer clusters necessarily loses certain fine details, but achieves
simplification (Jain et al. (1999)). Clustering models are also referred to
as unsupervised methods, since they do not require the use of an extensive
KB. Clustering is often followed by a stage where a decision tree or a set of
rules is inferred in order to allocate each instance to the cluster to which
it belongs.

Dimensional reduction is the process of reducing the number of random vari-
ables under consideration and it can be divided into feature selection and
feature extraction. Feature selection (Guyon & Elesseeff (2003)) approaches
try to find a subset of the original variables by using filter (e.g. information
gain) or wrapper (e.g. search guided by the accuracy) strategies. Feature
extraction transforms the data in the high-dimensional space to a space of
fewer dimensions (Guyon & Elesseeff (2006)).

As we have seen before, it is necessary to merge the capabilities of a file sys-
tem to store and transmit bulk data from experiments, with logical organization
of files into indexed data collections, allowing efficient query and analytical op-
erations. It is also necessary to incorporate extensive metadata describing each
experiment and the produced data.
The harder problem for the future is heterogeneity of platforms, data and appli-
cations, rather than simply the scale of the deployed resources. The goal should
be to allow scientists to explore the data easily, with sufficient processing power
for any desired algorithm to process it. But computing machines will not get
much faster; they can be networked into clouds or grids of clusters and to per-
form tasks that were traditionally restricted to supercomputers at a fraction of
the cost.

A first step in this direction is Service-Oriented Architectures (SOA) that
supports reuse of both functionality and data in cross-organizational distributed
computing settings Shadbolt et al. (2006). The fundamental characteristic of
SOA infrastructures is the ability to locate and invoke a service across machine
and organizational boundaries, both in a synchronous and an asynchronous man-
ner. The implementation of a service can be achieved by wrapping legacy scien-
tific application code and resource schedulers, which allows for a viable migration
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path Taylor (2007). The standards available for service design and their imple-
mentation support the rapid definition and execution of scientific workflows.
With the advent of abstract machines, it is now possible to mix compilation and
interpretation as well as integrate code written in different languages seamlessly
into an application or service.
Most existing ML methods scale badly with both increasing number of records
and of dimensionality so larger is the data set, more difficult is the analysis. So
the training and validation of the methods are performed on these manageable
data subsets, and the results are extended to the whole data set. This approach
obviously may introduce biases difficult to control; typically, a lengthy fine tun-
ing procedure is needed for such subset, which may require a lot of experiments
to be performed in order to identify the optimal Data Mining method for a
specific problem. DAMEWARE (DAta Mining & Exploration Web Application
REsources; see Brescia et al. (2010)) resource was designed by taking all these
issues into account.
Several Data Mining packages have been evaluated by Donalek et al. (2011), in-
cluding Orange, Rapid Miner, Weka, VoStat and DAME.
In particular Data Mining and Exploration (DAME) web application3 is a
joint effort between the Astroinformatics groups at University Federico II, the
Italian National Institute of Astrophysics and the California Institute of Technol-
ogy. DAME offers a completely transparent architecture, a user-friendly interface
and the possibility to seamlessly access a distributed computing infrastructure.
It adopts VO standards in order to facilitate interoperability of data, although
at the moment it is not yet fully VO compliant. This is partly due to the fact
that new standards need to be defined for data analysis, DM methods and algo-
rithm development. This implies a definition of standards in terms of an ontology
and a well-defined taxonomy of functionalities to be applied to the astrophysical
use cases. DAME offers asynchronous access to the infrastructure tools, thus
allowing the running of jobs and processes outside the scope of any particular
web application. The user, via a simple web browser, can access application
resources and can keep track of his jobs by recovering related information (par-
tial/complete results). Furthermore, DAME has been designed to run both on
a server and on a distributed computing infrastructure (e.g. Grid or Cloud). A
detailed technical description of the other components can be found in Brescia
et al. (2010).

3http://dame.dsf.unina.it or http://dame.caltech.edu/

http://dame.dsf.unina.it
http://dame.caltech.edu/
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3.1.1 MLPQNA Method

In Ch.§4 the procedure used to evaluate photometric redshifts for a galaxy data
set is described. The algorithm that I used for this evaluation has been realized
for the integration in DAMEWARE tools (Cavuoti et al. (2012b)).

From a technical point of view, the MLPQNA method is a Multi Layer Per-
ceptron (MLP; Bishop (2006)) implemented with a learning rule based on the
Quasi Newton Algorithm (QNA); MLPQNA differs from more traditional MLPs
implementations in the way the optimal solution of the regression problem is
found.
The algorithm was involved in several experiments on astronomical datasets,
both in regression (photometric redshift on galaxies and quasar) and classifi-
cation (active galactic nuclei, globular clusters and transients) with remarkable
results. According to Bishop (2006), feed forward neural networks in their var-
ious implementations provide a general framework for representing non linear
functional mappings between a set of input variables (also called features) and a
set of output variables (the targets).

The MLP architecture is one of the most typical feed-forward neural network
model, in which the neurons are organized in layers, with proper own role. The
term feed-forward is used to identify basic behaviour of such neural models, in
which the impulse is propagated always in the same direction, from neuron input
layer towards output layer, through one or more hidden layers, that represent the
network brain, by combining weighted sum of weights associated to all neurons
(except for the input layer). The input signal, simply propagated throughout the
neurons of the input layer, is used to stimulate next hidden and output neuron
layers. The output of each neuron is obtained by means of an activation function,
applied to the weighted sum of its inputs.
What is different in such a neural network architecture is typically the learn-
ing algorithm used to train the network: the learning case approached with the
MLP architecture is the supervised learning methods. In this case, the network
must be firstly trained submitting the input patterns to the network as couples
(input, desired known output). The feed-forward algorithm is then achieved and
at the end of the input submission, the network output is compared with the
corresponding desired output in order to quantify the learning quote. It is pos-
sible to perform the comparison in a batch way (after an entire input pattern
set submission) or incremental (the comparison is done after each input pattern
submission); also the metric used for the distance measure between desired and
obtained outputs, can be chosen accordingly problem specific requirements (in
the MLP-BP the Mean Square Error is used). After each comparison and until
a desired error distance is unreached (typically the error tolerance is a precal-
culated value or a constant imposed by the user), the weights of hidden layers
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must be changed accordingly to a particular law or learning technique. After the
training phase the network should be able not only to recognize correct output
for each input already used as training set, but also to achieve a certain degree
of generalization, to provide correct output for new inputs. The degree of gener-
alization varies, as obvious, depending on how good has been the learning phase.
This important feature is realized because the network does not associates a sin-
gle input to the output, but it discovers the relationship present behind their
association. After training, such a neural network can be seen as a black box
able to perform a particular function (input-output correlation) whose analytical
shape is a priori not known.
Bigger the training set, higher will be the network generalization capability.
Despite of these considerations, it should been always taken into account that
neural networks application field should be usually referred to problems where it
is needed high flexibility more than high precision.

The training of a neural network can be seen as the search for the function
which minimizes the errors of the predicted values with respect to the true values
available for a small but significant subsample of objects in the same data set.
This subset is also called training set or knowledge base.
The formal description of a feed-forward neural network with two computational
layers is given in the Eq. 3.1 (where (1) and (2) are the first layer and the second
one):

yk =
M∑
j=0

w
(2)
kj g

(
d∑

i=0

w
(1)
ji xi

)
(3.1)

Which can be better understood by using the graph shown in Fig. 3.3. The input
layer (xi) is made of a number of neurons (also known as perceptrons) equal to
the number of input variables (d); the output layer, on the other hand, will have
as many neurons as the output variables (k). In the general case, the network
may have an arbitrary number of hidden layers each of one can be formed by an
arbitrary number of neurons (M); in the depicted case there is just one hidden
layer as in most real implementations. In a fully connected feed-forward network
each node of a layer is connected to all the nodes in the adjacent layers. Each
connection is represented by an adaptive weight, wkj, which can be regarded as
the the strength of the synaptic connection between neurons k and j, while the
response of each perceptron to the inputs is represented by a non-linear function
g, referred to as the activation function.
All the above characteristics, the topology of the network and the weight matrix
of its connections, define a specific implementation and are usually called model.
The model, however, is only part of the story. In fact, in order to find the model
that best fits the data in a specific problem, one has to provide the network with
a set of examples. These data form the so called training set or Knowledge Base
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Figure 3.3: Scheme of a Multi Layer Perceptron general architecture for two input variables
and one output value.

(KB) and through a learning rule are used by the network to find the optimal
model.

The MLPQNA use for learning rule the Quasi Newton Algorithm (QNA),
which differs from the Newton Algorithm in how the Hessian of the error function
is computed. Newtonian models are variable metric methods used to find local
maxima and minima of functions (Davidon (1968)) and, in the case of MLPs,
they can be used to find the stationary point of the learning function.

The Quasi Newton Learning Rule

Most Newton methods use the Hessian of the function to find the stationary
point of a quadratic form. It needs to be stressed, however, that the Hessian of
a function is not always available and in many cases it is far too complex to be
computed in an analytical way. More often it is easier to compute the function
gradient which can be used to approximate the Hessian via N consequent gradi-
ent calculations. In order to understand the importance of QNA it is needed to
start from the classical and quite common Gradient Descent Algorithm (GDA)
used for Back Propagation Bishop (2006). In GDA, the direction of each updat-
ing step for the MLP weights is derived from the error descent gradient, while
the length of the step is determined from the learning rate. This method is in-
accurate and ineffective and therefore may get stuck in local minima. A more
effective approach is to move towards the negative direction of the gradient (line
search direction) not by a fixed step, but by moving towards the minimum of the
function along that direction. This can be achieved by first deriving the descent
gradient and then by analyzing it with the variation of the learning rate Brescia
(2012). Let us suppose that at step t, the current weight vector is w(t), and let
us consider a search direction d(t) = −∇E(t) (the gradient of the error function).
If we select the parameter λ in order to minimize E(λ) = E(w(t) + λd(t)), the
new weight vector can be expressed as:

w(t+1) = w(t) + λd(t) (3.2)
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and the problem of line search becomes a 1-dimensional minimization problem
which can be solved in many different ways. Simple variants are:

� to move E(λ) by varying λ by small intervals, then evaluate the error
function at each new position and stop when the error begins to increase;

� to use the parabolic search for a minimum and compute the parabolic curve
crossing pre-defined learning rate points.

The minimum d of the parabolic curve is a good approximation of the mini-
mum of E(λ) and it can be derived by means of the parabolic curve which crosses
the fixed points with the lowest error values.
Another approach makes instead use of trust region based strategies which min-
imize the error function, by iteratively growing or contracting the region of the
function by adjusting a quadratic model function which best approximates the
error function.
All these approaches, however, rely on the assumption that the optimal search
direction is given at each step by the negative gradient; this is not always true,
but can also lead to serious wrong convergence. Indeed, if the minimization is
done along the negative gradient direction, the subsequent search direction (the
new gradient) will be orthogonal to the previous one: when the line search founds
the minimum, we have:

∂E

∂λ
(w(t) + λd(t)) = 0 (3.3)

and hence,
g(t+1)Td(t) = 0 (3.4)

where g ≡ ∇E. The iteration of the process therefore leads to oscillations of the
error function which slow down the convergence process.
The method implemented here relies on selecting other directions so that the
gradient component, parallel to the previous search direction, would remain un-
changed at each step. Suppose that you have already minimized with respect to
the direction d(t) starting from the point w(t) and reaching the point w(t+1); in
this point Eq. 3.4 becomes

g(w(t+1))Td(t) = 0 (3.5)

Choosing d(t+1) to preserve the gradient component parallel to d(t) equal to zero,
it is possible to build a sequence of directions d in such a way that each direction
is conjugated to the previous one on the dimension | w | of the search space (this
is known as conjugate gradients method ; Golub & Ye (1999)).
With a squared error function, the update weights algorithm is

w(t+1) = w(t) + α(t)d(t) (3.6)
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where

α(t) = − d(t)Tg(t)

d(t)THd(t)
(3.7)

Furthermore, d can be obtained for the first time via the negative gradient and
in the subsequent iterations, as a linear combination of the current gradient and
of the previous search directions

d(t+1) = −g(t+1) + β(t)d(t) (3.8)

where

β(t) =
g(t+1)THd(t)

d(t)THd(t)
(3.9)

This algorithm finds the minimum of a square error function at most in | w | steps
but with a high computational cost, since in order to determine the values of α
and β, it makes use of that hessian matrix H which, as we already mentioned,
is very demanding in terms of computing time: this puts serious constraints on
the application of this family of methods to large data sets. Excellent approx-
imations for the coefficients α and β can, however, be obtained from analytical
expressions that do not use the Hessian matrix explicitly.
For instance, β can be calculated through any one of the following expressions
(respectively Hestenes & Stiefel (1952); Fletcher & Reeves (1964); Polak & Ri-
biere (1969)):

Hestenes− Sitefel : β(t) =
g(t+1)T (g(t+1) − g(t))

d(t)T (g(t+1) − g(t))

Fletcher −Reeves : β(t) =
g(t+1)Tg(t+1)

g(t)Tg(t)
(3.10)

Polak −Ribiere : β(t) =
g(t+1)T (g(t+1) − g(t))

g(t)Tg(t)

These expressions are all equivalent if the error function is square-typed, other-
wise they assume different values. Typically the Polak-Ribiere equation obtains
better results because, if the algorithm is slow and subsequent gradients are quite
alike between them, its equation produces values of β such that the search direc-
tion tends to assume the negative gradient direction.
Concerning the parameter α, its value can be obtained by using the line search
method directly. The method of conjugate gradients reduces the number of steps
to minimize the error up to a maximum of | w |, because there could be almost
| w | conjugate directions in a | w |-dimensional space. In practice however,
the algorithm is slower because, during the learning process, the property conju-
gate of the search directions tends to deteriorate. To avoid the deterioration, to
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restart the algorithm after | w | steps is needed, by resetting the search direction
with the negative gradient direction.
By using a local square approximation of the error function, we can obtain an
expression for the minimum position. The gradient in every point w is given by

∇E = H × (w − w∗) (3.11)

where w∗ corresponds to the minimum of the error function, which satisfies the
condition

w∗ = w −H−1 ×∇E (3.12)

The vector (−H−1 ×∇E) is known as Newton direction and it is the base for a
variety of optimization strategies, such as for instance the QNA, which instead of
calculating the H matrix and then its inverse, uses a series of intermediate steps
of lower computational cost to generate a sequence of matrices which are more
and more accurate approximations of H−1. From the Newton Eq. 3.12 we note
that the weight vectors on steps t and t+ 1 are correlated to the correspondent
gradients by the formula

w(t+1) − w(t) = −H(−1)(g(t+1) − g(t)) (3.13)

which is known as Quasi Newton Condition. The approximation G is therefore
built in order to satisfy this condition as

G(t+1) = G(t) +
ppT

pTν
− (G(t)ν)νTG(t)

νTG(t)ν
+ (νTG(t)ν)uuT (3.14)

where

p = w(t+1) − w(t);

ν = g(t+1) − g(t);

u =
p

pTν
− G(t)ν

νTG(t)ν

The above expression could carry the search out of the interval of validity for
the squared approximation. The solution is hence to use the line search to found
the minimum of function along the search direction. By using such system, the
weight updating expression (Eq. 3.6) can be formulated as follows

w(t+1) = w(t) + α(t)G(T )g(t) (3.15)

where α is obtained by the line search.
One of the main advantage of QNA, compared with conjugate gradients, is
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that the line search does not require the calculation of α with a high precision,
because it is not a critical parameter. Unfortunately it requires a large amount
of memory to calculate the matrix G(| w | × | w |), for large | w |. One way
to reduce the required memory is to replace at each step the matrix G with a
unitary matrix and to multiply by g (the current gradient), to obtain

d(t+1) = −g(t) + Ap+Bν (3.16)

Note that if the line search returns exact values, then the above equation produces
mutually conjugate directions, where A and B are scalar values defined as:

A = −(1 +
νTν

pTν
)
pTg(t+1)

pTν
(3.17)

B =
pTg(t+1)

pTν
(3.18)





Chapter 4

PhotoRApToR

In the previous chapters the relevance of photometric redshifts has been dis-
cussed. Different methods to evaluate photometric redshift from a dataset have
been presented, but this thesis is focused on the MLPQNA empiric method, de-
scribed in chapter 3.
Now it is important to describe the experimental part of this thesis: the creation
of a specific desktop tool to evaluate photo-z using the MLPQNA method. Due
to the necessity to evaluate redshift for huge sky survey datasets, it seemed im-
portant to provide the astronomical community with an instrument able to fill
this gap.
The problem is that a great part of astronomical data is stored in private archives
that are not accessible on line. So, in order to evaluate photo-z it is needed a
desktop application that can be used by everyone on its own personal computer.
The name choosen for this application was PhotoRApToR, i.e. Photometric
Research Application To Redshift.
Java is an object-oriented computer programming language with an implemeta-
tion available for Mac OS X, Windows and Linux, so in order to favour a large
diffusion of this tool, the code was developed in Java language using NetBeans
IDE 7.3. By means of the Swing libraries also a Graphic User Interface (GUI)
was realized for a more simple data analysis and the PhotoRApToR project has
been completed with a Primer Wizard: a tutorial dialog for beginners.

In the next sections, after a brief description of Java language and program-
ming instrument used to realize this project, I describe all the PhotoRApToR’s
functions and in Ch.§5 I shall present the results from the application of this tool
on real data from SDSS (see Ch.§2) are shown.

61
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4.1 Java language

Java was originally developed by James Gosling at Sun Microsystems (which has
since merged into Oracle Corporation) and released in 1995 as a core component
of Sun Microsystems’ Java platform. James Gosling, Mike Sheridan, and Patrick
Naughton initiated the Java language project in June 1991. Java was originally
designed for interactive television, but it was too advanced for the digital cable
television industry at the time. The language derives much of its syntax from C
and C++, although some differences exist.
From the beginning, Java was designed to be a platform neutral language and
this is one of the principal motivation to choose this language for an application
created for a wide community.
Java was not originally intended to directly generate code that operate on a
specific platform: applications are compiled to bytecode, the form of instructions
that the Java Virtual Machine executes. The Java Virtual Machine is a program
often implemented to run on an existing operating system, but can also be im-
plemented to run directly on hardware; its specification gives the rules by which
bytecodes must be interpreted.
Commonly used operating systems have a JVM implemented, so there are few
platforms where Java programs cannot be executed.
Java is one of the most popular programming languages in use, particularly for
client-server web applications. On November 13, 2006, Sun released much of Java
as free and open source software under the terms of the GNU General Public Li-
cense (GPL). On May 8, 2007, Sun finished the process, making all of Java’s core
code available under free software/open-source distribution terms, aside from a
small portion of code to which Sun did not hold the copyright.

4.1.1 Java GUI toolkit

Java provided a mechanism knows as the Abstract Window Toolkit (AWT) that
contained a set of classes that enabled the construction of GUI objects such as
buttons, scroll bars or windows. In AWT, each component is rendered and con-
trolled by a native peer component specific to the underlying windowing system.
In 1997 the Java Foundation Classes (JFC), a graphical framework for building
portable Java-based graphical user interfaces, was created by Sun Microsystems
and Netscape Communications Corporation to provide a wide set of graphical
components. Wherever possible, compatibility was preserved between JFC com-
ponents and Abstract Window Toolkit.
The ”Java Foundation Classes” were later renamed ”Swing”, adding the ca-
pability for a pluggable look and feel of the widgets: the way in which visual
components are rendered. This allowed Swing programs to maintain a platform-
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independent code base and mimic the look of a native application. Now the
Swing toolkit has totally replaced the AWT’s widgets also drawing its own wid-
gets.
Swing components are implemented as lightweight : application controls that are
implemented in Java without a corresponding native peer. Lightweight controls
do not have a peer entity in the operating system to manage the data, state and
appearance of a control. In this way, Swing components do not paint themselves:
an user interface manager directs paint requests to a delegate object. In addition,
unlike native platform components, Swing components are engineered to provide
object-oriented access to the control’s data and state.

4.1.2 NetBeans IDE 7.3

NetBeans IDE is an Integrated Development Environment (IDE) to write, com-
pile and debug software applications for Java platform and other environments.
It includes many features, as text editor, visual design tools or source code man-
agement support. NetBeans IDE is written in Java and can run on Windows,
OS X, Linux, Solaris and other platforms supporting a compatible JVM.
IDE is a software application to help computer programmers for software de-
velopment: several modern IDEs use Intelli-sense coding features1. Many IDEs
have various tools to simplify the construction of a GUI; sometimes a compiler
and an interpreter are present, such as Net Beans and Eclipse.

NetBeans IDE 7.3 was released in February 2013. All the functions of the
IDE are provided by modules; NetBeans contains all the modules needed for
Java development, but new features, such as support for other programming
languages, can be added by installing additional modules.

Two basis modules are the following:

1. NetBeans Profiler is a tool for the monitoring of Java applications: it
helps developers to find memory leaks and optimize speed (it is integrated
into the core IDE since version 6.0);

2. GUI design-tool (formerly Project Matisse) enables developers to proto-
type and design Swing GUIs by dragging and positioning GUI components.
The GUI builder automatically takes care of the correct spacing and align-
ment.

1In computer programming means intelligent code sense, a programming environment that
speeds up the process of coding applications by reducing common mistakes, usually through
auto completion popups when typing, querying parameters of functions, ecc.
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4.2 Primer Wizard

When the program is launched, in addition to the main program window, also a
tutorial dialog is started.

1. The first dialog explains scientifical applications of the program and gives
the possibility to skip the tutorial to the main program.

2. In the second dialog it is possible to open table data (selectable choices:
ASCII, FitsTable, CSV, VoTable). During this operation, the Wizard ver-
ifies the correspondence between table extension and the allowed choices.
After this check, columns names become visible.

3. In the third dialog it is possible to manipulate tables headers to select only
needed columns by a checkbox. After this we can separate our data into
two files (TRAIN and TEST) using the Split function.

4. In the fourth dialog the experiment setup begins. With a checkbox we can
select between two options: Classification or Regression, while a drop-down
menu allows to choose between TRAIN and TEST.

5. The fifth dialog is different depending on the chosen experiment and allows
to insert the parameters to setup the experiment. Clicking Run button,
the experiment starts and a popup window shows the running processes.

6. This is the final dialog. Here we can see the output table with its path
directory. Clicking on the path link, we open the table in a different dialog,
while, clicking on the PLOT button, in a different dialog we can see a scatter
plot zphot/zspec.

4.3 GUI Description

The main window of the PhotoRApToR application (see Fig. 4.1) is divided in
three parts.
The first one is the Menu Bar with a Button Bar below, the second one is the
Table List on the left and the third one is the panel on the right with Table
Properties, Table Editor and the Split panel below.

Beginnig from the Menu Bar, it is possible to decribe all the commands:

File is the menu from which to launch standard commands to open or save files.
The following options are shown:
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Figure 4.1: PhotoRApToR main window.

Load Table : opens a new dialog where it is possible to select table format
and file;

Discard Table : allows to erase a table item from the Table List ;

Save Table : saves the selected table using a Browse Dialog;

Exit

Table is a menu containing the commands that allow to see and modify the
table properties:

Table Data : opens the selected table in a new window;

Table Metadata : shows only the column’s metadata for the selected
table;

Row Shuffle : the selected table rows are shuffled and the new table is
opened in a new window;

Not a Number opens a new window for managing the table data in order
to remove the Not a Number elements (e.g. -9999) from the dataset;
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Classification is a menu where are selectable different options that allow to run
different experiments:

each one of the options Train, Test or Run, it opens a new window
where it is possible to set the experiment parameters necessary to use
MLPQNA algorithm;

Regression is a menu witn other experimental options:

the options Train, Test and Run are like those in the Classification
menu;

Statistics: in a new window the user can select the Target column and
the Output column to generate statistics;

Outliers: opens a new window where the user can generate a dataset
without outliers by setting statistical parameters;

Plot is the menu that shows three different ways to generate data plots:

Histo Plot : opens a new window where to select which column of the
table we want to plot;

Scatter Plot : it has some more parameters to set up, like for instance
the type of line plot or the marker for the data points;

3D Plot : after the selection of three table columns and the setting of pa-
rameters, a cube plot is generated with also the possibility of rotating
the viewing angle;

Help is the menu with manuals and program’s credits

Help : opens a program description with the manual and the template
use cases for beginners;

Open Wizard : starts the Primer Wizard window;

About : credits and collaboration’s links are reported

The Button Menu below allows a fast access to the main functions of the
application.

Open is a button that opens a dialog for the selection of table format and the
browsing for the file (see Fig. 4.2);

Save opens a dialog to save the table;

Display Table shows the whole table dataset in a new window;
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Figure 4.2: Load Table Dialog.

Metadata displays only the metadata of the columns;

photo-z launchs the main experiment that allows the evaluation of photometric
redshift in a new window: sets MLPQNA parameters and generates an
output table and a file containing the relevant statistics;

Histo Plot works like the menu item with the same name;

Scatter Plot works like the menu item with the same name;

3D Plot works like the menu item with the same name;

The first step is to open a table selecting the format file and browsing with the
Load Dialog (Fig. 4.2). For this description a file named “demonstration.fits”
was choosen: this file contains a little sample of the objects classified as galaxies
in the SDSS Data Release 9 described in the Ch.§2.
Every time a new table is loaded, a new item with the table name is added to
the Table List : a double click opens a new window showing the complete table.
Selecting one item from the Table List, all the table properties are displayed
inside the right panel: in particular the table name, its complete path and the
number of columns and rows. Below, in the Edit Table panel, are displayed
column metadata for the selected table and it is possible to select a subset of the
table by choosing only the needed columns. After the selection, a table subset
is created by clicking the Create Subset button and, if the selectable checkbox
Row Shuffle is selected, the subset table is also shuffled by rows.

The last panel on the right of the main window is the Split panel. Pho-
toRApToR is an application of the MLPQNA method described in the Ch.§3
and before launching an experiment, it may be necessary to split the dataset in
a TRAIN subset and in a TEST subset. This is a simple action made possible
by the Split tool. When the table is selected in the Table List, we must choose
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Figure 4.3: Use of the Split tool. After selecting the table to be split, two different names
are choosen for the files and the sliders are dragged to select a different percentage. Clicking
on Split button generate the two split datasets.

two different names for the split files (in this case “train” and “test”) and two
different percentages of the original dataset. Clicking on Split button the two
split datasets are generated and added to the Table List (Fig. 4.3), ready for the
next phase.

4.3.1 Experiment Parameters

As described before, PhotoRApToR allows to select different options for the
MLPQNA parameters. The photo-z evaluation is a particular case of regression
experiments. The complete description of photo-z evaluation on SDSS data is
presented in Ch.§5, whereas in this section are described the Regression and
Classification experiment window.
A click on Regression− >Train menu item opens a new window (Fig. 4.4)
where it is necessary to set MLPQNA’s input parameters.

� A drop-down menu allows to select the input file; (this parameter is a
field required)

� if we had already done the training phase, it is possible to use the trained
weight file;
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� the Number of input neurons is the number of input dataset columns
(except for the target column); (this parameter is a field required)

� the Number of first hidden layer neurons is the number of neurons of
the first hidden layer of the network; (this parameter is a field required)

� the Number of second hidden layer neurons, as a suggestion this
number should be selected smaller than the previous layer. By default the
second hidden layer is empty (not used);

� Max number of iteration is one of the internal model parameters. It
indicates the number of algorithm iterations and it is one of the stopping
criteria. By default this value is set to 1500;

� Hessian approximation cycles indicates the number of restarts for each
approximation step of the Hessian inverse matrix. By default this value is
set to 20;

� Error threshold indicates the minimum weight error at each iteration
step. Except for problems which are particularly difficult to solve, in which
a value of 0.0001 should be used, a value of 0.01 is usually considered
sufficient. By default this value is therefore set to 0.01;

� Decay indicates the weight regularization decay. If accurately chosen, this
parameter leads to an important improvements of the generalization error
of the trained neural network and implies an acceleration of training. By
default the value is set to 0.001;

� Cross validation is based on an automatic procedure that splits in dif-
ferent subsets the training dataset, applying a k step cycle in which the
training error is evaluated and its performances are validated. By default
the k value is set to 10;

� finally Experiment output directory is the parent directory of the out-
put for the experiments.

After the parameters setup, a click on START button launchs the MLPQNA
regression experiment and the resulting output is displayed in the main panel
on the left. After the experiment, also the statistics is generated with a specific
algorithm and the result is presented in the text panel on the top of the panel.
To complete the description of the experimental use of PhotoRApToR, by click-
ing on Classification− >Train it opens a new window (Fig. 4.5) for the
MLPQNA’s parameters setting.
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Figure 4.4: Regression Train window. On the left there are the fields for setting parameters.
On the right there are two panels. When the experiment is complete, in the upper panel the
regression train statistics is displayed. In the lower panel the final table with the photo-z
column is reported.

� A drop-down menu allows to select the input file; (this parameter is a
field required)

� if we had already done the training phase, it is possible to use the trained
weight file;

� Number of input neurons: as above; (this parameter is a field re-
quired)

� Number of first hidden layer neurons: as above; (this parameter is
a field required)

� Number of second hidden layer neurons: as above;

� the Number of output neurons is the number of neurons in the output
layer of the network. It must correspond to the number of target columns
in the input file; (this parameter is a field required)

� Max number of iteration: as above;

� Hessian approximation cycles: as above;
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Figure 4.5: Classification Train window. On the left there are the fields for setting parame-
ters. On the right there are two panels. When the experiment is complete, in the upper panel
the Confusion Matrix is displayed. In the lower panel the final table with the photo-z column
is reported.

� Error threshold: as above;

� Decay: as above;

� Cross validation: as above;

� finally Experiment output directory is the parent directory of the out-
put for the experiments.

A click on the START button launchs the MLPQNA classification experiment
and the resulting output is displayed in the main panel on the left. The text
panel above the Confusion Matrix is reported. By clicking on Test or Run
options of Regression and Classification menu items, it opens a window similar
to those described for the Train case.

After every regression experiment, a statistical report is automatically gener-
ated; clicking on the menu item Experiment− >Statistics opens a new window
where is possible to select a Target column and an Output column between which
the algorithm generates statistical indicators.
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Figure 4.6: Plot window.

These indicators are:

bias(x) =

∑N
i=1 xi
N

σ(x) =

√√√√∑N
i=1

[
xi −

(∑N
i=1 xi

N

)]2

N

RMS(x) =

√∑N
i=1 x

2
i

N

MAD(x) = Median(| x |)
NMAD(x) = 1.48×Median(| x |)

where σ is the Standard Deviation, RMS is the Root Mean Square, MAD the
Median Absolute Deviation and NMAD the normalized MAD.

4.3.2 Plot Selection

As described before, in the PhotoRApToR’s menus are present also instruments
to generate different types of plot. When one of the plot options (Histo Plot,
Scatter Plot or 3D Plot) is clicked, a new window (Fig.4.6) opens where to set
the plot parameters: in the upper panel will be displayed the plot, below there
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are a text field where is possible to set the name of the plot and two checkboxes
that allows to enable/disable a grid and a legend for the plot. At the right there
are two buttons. The Add Plot button adds other tabs to the previous panel
where it is possible to set the parameters of the graph with different colours in
such a way to compare data from different tables.
By clicking on the Plot button, in the upper panel the plot is diplayed and is
saved in JPEG file format.

Figure 4.7: Histo Plot panel.

The bottom panel has different fields for every plot option. For the Histo
Plot (Fig.4.7) the parameters are:

� a Table List that is the same of the main window;

� a drop-down menu to set the XAxis selecting a column of the table;

� two text fields where it is possible to change the labels for the axis x and
y;

� two checkboxes for each axis, one to flip and another to set the axis in
logarithmic scale;

� another drop-down menu allow to set the colour;

� below there is another text field where to change the label for the plot
legend.

For the Scatter Plot option (Fig.4.8) the parameters are:

� a Table List that is the same of the main window;

� two drop-down menu to set the XAxis and YAxis selecting a column of
the table;
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Figure 4.8: Scatter Plot panel.

� two text fields where it is possible to change the labels for the axis x and
y;

� two checkboxes for each axis, one to flip and another to set the axis in
logarithmic scale;

� three drop-down menu allow to set the Line Style, the Colour and the
Marker ;

� below there is another text field where to change the label for the plot
legend.

Figure 4.9: 3D Plot panel.

For 3D Plot (Fig.4.9) the parameters are:

� a Table List that is the same of the main window;

� three drop-down menu to set the XAxis, YAxis and ZAxis selecting a
column of the table;

� three text fields where it is possible to change the labels for the axis x, y
and z;
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� two checkboxes for each axis, one to flip and another to set the axis in
logarithmic scale;

� three drop-down menu allow to set the Line Style, the Colour and the
Marker ;

� below there is another text field where to change the label for the plot
legend.

Dragging the mouse on the plot panel, the 3D Plot rotates, so it is enabled also
a Reset button that allows to redraw the plot in its initial position.





Chapter 5

A Catalogue of Photometric
Redshift for 130 million
SDSS-DR9 galaxies

The main scientific aim of this thesis was the evaluation of photometric redshifts
for the dataset described in the Ch.§2.
In order to achieve this goal, it is real important to remember that all photo-z
methods are based on the interpolation of some a priori knowledge, so the first
step was to construct the Knowledge Base (KB).
The complete dataset contained 133,923,672 object classified as galaxies from
the SDSS Data Release 9.
The Knowledge Base data were extracted from the spectroscopic subsample of the
SDSS-DR9 and 76 objects with missing information (Not a Number or NaN) in
any of the five SDSS bands (u-g-r-i-z) were rejected. The resulting KB consisted
therefore of 890,119 objects with spectroscopic data.
After the training, the frozen network was applied to all galaxies in the SDSS-
DR9 detected in all five SDSS bands.

5.1 Photo-z Estimation

In this section we describe the PhotoRApToR application to the KB to train the
method and evaluate the performances of the model. Remembering the descrip-

This section is largely extracted from:

� Brescia M., Cavuoti S., De Stefano V., Longo G., A catalogue of photometric redshifts
for the SDSS-DR9 galaxies, 2013, Submitted to A & A

77
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tion in the Ch.§4, by clicking on the Open button a Load Dialog opens where
will be selected the Knowledge Base dataset: SDSS gal indexed psfMag-
Cleaned.csv.
As you can see from the file extension, it is a COMMA-SEPARATED VALUE
file, but, to avoid errors, in the Load Dialog the user must confirm the file type,
so the file extension is not really important. This choice is related to the different
extensions that is possible to find for any of the file types: for example on line
there are FITSTABLEs with .f it or .f its extension or VOTABLEs with .vo, .vot,
.votable and more.

The Knowledge Base dataset SDSS gal indexed psfMagCleaned.csv was
created by performing the query as listed below:

SELECT p.objid, s.specObjID, p.ra, p.dec, p.psfMag u, p.psfMag g,
p.psfMag r, p.psfMag i, p.psfMag z, p.psfmagerr u,
p.psfmagerr g, p.psfmagerr r, p.psfmagerr i, p.psfmagerr z,
p.fiberMag u, p.fiberMag g, p.fiberMag r, p.fiberMag i, p.fiberMag z,
p.fibermagerr u, p.fibermagerr g, p.fibermagerr r, p.fibermagerr i,
p.fibermagerr z, p.petroMag u, p.petroMag g, p.petroMag r,
p.petroMag i, p.petroMag z, p.petromagerr u, p.petromagerr g,
p.petromagerr r, p.petromagerr i, p.petromagerr z,
p.modelMag u, p.modelMag g, p.modelMag r, p.modelMag i,
p.modelMag z, p.modelmagerr u, p.modelmagerr g, p.modelmagerr r,
p.modelmagerr i, p.modelmagerr z, p.extinction u, p.extinction g,
p.extinction r, p.extinction i, p.extinction z,
s.z as zspec, s.zErr as zspec err,
s.zWarning, s.class, s.subclass, s.primTarget

FROM PhotoObjAll as p, SpecObj as s

WHERE s.class = ’GALAXY’

AND p.mode = 1

AND dbo.fPhotoFlags(’PEAKCENTER’) != 0

AND dbo.fPhotoFlags(’NOTCHECKED’) != 0

AND dbo.fPhotoFlags(’DEBLEND NOPEAK’) != 0

AND dbo.fPhotoFlags(’PSF FLUX INTERP’) != 0

AND dbo.fPhotoFlags(’BAD COUNTS ERROR’) != 0
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AND dbo.fPhotoFlags(’INTERP CENTER’) != 0

AND p.SpecObjID = s.SpecObjID

AND s.zWarning = 0

5.1.1 Manipulating Datasets

After the loading phase, the table is visible into the Table List and, when one
item is selected, all its properties are displayed into the panel on the right. For
the experiment the PSF corrected magnitudes (psfMag) had been used, so in
the Edit Table panel the original table can be edited to choose only necessary
features. Selecting only photometric information and spectroscopic redshift with
the checkbox (Fig. 5.1), the subtable “SDSS gal indexed psfMagCleaned
subset” was created.

Figure 5.1: PhotoRApToR Edit panel. When the desired columns are checked, clicking the
Create Subset button, a new table is generated and is added to the Table List.

Now it is possible to edit the subtable.
In Ch.§3 it was stressed that for machine learning supervised methods three dif-
ferent subsets for every experiment are generally obtained from the available KB:
one (training set) to train the method in order to acquire the hidden correlation

In SDSS-III for object which are well-described by the point spread function (PSF), the
optimal measure of the total flux is determined by fitting a PSF model to the object. The
image is sync-shifted so that it is centered on a pixel, and then a Gaussian model of the PSF is
fitted to it. This fit is carried out on the local PSF KL model at each position; the difference
between the two is then a local aperture correction, which gives a corrected PSF magnitude.
Bright stars are used to determine a further aperture correction to a radius of 7.4” as a function
of seeing. The resulting magnitude is stored in the quantity psfMag.
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Figure 5.2: PhotoRApToR Split panel. After selecting the table to be split, two different
names are choosen for the files and the sliders are dragged to select a different percentage.
Clicking on Split button generate the two split datasets.

among the input features which is needed to perform the regression; the second
one (validation set) is used to check the training, in particular against the loss
of generalization capabilities (a phenomenon also known as overfitting); and the
third one (test set) is used to evaluate the overall performances of the model
(Brescia et al. (2013a)).
For the PhotoRApToR application of the MLPQNA method, the validation has
been implicitly performed during the training phase, by applying the standard
leave-one-out k-fold cross validation mechanism (Geisser (1975)).
So, before the photo-z evaluation, it is necessary to split the dataset in a TRAIN
subset and in a TEST subset. According to previous experiences, the two split
files (called photo train and photo test) were populated with respectively 60%
and 40% of the objects in the KB, obtaining the training set with 535,016 ob-
jects and the test one with 356,103 objects (Fig.5.2).

5.1.2 Photo-z Estimation Setting

A click on the photo-z button opens a new window (Fig. 5.3). To run photo-z
evaluation experiment it was necessary to set the MLPQNA input parameters,
as seen for Regression and Classification cases in Ch.§4.
The window was created to have in input MLPQNA requested parameters to run
a regression train + test experiment, so that it generates a table where the last
column is the estimated photometric redshift. In details, the parameters that
have to be setted are the following:

� Two drop-down menu allow to select the TRAIN dataset and the TEST
one; (this parameter is a field required)
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Figure 5.3: Photometric redshift evaluation window. On the left there are the fields for
setting parameters. On the right there are two panels. When the experiment is complete, in
the upper panel the regression train statistics and the regression test statistics is displayed. In
the lower panel the final table with the photo-z column is reported.

� if we had already done the training phase, it is possible to use the trained
weight file;

� the Number of input neurons is the number of input dataset columns
(in our case is 5); (this parameter is a field required)

� the Number of first hidden layer neurons is the number of neurons of
the first hidden layer of the network (in this case 13); (this parameter is
a field required)

� the Number of second hidden layer neurons: described in Ch.§4 (in
this case is 4) ;

� Max number of iteration: described in Ch.§4 (for our case is 30000);

� Hessian approximation cycles: described in Ch.§4 (in our case is 60);

� Error threshold: described in Ch.§4 (in this case is 0.0001);
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� Decay: described in Ch.§4 (for our case is 0.01);

� Cross validation: as seen in Experiment description in Ch.§4;

� finally Experiment output directory is the parent directory of the out-
put for the experiments and it was called photoevaluation.

From the available data it was necessary to check which types of flux com-
binations were more effective, in terms of magnitudes or related colors. So were
performed and compared two kinds of experiments:

� MAG experiment: the five SDSS PSF magnitudes have been used as input
features;

� MIXED experiment: the 4 colors (U-G, G-R, R-I, I-Z) and the reference
magnitude R have been used as input features;

The optimal combination turned out to be the MIXED type. From the phys-
ical point of view this can be easily understood by noticing that even though
colors are derived as a subtraction of magnitudes, the content of information is
quite different, since an ordering relationship is implicitly assumed, thus increas-
ing the amount of information in the final output. In the MIXED experiment,
the network has two hidden layers and stronger QNA parameters, in order to
obtain the expected best performance of the model, so as reported in the Table
5.1.1

ITEM EXPERIMENTS

MAG MIXED

TRAIN SET 712022 (80%) 535016 (60%)

TEST SET 178097 (20%) 356103 (40%)

INPUT FEATURES 5 magnitudes (ugriz) 4 colors + R mag

hidden layers 1 2

hidden 1 neurons 11 13

hidden 2 neurons 0 4

learnig decay 0.1 0.01

hessian approx. restarts 30 60

error threshold 0.0001 0.0001

max iterations at each restart 4000 30000

Table 5.1.1: Experiment setup comparison.
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Figure 5.4: Histograms of spectroscopic redshift (zspec) distribution for data used in MIXED
experiment. In figure it is possible to see the training set distribution (black line) and the test
one (red line).

Statistics

The obtained results of the individual experiments have to be evaluated in a
consistent and objective manner through an homogeneous set of statistical in-
dicators. As described in Ch.§4, PhotoRApToR uses a specific algorithm to
generate statistics.
For each experiment there is a list of N samples for zspec and zphot. So are defined:

∆z = zspec − zphot (5.1)

∆znorm =
zspec − zphot

1 + zspec
(5.2)

where ∆znorm is the normalized ∆z. The notations used into the statistical
reports are the same described previously:

bias(x) =

∑N
i=1 xi
N

σ(x) =

√√√√∑N
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)]2

N

RMS(x) =

√∑N
i=1 x

2
i

N

MAD(x) = Median(| x |)
NMAD(x) = 1.48×Median(| x |)
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The term x in all above expressions may be either ∆z or ∆znorm.
Average statistical indicators such as bias and Standard Deviation, however,
provide only part of the information which allows to correctly evaluate the
performances of a method. There is a relation between RMS and the Stan-
dard Deviation σ: RMS =

√
mean2 + σ2, but σ2 is the variance, so we have

RMS =
√
mean2 + variance. For a direct comparison of results, in terms of dis-

tance of mσ (m = 1, 2 ...) from the distribution of ∆z, it is much more precise
to use the Standard Deviation as main indicator, rather than the simple RMS.
There is often a confusion about the relation between photometric and spectro-
scopic used to apply the statistical indicators. For instance, the performance
could be very different if the simple ∆z is used instead of the ∆znorm. The idea
is that the ∆z cannot represent the best choice in the specific case of photometric
redshift prediction.
The velocity dispersion error, intrinsically present within the photometric estima-
tion, is not uniform in a wide spectroscopic sample, and the related statistics is
not able to give a consistent estimation at all ranges of redshift. On the contrary,
the normalized term ∆znorm introduces a more uniform information, correlating
in a more correct way the variation of photometric estimation, and permitting
a more consistent statistical evaluation at all ranges of spectroscopic redshift.
More in detail:

z =
∆λ

λ
=
λobs − λemit

λemit

= (5.3)

=
λobs
λemit

− 1

− > 1 + z =
λobs
λemit

So, differentiating the Eq.5.4:

dz = d

(
λobs − λemit

λemit

)
=
dλobs
λemit

=

=
dλobs
λemit

λobs
λobs

=
dλobs
λobs

(1 + z) (5.4)

Finally obtaining:
dz

1 + z
=
dλobs
λobs

(5.5)

And the right term of the Eq. 5.5 is exactly the variation between photometric
and spectroscopic observed redshift, which is the main focus of the photometric
redshift estimation for empirical models which learn its prediction based on the
spectroscopic information.
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Ref. |bias| σ NMAD RMS biasnorm σnorm NMADnorm RMSnorm
TEST DATASET ONLY

MAG 0.0002 0.016 0.001 0.016 0.0003 0.012 0.0013 0.012
MIXED 0.0004 0.014 0.001 0.014 0.0003 0.011 0.0013 0.011
Laurino et al. 0.015 0.015 0.016 0.021 0.014 0.013 0.013 0.019

Table 5.2.2: Standard statistical indicators used to evaluate the performances of photo-z
methods. Also the same indicators for Laurino et al. (2011) are included..

This result is invariant to the redshift range considered. In conclusion the term
dz

1+z
is the best choice on which to apply the statistical operators.

5.2 Results

For empirical methods, based on machine learning paradigm, the correct way
to present the results is to refer to the test set output only, otherwise the per-
formance is altered by the obviously precise bias introduced by considering the
training output.
The results of MAG and MIXED experiments are compared with those obtained
by Laurino et al. (2011) which achieved the higher accurancy prior 2012: they
used a machine learning model with a slightly more complex architecture, named
WGE (Weak Gated Experts) method. This comparison is reported in the Table
5.2.2 where, overall, the MIXED experiment provides the best results, with a
normalized standard deviation of 0.011.

Table 5.2.3 reports the fraction of outliers, i.e. objects for which the photo-
metric redshift estimate deviates from the spectroscopic value. For the outliers
evaluation, the statistical estimation was provided at different multiples of the
standard deviation (from 1σ to 4σ). This gives the possibility to evaluate the
trend of the prediction scattering and to proceed with a deeper analysis of ob-
jects resulting as outliers at different degrees of scattering.
For what the analysis of the catastrophic outliers is concerned, according to
Mobasher et al. (2007), the parameter D95 = ∆95/(1 + zphot) enables the identifi-
cation of outliers in photometric redshifts derived through SED fitting methods
(usually evaluated through numerical simulations based on mock catalogues). In
fact, in the hypothesis that the redshift error ∆znorm = (zspec−zphot)/(1+zspec) is
Gaussian, the catastrophic redshift error limit would be constrained by the width
of the redshift probability distribution, corresponding to the 95% confidence in-
terval, i.e. with ∆95 = 2σ(∆znorm). In our case, however, photo-z are empirical,
i.e. not based on any specific fitting model and it is preferable to use the standard
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Ref. |∆z| |∆z| |∆z| |∆z| |∆z|norm |∆z|norm |∆z|norm |∆z|norm
> 1σ > 2σ > 3σ > 4σ > 1σ > 2σ > 3σ > 4σ

MAG 9.6% 4.01 % 1.82 % 0.95% 11.54% 4.52% 2.09% 0.92%
MIXED 9.65% 3.76% 1.76% 0.93% 10.62 % 4.33% 2.03 % 1.05%

Table 5.2.3: Fraction (in percentage) of outliers computed using a 1, 2, 3, and 4 σ clipping
threshold.

deviation value σ(∆znorm) derived from the photometric cross matched samples,
although it could overestimate the theoretical Gaussian σ, due to the residual
spectroscopic uncertainty as well as to the method training error. Therefore, we
consider as catastrophic outliers the objects with |∆znorm| > 2σ(∆znorm).

The MIXED experiment provides the best results with a very low fraction of
outliers (∼ 4% at 2σ and ∼ 1% at 4σ).
The catastrophic outliers, i.e. those objects for which | ∆znorm |> 2σ(∆znorm),
were rejected and so a σnorm of ∼ 0.0050, larger than NMADnorm, was obtained.
This result exactly corresponds with what stated in Mobasher et al. (2007). In
fact, in the case where photo-z are empirical, it is always useful to analyze the
direct correlation between the NMADnorm and the standard deviation σnorm
calculated on data which are not catastrophic outliers. In these cases a correct
photo-z prediction occurs whenever the quantity NMADnorm is lower than the
σnorm for the cleaned sample, induced by the residual spectroscopical uncertainly
as well as by the method training error.

The MIXED configuration was therefore used to produce the final catalogue of
photo-z. Before to calculate the photo-z for all the objects in the catalogue, it can
be shown the plot of the estimated photometric redshift versus the spectroscopic
redshift values for all objects in the test set of the MIXED experiment (Fig.5.5).

5.2.1 The Catalogue

After training, the frozen network generated during the MIXED experiment was
applied to all galaxies in the SDSS-DR9 detected in all five SDSS bands. As
described in the Ch.§2 the final downloaded SDSS-DR9 catalogue contains all
objects within the declination range [-30°; +85°] and detected in all SDSS bands
classified as galaxies. For convenience, the whole catalogue was split in 38 files
containing a total of 133,923,672 objects, for which the photo-zs were evaluated.

The final catalogue consists therefore of 38 files corresponding to different
declination ranges (Tab:5.2.4), each of them being structured in 19 columns
containing:
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Figure 5.5: Spectroscopic versus photometric redshifts for the 356103 galaxies in the blind
test set. As it can be seen, no systematic trends, besides the well known bias at low redshifts
(z < 0.1), are present.

� column 1: the SDSS-DR9 object identification;

� columns 2 and 3: right ascension and declination;

� columns 4-8: the u, g, r, i, and z PSF magnitudes;

� columns 9-14: the PSFMagerr for all magnitudes;

� columns 14-18: the extinction for each magnitude;

� column 19: the estimated photo-z;

The catalogue is publicly available at the URL: http://dame.dsf.unina.
it/catalog/DR9PHOTOZ/.

http://dame.dsf.unina.it/catalog/DR9PHOTOZ/
http://dame.dsf.unina.it/catalog/DR9PHOTOZ/
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5.3 Conclusions

The photometric redshift is a valid and necessary instrument for a variety of
cosmological applications. In the introductory chapter I summarized how photo-
z’s have become crucial in last decades due to the increasingly rapid growth of
astronomical data archives.
The many ongoing and planned photometric surveys produce huge datasets that
would not be analyzed without the data mining methods deriving from the emerg-
ing field of Astroinformatics. In this thesis are described different methods (the-
oretical and empirical) to evaluate photo-z, but the attention was focused on
an empirical method that uses Neural Networks. This is a Machine Learning
supervised method that uses a Quasi Newtonian learning rule: MLPQNA.
To demonstrate the accuracy with which photo-z are estimated by MLPQNA,
it was applied to all galaxies contained in the Sloan Digital Sky Survey (SDSS)
Data Release 9 using a newly implemented desktop application realized in Java
language: PhotoRApToR.
With PhotoRApToR it is possible to open tables in most diffused format, to
edit them for the application of MLPQNA to run experiments and to plot data
in different plot styles. These functions have been applied on the SDSS-DR9
dataset of galaxies.
After the training phase on a Knowledge Base data extracted from the spectro-
scopical subset of SDSS-DR9, the best results were obtained with a two hidden
layer network with a combination of the 4 SDSS colors (obtained from the SDSS
psfMag) plus the psfMag in the r band. This experiment leads to a negligi-
ble bias, to a low fraction of outliers and to a normalized standard deviation
of the residuals σnorm = 0.011, which decreases to 0.005 after the rejection of
catastrophic outliers. This result is better or comparable with what was already
available in the literature and presents a smaller number of catastrophic outliers.
The MLPQNA method was then applied on the complete dataset containing
133,923,672 object classified as galaxies and the resulting catalogue is available
at the address reported above.

The application of the method presented in this work, has produced a refereed
article, currently under revision by the editor Brescia et al. (2013b). Furthermore,
there is also another manuscript in preparation, whose topic is the PhotoRAp-
ToR application [De Stefano et al. 2013, in preparation].
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Catalog File Objects Photo-z range

(DEC range) MIN MAX

DEC(-30 -20) 601937 0 0.774

DEC(-20 -15) 1481223 0 0.768

DEC(-15 -08) 3680856 0 0.774

DEC(-08 -05) 3592638 0 0.772

DEC(-05 -03) 2604467 0 0.772

DEC(-03 -01) 4219465 0 0.776

DEC(-01 00) 2998182 0 0.776

DEC(00 01) 3031914 0 0.771

DEC(01 02) 2452737 0 0.776

DEC(02 04) 4610011 0 0.782

DEC(04 06) 4783281 0 0.781

DEC(06 08) 4859457 0 0.779

DEC(08 09) 2288882 0 0.765

DEC(09 10) 2240852 0 0.772

DEC(10 11) 2222814 0 0.779

DEC(11 12) 2159481 0 0.779

DEC(12 14) 4466309 0 0.776

DEC(14 16) 4670156 0 0.779

DEC(16 18) 4586431 0 0.778

DEC(18 20) 4500819 0 0.779

DEC(20 22) 4362577 0 0.780

DEC(22 24) 4428770 0 0.777

DEC(24 26) 4494908 0 0.782

DEC(26 28) 4314896 0 0.775

DEC(28 30) 4174234 0 0.777

DEC(30 32) 3957315 0 0.774

DEC(32 34) 3693299 0 0.775

DEC(34 37) 5093588 0 0.774

DEC(37 40) 4894905 0 0.771

DEC(40 43) 4606852 0 0.770

DEC(43 46) 4339472 0 0.780

DEC(46 50) 4589908 0 0.777

DEC(50 55) 4766871 0 0.775

DEC(55 60) 4013131 0 0.776

DEC(60 65) 3481072 0 0.778

DEC(65 70) 1516315 0 0.769

DEC(70 75) 351332 0 0.767

DEC(75 85) 792315 0 0.764

TOTAL 133923672 0 0.782

Table 5.2.4: Information on the final photo-z catalogue produced by MLPQNA.
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