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Summary

The data tsunami

Data Intensive Science: a new scientific paradigm
Virtual Observatory

Bottleneck - moving programs not data
Knowledge discovery in databases or data mining
Astroinformatics

Conclusions




Small, big, in a network, isolated ...
telescope produce large amounts of
data and EACH DATA which is produced
needs to be reduced, analysed,
interpreted

Transistor Count (Millions)
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Increase in number of telescopes, improvements or detector size or in efficiency
or in number of bands ... all cause an increase in pixels (worldwide)

Computing time and costs do not scale linearly with number of pixels

Moore law’s does not apply anymore. Slopes are changed.




Growth of digital data worldwide
1 ZB or 1.000.000.000.000 GB = 10° Terabyte

* Data courtesy of IDC

@ Data courtesy of 1BM

A Data courtasy of Forrestar Research

T Data courtesv of Univerdity of Hawaii

How Much New Data is
Created in Just Two Days?

Total Worldwide Digital information
Hard:Disk Capacity Generated In Two
i 19951 Days Worldwide
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How Much Information Will Be
Stored in the Typical IT Facility By 20157

Information Stored Information
InAN WS, Stored In Typical

Academic Research IT Facility by
Vikhrarioet ErL




SIZE, DISTRIBUTED, COMPLEX, HETEROGENEOUS

R. Grossman, C. Kamath, V. Kumar, «Data Mining for Scientific and engineering applications»
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Computationally demanding but Ys = “h,r (-
still a relatively simple e e
(embarassingly parallel) KDD task i

each CPU gets one event at a
time and needs to perform
simple tasks

Data Stream: 330 TB/week

ATLAS detector event




USA meteo
You Tube
Google

PANSTARRS

13 TB/day
2.2 TB/day

0.15 TB/day

120 TB (total)
600 TB

30 TB/day

1 PB (total)

1.5 PB/day

100 PB/day
(multicore)

Few-many

hundreds

>> 1012

exaflops

Ca. 50
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Supporting Smart Sensors and Data Fusion

DATA INTENSIVE SCIENCE HAS BECOME A REALITY

» The NSF Ocean Observatory Initiative
— Hundreds of cabled sensors and robots exploring the sea

el [N ALMOST ALL FIELDS and poses worse problems

Data collected from:
* Ocean floor sensors, AUV tracks, ship-side
auises, computational models

Data moves from ocean to shore side data
center to the Azure cloud to your computer.

The Swiss Experiment (EPFL, Marc Parlange)
= Climate change affects on the regional
hydrologic cycle will have profound implications
for the Alps and therefore Europe ! -
* Need for field measurements remains crucial to ” > =
N ; sl = i T
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Huge data sets ( ca. Pbyte)

ChronoZoom - History in its broadest possible context ...

In astronomy as in many other

pots
— lLarg
witt  The challenge: exploration of all known time 5 .
* Partner series, and smoothly transition from billions " L Lo L gery
deploye  of years down to individual nanoseconds... - Q) S C I e n C e S
— 1000 ~
— ‘tou

pere  Thisis what Walter Alvarez, Professor of Earth
and Planetary Science at University of
o abili Berkeley set out to do. And he did it, with the

U e e Y — Thousands of different problems
e

Fighting HIV with ML and HPC

= PhyloD.Net is a Bayes-net-based tool that
deciphers evolution of HIV within a patient

= Developed by eScience research group and
published in Science, March 2007

=  Now used by dozens of HIV research groups _ .
» led to discovery of two key insights to fight HIV: ——
— Our immune system attacks frameshift
epitopes, which may be useful to include in
a vaccine (JEM, 2010)

— Natural killer cells directly attack HIV
(Nature Medicine, in review)

Many, many thousands of users

i.e. LHC is a “piece of cake”

(simple computational model)

+ Typical job
— 10 —20 CPU hours with extreme jobs PhyinD Ned on cover of PLoS Gomp Bio, Now 2008
requiring 1K — 2K €PU hours ok e

— Requires a large number of test runs for a
given job (1—10M tests)

[~ () Fhizwaork = licensed undar =
\m Errsve Carnrrmrs Afribotiae 3 Ui Stsirs Liserme




LHC was a forerunner also in many other
technologies ...

Remember this ....

GRID - LHC evolved
into EGEE

GRID Café - CERN




Jim Gray

“One of the greatest challenges for
21st-century science is how we
respond to this new era of data
intensive science ...

... This is recognized as a hew
paradigm beyond experimental and
theoretical research and computer
simulations of natural phenomena -
one that requires new tools,
techniques, and ways of working.”




1. Experiment ( ca. 3000 years)

o ,.';';-',3.;})}.:«3///////
2. Theory (few hundreds years)
mathematical description, theoretical

models, analytical laws (e.g. Newton,
Maxwell, etc.)

PARADIGM 3. Simulations (few tens of years)
DATA-INTENSIVE SCIENTIFIC DISCOVERY Complex phenomena

4. Data-Intensive science

(and it is happening now!!)

http://research.microsoft.com/fourthparadigm/




Data Federation — Virtual Observatory

The International Virtual Observatory Allian
(>20 countries)

Data federation (standards) and
interoperability has been completed

\* -T Korea Armenia 1 : . . .
iy ‘S AWD Every one can publish his data in the VO
N Y Gemany S with simple tools
Japan Hvo C;AV 0 :

V.50

Data analysis and understanding (KDD) is in the making but
requires a change in perspective

IVOA — IG on KDD (Longo)
Astroinformatics exploratory Initiative (Djorgovski)
Astroinformatics WG at the IAU 2012 (Longo) and at the AAS 2012 (Djorgovski)
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Moﬁ data will never
be seen by human eyes
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Real world physics is too
complex. Validation of
models requires accurate
simulations, tools to
compare simulations and
data,and better ways to
deal with complex &
massive data sets

Need to increase
computational and
algorithmic capabilities
beyond current and
expected technological
trends

{




First hint about the need for complex visualization
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The measurable parameter space of KDD

Each datum is defined by n measured
parameters.

L AVA
e Flux
e Polarization
e wavelength
* Etc..

New sensor technologies:

pOO" N >>100

A better exploration and sampling of an
ever increasing parameter space of
data intensive science
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Exploration of PS with
N >10° D>>100, K>10
Is anything but simple

N = no. of data vectors,

D = no. of data dimensions

K = no. of clusters chosen,

K.,ax = Max no. of clusters tried

| = no. of iterations, M = no. of Monte Carlo

trials/partitions

K-means: KXNX[XD

Expectation Maximisation: K X N X | X D?

Monte Carlo Cross-Validation: M xK__ 2 x N x | xD?
Correlations ~ Nlog N or N2, ~ Dk (k > 1)
Likelihood, Bayesian ~ N™ (m > 3), ~ DX (k>1)
SVM >~ (NxD)3

Lots of
‘ distributed

computing

power




= AAY b
ELSEVIER

Earth and Planetary Science Letters 139 (1996) 33-45
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Abstract

Astronemically controlled variations in the Earth's climate induce cyclic trends in the sedimentary process and re
(Milankovitch periodicity). One of the main difficulties to be solved in order to choose among the registered periodiciti:
the conversion from the spatial (i.e. recurrent variations along the stratal sequences) to the temporal domains of
astronomically induced frequencies present in the rock record. We discuss here how this problem can be circumventes
teaching a neural net how to recognize periodicities in the signal. The application to two sequences of shallow w
carbonate deposits from the Cretaceous of Southern Italy has shown this approach to be particularly effective, confirming
existence of Milankovitch-type periodicities in the records examined, where climate. sediments and biota concomit:
react to the variation in the solar constant induced by secular perturbations of the Earth’s orbital elements.

Keywords: Milankovitch theory. paleoclimatology, Cretaceous; Southern Apennines

The detection of Milankovic cycles
In stratigraphic records

AstroNeural — 1992-2001

VO- Neural 2002 — 2006

DAME 2007 - td

ALL STARTED WITH

Spec. Publsdnt. Ass. Sediment. (1994) 19, 77-85

Fourier evidence for high-frequency astronomical cycles
recorded in Early Cretaceous carbonate platform strata,
Monte Maggiore, southern Apennines, Jtaly

G. LONGO*, B. D'ARGENIO%, V. FERRERIT and M. IORIOZ

* Osservatorio Astronomico, Napoli, Italy;
+ Dipartimento di Scienze della Terra, Universita Federico 11, Napoli, Italy; and
+ Geomare, Istituto di Geologia Marina del CNR, Napoli, laly

ABSTRACT

Carbonate peritidal deposits of Early Cretaceous age. widely outcropping in the carbonate platform
sequence of southern Ttaly, carry distinet signals of cyclicity in the Milankovitch band. We have studied
the depositional and diagenetic facies organization of a ¢.100-m-thick sequence of Barremian age, at
Monte Raggeto (Monte Maggiore Mountains, near Naples), where, from a total of 60m analysed at
centimetre scale, two sedimentary modules have been recognized.

I Depositional cvclothems: rare, made of one or more subtidal-supratidal couplets and topped by
supratidal intervals.

2 Diagenetic cyclothems: very common, made of dominantly subtidal intervals which show emersion-
generated features (karst, reddened surfaces) at the top.

Cyclothems along the sequence tend to group into fairly regular intervals. cach about 10m thick,
formed by sets of seven 1o nine cyclothems. This trend is confirmed by Fourier analysis of the data,
showing periodicities at 105 and 950cm. Morcover, the mathematical processing of the total data set
shows also two shorter periodicities at 40 and 72cm. The algorithm used for the analysis is a modified
version of the Deeming code, first written for astrophysical applications

The set of periodicitics obtained (40, 72, 105 and 950cm) can be related to the varations of the
insolation constant computed for the Cretaceous; moreover the ratios between the two sets of
periodicities, expressed in centimetres and in years respectively, show a very high degree of correlation
with those predicted for the main orbital periods in the Cretaceous. We propose that the observed
cyclicities indicate Barremian sea-level oscillations induced by high-frequency eustatic control under
climatic forcing.

Moreover the link between the ratios of time and depositional periodicity sets appears to be a useful
method of assigning a duration to a given periodicity in a sequence, quite independently from a precise
determination of biostratigraphic age and/or total thickness of a stage




DAME Program is a joint effort DAME Program & % v

between University Federico I, — e e
Caltech and INAF-OACN, aimed at WARE mm
implementing (as web 2.0 apps and m——
services) a scientific gateway for
data exploration on top of a
virtualized distributed computing
environment.
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Extensions
e DAME-KNIME

e ML Model plugin

Multi-purpose data mining
with machine learning
Web App REsource

ﬁ’ | “ﬂ- m

Specialized web apps for:
e text mining (VOGCLUSTERS)
e Transient classification (STraDiWA)
e EUCLID Mission Data Quality

http://dame.dsf.unina.it/
Science and management
Documents

Science cases, Newsletters

< [ 4

bt __..Q,; 1 TR

Lo s e (‘. m
G I ""'

i e

e

i},"a oo Mim Web Serwces

e SDSS mirror
e  WEFXT Time Calculator
GAME (GPU+CUDA ML model)

http://www.youtube.com/user/DAMEmedia
DAMEWARE Web Application media channel




DAME Main Project: DAMEWARE

DAta Mining Web Application REsource dame.dsf.unina.it/beta info.html

web-based app for massive data mining based on a suite of machine learning methods on top
of a virtualized hybrid computing infrastructure
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Bayesian Networks

Random Decision Forest

Selected tool

Classification
Regression
Clustering

Feature Extraction

Multi Layer Perceptron
trained by:

e Back Propagation

* Quasi Newton

e Genetic Algorithm

Support Vector Machines
Genetic Algorithms

Self Organizing Feature Maps
K-Means

Multi-layer Clustering

Principal Probabilistic Surfaces




DAME GRID (SCOPE)

L

o

DAMEWARE web
application
GUI

User & Data Archives
(300 TB dedicated)

Production
& of 2 SDSS mirror
WEXT service ‘ar &

services

Jt
domain gﬂwemﬁm@

DAME CLOUD

SVN code
VOGCLUSTERS archive
web app

DAMEWARE web
app Mirror

Development @oacn.inaf.it

website

DM Models Job Execution
(300 multi-core
processors)

Incoming
DAMEWARE
mirroring at

Caltech

Cloud facilities
16 TB
15 processors




... GPU technology?

The Graphical Processing Unit is specialized for compute-

intensive, highly parallel computation (exactly what graphics
rendering is about).

« GPU have evolved to the point where many . —m

real world apps are easily implemented on Data GPU

e epe . Parallelism (Paralle] Computing)
them and run significantly faster than on multi-
core systems.»

Instruction
Level
Parallelism

Data Fits in Cache Larger Data Sets

Application Software
(written in C) DAME - GAME

< Genetic Algorithm Mining Experiment

CUDA Libraries
CUFFT CuBLAS cuDPP

— GAME is a pure genetic algorithm developed in
00Is
Debugger Profiler Order to SOIVe su perV|Sed prObIemS Of regre55|0n
or classification, able to work on Massive Data
ETTTTTTITTENENTY]

STTTRTTITRTITATH Sets (MDS).
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DAMEWARE fundamentals

It is multi-disciplinary platform (astronomy, bioinforma tics and medical diagnostics)

End users can remotely exploit high computing and storage po wer to process massive
datasets (in principle they can do data mining on their smart phone...)

User can automatically plug-in his/her own algorithm and la unch experiments through the
Suite via a simple web browser

WO rkSpa Ce experiments

1. create/open a
workspace |

*Experiments The user can:

Nl ——— *Data files
. ~ i i i Dataset *upload/download files from/to remote URI;
— 7= 2. upload/edit *Dataset files X '
editor * edit data files;
data files E " regression
— ¢ create and launch an experiment;
= o * navigate through experiments;
3. create/configure \\.\ = move files from experiment to workspace; classification
e

experiments
\ List of:
N\

List of:

clustering

sinput files sinput files

=configuration files sconfiguration files

coutput files coutput files Framework
experiment experiment

\
4. launch experiments

Data
Processing | S — - P

+ Driver
Management
System

Execution Storage

— 8 ﬁ‘
5. store results ‘{ )

\

Stand Alone
Machine

Infrastructure




DAME Science case examples

DAME has been successfully applied to a variety of scientific cases:

AGN identification and classification
Cavuoti, S.; Brescia, M.; D’Abrusco R.; Longo G., Photometric AGN Classification in the SDSS
with Machine Learning Methods, (in preparation)

Globular Cluster classification
Brescia, M.; Cavuoti, S.; Paolillo, M.; Longo, G.; Puzia, T., 2012, The detection of Globular
Clusters in galaxies as a data mining problem, MNRAS, 421, 2, 1155-1165

Evaluation of photometric redshifts
D'Abrusco et al. 2007, Mining the SDSS Archive I. Photometric redshifts in the nearby universe,

Ap)., 663, 752

Cavuoti, S.; Brescia, M.; Longo, G.; Mercurio, A., 2012, Photometric Redshifts with Quasi
Newton Algorithm (MLPQNA). Results in the PHAT1 Contest, Submitted to Astronomy &
Astrophysics, arxiv:1206.0876v2

Brescia, M.; Cavuoti, S.; D’Abrusco, R.; Longo, G.; Mercurio, A., High Accuracy Photometric
Redshifts for Quasars, (in preparation);

Candidate quasar identification
D'Abrusco R., Longo G., Walton N.A., Quasar candidate selection in the Virtual Observatory
era, 2009, MNRAS, 396, 223

We refer the interested readers to these papers.




Mon. Not. R. Astron. Soc. 000, 1-11 (2011) Printed 6 September 2011 (MN IATEX style file v2.2)

The detection of globular clusters in galaxies as a data
mining problem

= % ~ v <) . . . . 7 ) i
Massimo Brescial, Stefano Cavuoti?, Maurizio Paolillo?, Giuseppe Longo®?

Thomas Puzia?

1 - INAF-Astronomical Observatory of Naples, via Moiariello 16, 1-80181 Napoli, Italy

2 - Dipartimento di Scienze Fisiche, University Federico II, via Cinthia 6, 1-80126 Napoli, Italy
3 - Visiting Associate, California Institute of Technology, Pasadena USA

4 - Catholica Universidad del Chile

MLP-QNA as classifier

NGC3199 GC system

1515 ¥ 1798

Figure 1. The field of view covered by the 3x3 HST/ACS mosaic
in the F606W band. The central field, with a different orientation,
shows the region covered by previous archival ASC observations
in g and z bands.




11 measured parameters

(magnitude, colors, parametric measures)

Use KB based on color selection for central field to identify
GC’s in external field using only 1 band data

2146 GC in central field

Detection of globular clusters

type of experiment m MLPQNA SVM MLPBP MLPGA

complete patterns $
no par. 11
only optical

mixed
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Figure 3. Color-magnitude diagrams using C —T'1 ground-based (left panel) and g—z HST photometry (right panel). Ground-based
photometry covers the whole FOV of our ACS mosaic, while HST colors are limited to the central ACS field (~ 200" x 200", Figure[1).
Open grey dots represent all sources in color catalogs while solid ones refer to the subsample with both color and structural parameters
that represents our Knowledge Base. Blue squares mark pointlike sources, i.e. sources with stellarity index > 0.9, while the dashed line
highlights the parameter space (Table [I} used to select bona-fide GC.
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Figure 4. Same as Figure [3] showing the color distribution of the MLPQNA selected sample. The MLPQNA sample (blue squares)
reproduces the properties of the color-selected GC population (i.e. the KB) with much less contaminants than, e.g., the pointlike
population shown in Figure[3]




MLP-QNA as a regressor

LeTTER TO THE EDITOR

Photometric redshifts with MLP-QNA. |. Results on the PHAT1
dataset

1.2 o:= 7 2 =2
S. Cavuoti!-2, M. Brescia?, G. Longo®!3, and A. Mercurio®

! Dipartimento di Scienze Fisiche, University Federico II, via Cinthia 6, [-80126 Napoli, Italy e-mail: cavuoti@na.infn.it
2 INAF-Astronomical Observatory of Naples, via Moiariello 16, 1-80131 Napoli, Italy
3 Visiting associale - Department of Astronomy, California Institute of Technology, CA 90125, USA

S. Cavuoti’ et al.: Photometric redshifts with MLP-QNA. 1. Results on the PHAT I dataset
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Fig. 1. Results obtained using the analysis described in this paper by the PHAT contest group. In the (a) panel are plotted the photometric vs.
spectroscopic redshifts for the whole dataset using 10 photometric bands (Experiment 1). In panel (b) the same but using only 14 photometric
bands (Experiment 2).



Good quite good acceptable medium poor

1D 1D T|B ID F B 1D F B 1D F 7
C5 c2 1{u Ci 20 m8 C18 69 m5.8 C17 384 89
1
1
(

Cé6 C3 J Cl1 23 F435W C7 53 K Cl4 340 096
F775W (9 C4 H C12 47 HK C13 112 32
F850LP C10 F606W  C8
m4.5 Cle6 m3.6 Cl15 0

Table 1. Number of NaN’s in the various bands. Columns B and ID denote the photometric band and the sequential numbering of features used in
the experiments. For each band/feature the column F gives the number of missing values (NaN’s) in the full dataset, while the column T gives the
same number for the training set. As it is explained in the text, the features are grouped in good. quite good, acceptable .medium and poor.

e Mxlt CV rms out% bias
1 3000 10 0,057 2261% -0,0077
1 3000 10 0,062 17.39% 0,0078

exp. n missing feat. feat. hid. wstep res. d
37 13,14,17,18 14 29 00,0001 3
26 13,14,15,16,17,18 12 25 0,0001 3

0 0
0 0,

Table 2. Description of the best experiments for the 18 bands (Exp. n. 37) and the 14 bands datasets (Exp. n. 26). respectively Column 1
sequential experiment identification code; column 2: features which wer not used in the experiment; columns 3-4: number of input and hidder
neurons; column 5-9: parameters of the MLP-QNA used during the experiment; column 10: rms error evaluated as described in the text; columr
11: fraction of outliers; column 12: bias.

18-band; |Az] < 0.15 14-band; |Az] < 0.15 18-band; R< 24: |Az] < 0.15 14-band R< 24; |Az] < 0.15
bias  scatter out bias scatter out bias  scatter out bias  scatter out
-0,0100 0,074 31.00 | -0,0060 0,078 38.50 | -0,0130 0,071 2440 | -0,0070 0,076 32,80
-0,0010 0,067 18,40 | 0,0020 0,066 16,70 | -0,0060 0,064 14,50 | -0,0030 0,064 13.50
-0,0090 0,052 18,00 | -0,0070 0,051 13,70 | -0,0090 0,047 10,70 | -0,0080 0,046 7.10
200000 0.066 2140 | 00080  0.067 2420 | 00120 0.063 1640 | 00120 0.064 1840
0.0006 0.056 16.33 0.0028 0,063 19.35 | 0.0002 0,053 11,70 | 0,0016  0.060 13.75

18-band; |Az] < 0.5 14-band; [Az] < 0.5 18-band; R< 24; [Az] 0.5 14-band; R< 24; [Az] < 0.5
-0,0360 0,15 3.10 -0,035 0,173 4,20 -0.047 0,13 1.40 -0,047 0,13 1.40
-0,0070 0,12 3.60 -0,003 0,114 3.60 -0,015 0,11 1,90 -0.015 0,11 1,90
-0,0130 0.12 3.10 0,001 0,107 2,30 -0,020 0,10 1,20 -0.020 0.10 1,20
-0.0310 012 3.20 -0.028 0.137 3.60 -0.034 0.11 1.40 -0.034 0.11 1.40
-0,0028 0,11 3,78 -0,005 0,125 3.83 -0,004 0,10 1,66 -0,004 0.10 1,66




MLP-QNA: regression

Photometric redshifts of Quasars: Longo et al. 2012 in prep.

Survey Bands Name of feature Synthetic description
SDSS u, g r, i,z psfMag_u, psfMag_g, psfMag_r, psfMag_i, psfMag_ z PSF fitting magnitude in the u g, r, i, z bands.
UKIDSS Y,JJHK yPsfMag, j_1PsfMag, hPsfMag, kPsfMag PSF fitting magnitude in Y, J, H, K bands
Y,J, HK Es. for y band: yAperMag3, yAperMag4, vAperMag6 aperture photometry through 2, 2.8 & 5.7”
circular aperture
JHK Es. for J band: jHallMag, JPetroMag Calibrated magnitude within circular
aperture r_hall and Petrosian magnitude
GALEX NUV Nuv_mag, Nuv_mag_iso; Respectively: Near UV total and isop. mags
NUV Nuv_mag_Aper_1 Nuv_mag_Aper_2 Nuv_mag_Aper_3 aperture photometry through 2,3 & 5 pxl apertures
NUV Nuv_mag_auto and Nuv_kron_radius magnitudes and Kron radius in units of A or B
FUV Fuv_mag, Fuv_mag_iso; Respectively: Far UV total and isop. mags
FUV Fuv_mag_Aper_1 Fuv_mag_Aper_2 Fuv_mag Aper_3 aperture photometry through 2,3 & 5 pxl apertures
FUV Fuv_mag_auto and Fuv_kron_radius magnitudes and Kron radius in units of A or B
WISE W1, W2, W3, W4 Wimpro, W2mpro, Wmpro, Wmpro4 W1: 3.4 pm and 6.1 angular resolution,
W2: 4.6 pgm and 6.4” angular resolution.
W3 12 pm and 6.5”
W4 22 pm and 12” angular resolution
Magnitudes measured with profile-fitting photometry
at the 95% level. Brightness upper limit if the flux
measurement has SNR< 2
SDSS = zZspec Spectroscopic redshift
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1 2 3 5 6 7 8 9 10 11 12
BT X X Al 00088 0174 1696% 475% 224% 097X
P2 X X X UKIDSS: hall LD0001 0162 1966% 4498 155% 097%
CALEX: mag 4+ magtso

B X X X UKIDSS: hall D006 0,165 1583% 396% 158% 1,19%
CALEX: Aper1,2 3

E4a X X X UKIDSS: hall 00064 0151 1623% A475%  19568% 1.06%
CALEX: mag

BE X X X UKIDSS: hall D0026 0,161 184THR 46278 23TR  0T%
CALEX: mag jso

BB X X X UKIDSS: hall L0008 01682 I1TSIR 5158 264% OT9%
CALEX: magauto 4 kron radius

BT X X X UKIDSS: hall DO041 0163 1939% 4278 251% 066K
CALEX: mag + magtsm 4 Aper 1,2, 8

B X X X UKIDSS: hall 00088 0,155 1926% S501% 156% 097%
CALEX: magtso 4 Aper 1,2, 3

5.1 X all 00166 0297 2216% &S0% 211% O058%

Ew X All 00162 0338 1966% 726% 23THR 040%

En X UKIDSS: hall 4 powo D0091 029 WTEE  ASSR  158%  0,66%

En2 CALEX: mag 4 mag = 0065 0419 2968% 473% 079% 0,26%

Eia X UKIDSS: petwro 00111 0465 3M43% 343% O040% 0,00%

Es X UKIDSS: hall 00081 0204 282% SM%  18%  066%

Es X X UKIDSS: hall 00045 0296 1T94% A4ATER 211%  1,06%

Eie X X UKIDSS: hall 00046 0162 21,11 485% 198% 07T9%
CALEX: magJso

Err X X CALEX: magJiso 00026 0,162 1623% 36yR 23TR 106%

Eis X UKIDSS: hall 00082 0,179 438% 449% 2% 137%

E X UKIDSS: hall 0011 0208 1926% 4858% 1.72% 0,79%
CALEX: mag3so

B X CALEX: mag jso 00176 0288 296K 485K 145% O055%

En X X UKIDSS: hall 0,0027 0,21 1596% &515% 224% 106%

Ex X all 00089 0,197 1385% 343% 237T% 158%

Exn CALEX: mag Jso L0066 OM I1T56% 67TIR  251%  0TUR

E24 X UKIDSS: hall 001883 0288 2.22% 6208 1.77% 00%
CALEX: mag yso

Feature selection

WISE substantially useless

Mag_iso substantially useless




TEST MEAN o out. lo out. 20 out. 3¢ out. 40 TOTAL OBJECTS

ES5 0,0005 0,118 18,67% 4,01% 151% 087% 3787

E16 -0,0004 0,154 18,11% 4,75% 1,98%  0,98% 3787

Table 3. Summary of the statistical indicators alread used in Table xx (bias, o and the percentage of outliers at, respectively, 1,2,3 and
4 o computed as in citebovy2012 on all objects (test and training set).

ZSPEC BIN EXP BIAS SIGMA |AZ|>01 |AZ|>02 |AZ|>03 |AZ|>04 OBJECTS

TRAIN Only
[0.2, 1.0] E23 -0.0897  0.206 44.94% 22.78% 13.29% 8.86% 316
D.2, 1.0 i) -0.018 0.118 .53% A ) 22% 1. ) 316
2,1 ES 3 1 27.53% 7.28% 2.22% 27%

[0.2, 1.0] E16 -0.020  0.127 29.43% 10.76% 3.48% 1.90% 316

(0.2, 1.0] E10 -0,1807 0,281 64,87% 39,87% 26,58% 18,67% 316

(1.4, 3.0] E23 0.1209  0.273 59.05% 32.33% 21.98% 14.22% 232

[1.4, 3.0] E5  0.0364 0.18 38.36% 14.66% 8.19% 4.74% 232

1.4, 3.0 16 00408  0.183 40.09% 15.52% 8.62% 4.74% 3
E % 5.52% 2% 74% 232

4, 3. 1 ,2188 ,36 ,50% 41,38% 8,88% 84% '
1.4, 3.0 E10 0,2 0,367 62,50% 1,38% 28,88% 22,84% 232
TRAIN+TEST
[0.2, 1.0] E23  -0.0911 0.23 46.24% 23.18% 13.77% 9.03% 1583
0.2, 1.0] Bs 00174 C0.01  2L.04% 4.17% 1.58% 0.82% 158
- - a M

[0.2, 1.0] E16 -0.0326 0142 300195 Gm5 U s 2-65% 1583

(0.2, 1.0 E10 -0,1877 0,287 63,93% 39,55% 27,48% 19,08% 1583

[1.4, 3.0] E23  0.1238  0.269 56.24% 30.74% 18.69% 12.49% 1145

[1.4, 3.0] E5 00271  0.139 31.44% 9.61% 3.93% 2.10% 1145

[1.4, 3.0] E16 00492  0.183 39.83% 14.93% 7.95% 4.37% 1145

[1.4, 3.0] E10  0.2488 0,37 64,28% 44,02% 32,23% 24,72% 1145




(a) (b)

AEEEEEE SN

(e)

Figure B1. Experiment E5: (a) Spectroscopic vs photometric redshift distribution on the test set(758 objects); (b) spectroscopic vs
photometric redshift distribution on the whole set, train + test set (3787 objects); (c) binned redshift distribution zspec vs zphot on the
whole set; (d) binned redshift distribution zspec vs Az on the whole set; (e) histogram of Az




Moving programs not data:
the true bottle neck

Data Mining + Data Warehouse =
Mining of Warehouse Data

For organizational learning to take place, data from must be gathered together and

organized in a consistent and useful way — hence, Data Warehousing (DW);
DW allows an organization to remember what it has noticed about its data;
Data Mining apps should be interoperable with data organized and shared between DW.

Interoperability scenarios

Data+apps

DA1 Exchange Full interoperability between DA (Desktop Applications) N\DS

¥ DA2 Local user desktop fully involved (requires computing power) \\

Data+apps | Full WA - DA interoperability
Exchange Partial DA - WA interoperability (such as remote file storing) ON\DS
N WA MDS must be moved between local and remote apps N

user desktop partially involved (requires minor computing and storage power)

Data+apps

Except from URI exchange, no interoperability and different accounting policy
Exchange

MDS must be moved between remote apps (but larger bandwidth)

WA

~\ WA No local computing power required




The Lernaean Hydra DAME KDD

After a certain number of such iterations...

The scenario will
become:

No different WSs, but simply one
WS with several sites (eventually
with different GUIs and
computing environments)

All WS sites can become a mirror
site of all the others

The synchronization of plugin
releases between WSs is
performed at request time

Minimization of data exchange
flow (just few plugins in case of
synchronization between mirrors)

ES MDS*




A new discipline in the making: Astrolnformatics

Machine learning Formation of a new
Data structures generation of
scientists
Advanced programming

Computer networks
languages

visualization

Data mining Databases Numerical analysis

Computational

' Semantics
infrastructures

Very lively Community - Astrolnformatics International Conferences

2010 — Pasadena o Aetroint " oo
2011 — Napoli oin us on Astroinformatics page on Faceboo

2012 — Redmond (Microsoft) IVOA — IG on KDD WIKI
2013 — South Africa el




CONCLUSIONS

1. Astronomy has become data rich.

Bad things: most data will be lost if new technologies (ITC) are not exploited to their
best, need for computational power, need to transform the profession

Good things: enormous potential for new discoveries (also from archives),
New attraction power for many (larger and richer) communities (astronomical data
are complex, large and FREE....), possibility to exploit advances in similar fields

2. Telescopes (also robotic networks) in order to be competitive need
to be cutting edge technology and are expensive.

Their optimal use makes them very very expensive (software
engineers, programmers, data managers, computing infrastructures,
etc.)




CONCLUSIONS

3. Resources are concentrated in few countries, intelligence and know
how are not ... and both trends will continue in the future

4. data overabundance calls for shorter (-> 0) proprietary periods and
therefore the capability of making discoveries will more and more
depend on the capability to extract information from complex data ...

Data producers will require advanced know-how in data processing and powerful
computational facilities (could be also exchanged for time?)

Astronomers of the future will see less and less of telescopes and more and more of
large computational infrastructures (need for investements in changing the way we
teachit...)

5. ASTROINFORMATICS
Is not just using computers for astronomy




THE END

Machine

Learningx-lnformabics

Paradigm KDD WEB2.0
LSST




