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Summary

* methodological introduction on the problems posed by the data tsunami &

why DM and SPR are a need !!
e some classification and clustering methods and their applications to some

problems in observational cosmology
e possible applications in an evolving scenario
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Summary

* methodologicalintroduction on the problems posed by
the data tsunami & why DM and SPR are a need !!

e some classification and clustering methods and their

applications to two problems in observational cosmology
(Photometric redshifts and QSO candidates
identification)

* Future developments and possible applicationsin an
evolving scenario

ASl, July 2010



Part | — the scenario
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The role of technology

Most discoveries take place
immediately after a
technological breaktrough
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All discoveries

And now, the
question is....
Where to search ...
for the next

discoveries?
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Next breakthrough will be in data fusion and access

e We have almost reached the physical limit of observations ( i.e. single photon

counting) at almost all wavelenght...
* Detectorsare linear
e All electromagnetic bands have been opened...

Hence technological breakthrough can be in:

* Accuracy (lower flux limits, increased statistics)
* Sampling (angular resolution, time domain)
 Complexity (data fusion, data mining, modeling, etc.)

New insights will depend mainly on:

e Capability to ACCESS AND MERGE heterogeneous information (multi-epoch, multi-
A, etc.)

* Capability to recognize patterns or trends in the parameter space (i.e. physical
laws) which are not limited to the human 3-D visualization

e Capability to extract patterns from very large multiwavelenght, multiepoc
multi-technique parameter spaces




Vesuvius, now

The parameter space

Any observed (simulated) datum p defines a point (region)

in a subset of RN Es:

RA and dec

* time

e A

* experimental setup (spatial and spectral resolution, limiting mag,
limiting surface brightness, etc.) parameters

* fluxes
* polarization R.A N
« Etc.  d peR N >>100

The parameter space concept is crucial to:

1. Guide the quest for new discoveries
(observations can be guided to explore poorly
known regions), ...

2. Find new physical laws (patterns)

3. Etc,



Every time you improve the coverage of the PS....

Every time a new technology enlarges the parameter space or allows a better sampling
of it, new discoveries are bound to take place
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Improving coverage of the Parameter space - Il

Age of the universe

Projection of parameter space along
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 Calibrated data
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1/160.000 of the sky, moderately
deep (25.0inr)

55.000 detected sources
(0.75 mag above m lim)
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Computational (HW+SW) challenges: LSST

Acquisition
Infrastructure

Observatory
Control
System

Data Products

Eng/Facility
Data
Archive

Alert
Production

Image Process
Detection
Association
Moving Object

Alert Processing

Source
Catalog

Application Framework

Data Release
Production

Moving Object

Deep Detection

Photometric Calib

Astrometric Calib
Image Coadd
Classification

Science Data QA

Object

Catalog

Orbit
Catalog

Calibration
Products
Production

Illumination Correction

Pupil Ghost Images

Crosstalk Matrix

Flats & Bias

Fringe Images

Alert

Archive

User Tools
(Query, Data
Quality
Analysis,
Monitoring)

Calibration
Data
Products

Per Night

e 15 TB of images

e 1 TB catalogs

* 60 sec alerts for 10°-10°
Objects

Per Year
® 6.5 PB per year of images
and catalogs

Lifetime

e 10 B Stars and 10 B Galaxies
® 60-70 PB of images

Courtesy of Krughoff— Astroinformatics 2010



Part ||
DATA MINING IN ASTRONOMY

We would all testify to the
growing gap between the
generation of data and our
understanding of it ...

lan H. Witten & E. Frank, Data Mining, 2001




The astroinformatics domain

Data Gathering (e.g., new generation instruments ...)

Data Farming:
Storage/Archiving
Indexing, Searchability
Data Fusion, Interoperability, ontologies, etc.

Data storage , Pbytes
Data access >103 access

> Data Mining (or Knowledge Discovery in Databases):

Pattern or correlation search

Clustering analysis, automated classification
Outlier / anomaly searches
Hyperdimensional visualization

-> Data visualization and understanding

Computer aided understanding
KDD
Etc.

. New Knowledge

Scalability: Petaflops, Exaflops
Computing power (multicore)
Algorithm: parallelism
Visualization: N-dimensional




Data storage (problem to be solved)

10000

Memory of
------------------------------------------------------ " Today’s
100 Biggest
System

1000

10 H

Terabytes

Elaboration
needs to

o & N take place
"ﬁﬁ @*ﬁ &# ¥ ‘5‘(’& 5 g" & @“1‘@ where the

o «ﬁ*“ a‘? & data are

From Alex Szalay, “ Amdahl’s Law and Extreme Data—lntenswe Computing,”
2010 Salishan Conf. on High Speed Computing

Expected growth rates can exceed 1 PB/year for Raw Data - LSST may reach 100 PB!




Donald Rumsfeld’s explanation of data mining
(but he did not know...)

There are known knowns, ——p Classification
There are known unknowns, and Morphological classification
y 4

of galaxies

There are unknown unknowns Star/galaxy separation, etc.

Regression
Photometric redshifts

Donald Rumsfeld’s _——

about Iraqi war .+

Clustering

Search for peculiar and rare
objects,

Etc.

Courtesy S.G. Djorgovski



Scalability of most relevant astronomical algorithms

e Querying: spherical range-search O(N), orthogonal range-search O(N), spatial join
O(N2), nearest-neighbor O(N), all-nearest-neighbors O(N?)

* Density estimation: mixture of Gaussians, kernel density estimation O(N?2), kernel
conditional density estimation O(N3)

» Regression: linear regression, kernel regression O(N2), Gaussian process
regression O(N3)

* Classification: decision tree, nearest-neighbor classifier O(N2), nonparametric
Bayes classifier O(N2), support vector machine O(N3)

e Dimension reduction: principal component analysis, non-negative matrix
factorization, kernel PCA O(N3), maximum variance unfolding O(N3)

e Outlier detection: by density estimation or dimension reduction

e Clustering: by density estimation or dimension reduction, k-means, meanshift
segmentation O(N2), hierarchical (FoF) clustering O(N3)

e Time series analysis: Kalman filter, hidden Markov model, trajectory tracking
O(N")

e Feature selection and causality: LASSO, L1 SVM, Gaussian graphicalmodels,
discrete graphical models

e 2-sample testing and testing and matching: bipartite matching O(N2), n-point
correlation O(N")

Courtesy of A. Gray — Astroinformatics 2010



Brute force is not a solution

Exascale (needed for crosscorrelation on
archives like LSST: Exascale = 1,000X capability
of Today

e Exascale != Exaflops but

Exascale at the data center size => Exaflops
Exascale at the “rack” size => Petaflops for
departmental systems

Exascale embedded => Teraflops in a cube

We should be OVERJOYED if all
You need is:

e JUST a Million cores
®* ONLY 1 Nuclear Power Plant

It took 14+ years to get from * MINIMAL programming support

1st Petaflops workshop: 1994, thru NSF studies,
HTMT, HPCS ... to give us to Petaflops in 2009

Better algorithms are needed

Adapted from Kogge— Astroinformatics 2010



The DAME architecture
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Vobs standards and S gres 2= ,
infrastructure Data mining |EVE|

Associative networks
Clustering
Principal components
Self-Organizing Maps

Information New Knowledge or
Data Sources Extracted causal connections
Images Shapes & Patterns between physical
Catalogs Science Metadata 1 events within the
Time series Distributions & science domain
Simulations Frequencies
Model Parameters

Neural Networks
Bayesian Networks
Support Vector Machines

-
, - b’escia@na. astro.it
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What iS DAME 00 o &5 Iat_i'o_n'

DAME is a joint effort between University Federico Il, INAF-OACN, and Caltech aimed at
implementing (as web application) a scientific gateway for data analysis, exploration,
mining and visualization tools, on top of virtualized distributed computing environment.
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Launch Experiments
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http://voneural.na.infn.it/
http://dame.na.infn.it/

DAME front-end

AERCEREE CRORGIGE

€ C M % http://dame.scope.unina.it:3080/FrontEnd/ » O~ &~

(5] DAME Application =

| Workspace Manager | v Files Manager

fj#/ New Workspace |~} Download File Last Access x Delete
_iu.-
Workspace |~ Upload ( Experiment # Rename "w Delete No #ems to show.

No items to show.

v Experiment Manager

Experiment Status Last Access x Delete

Vv Help SECTION

No items to show.




DAME plugin wizard

File Help

Plugin Informations

Mame Example

Documentaticn http: /v someurl.edufurl
Version 1.0
Domains dustering

Components

Owner Informations

Owner Name John Smith

Owner Mail johni@someurl.edu

Running Modes Informations

Train Documentaticn http: f . someurl, edu/#train
Running Time 0

Test I:‘ Documentation
Running Time [u}

Run |:| Documentaticn
Running Time 0

Full I:‘ Documentaticn

Running Time 0

, Train
- || Fields

© i # someField
, Input Files
© e s inputFie
-} Output Files

5

Mame

Description

Format

is Partisl

output

Cutput File

votable

[ Add ] [ Delete




,/.’F"F'R“V*
-DAta Mining
‘?:}:‘J':&J‘ g

Other DAME based
WEB applications

VO-GClusters — Web application for globular clusters (in coll. with M. Castellano, INAF-

DATA LAYER DATA ACCESS & PROCESS SERVICE LAYER FRONTEND LAYER
LAYER
<<component>> £| <<component>> ]
VOGCACCESS @ XML Docunent bbbl
INY“‘éE l
- <<component>> &]
T m—e JDBG Cenneciion SERVER ki Data npis, O utoul

- SRR | |
DATABASE l PSA : :
| | INTER =,

—

USER INTERFACE

VOGClusters is a sub-framework within DAME for the exploration and mining of VObs
data archives for anything related to Globular clusters

Functionalities

* Cross-correlation of complex and bibliographic data
* Interoperability of distributed archives



Part Il
DAME APPLICATIONS TO ASTRONOMY




Supervised methods

They learn how to partition the parameter space by means of a training phase based
on examples.

Neural Networks such as the Multi Layer Perceptron (MLP), Support Vector Machines (SVM),
etc.

Pro’s & Con’s

 They are good for interpolation of data, very bad for extrapolations

* They need extensive bases of knowledge (i.e. uniformously sampling the parameter
space) which are difficult to obtain;

* Errors are easy to evaluate

* Relatively easy to use

 They reproduce all biases and preconceived ideas present in the BoK



Unsupervised (clustering) methods

They cluster the data relying on their statistical properties only
Understanding takes place through labeling (very limited BoK).

Generative Topographic Mapping (GTM), Self Organizing Maps (SOM), Probabilistic Principal
Surfaces (PPS), Support Vector Machines (SVM), etc.

Pro’s & Con’s

* Intheory they need little or none knowledge a-priori
Do not reproduce biases present in the BoK

* Evaluation of errors more complex (through complex statistics)
e They are computationally intensive
 They are not user friendly (... more an art than a science; i.e. lot of experience required)
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ABSTRACT

We present a supervised neural network approach to the determination of photometric redshifts. The method wa:s
fine-tuned to match the characteristics of the Sloan Digital Sky Survey, and as base of “a priori” knowledge, it ex:
ploits the rich wealth of spectroscopic redshifts provided by this survey. In order to train, validate, and test the net:
works, we used two galaxy samples drawn from the SDSS spectroscopic data set, namely, the general galaxy sample
(GG) and the luminous red galaxy subsample (LRG). The method consists of a two-step approach. In the first step
objects are classified as nearby (z < 0.25) and distant (0.25 < z < 0.50), with an accuracy estimated as 97.52%. I
the second step, two different networks are separately trained on objects belonging to the two redshift ranges. Using ¢
standard multilayer perceptron operated in a Bayesian framework, the optimal architectures were found to require ong
hidden layer of 24 (24) and 24 (25) neurons for the GG ( LRG) sample. The final results on the GG data set give ¢
robust o, ~ 0.0208 over the redshift range [0.01,0.48] and o, ~ 0.0197 and ~ 0.0238 for the nearby and distan
samples, respectively. For the LRG subsample we find instead a robust o, ~ 0.0164 over the whole range, anc
a. =~ 0.0160 and ~ 0.0183 for the nearby and distant samples, respectively. After training, the networks have bee1
applied to all objects in the SDSS table GALAXY matching the same selection criteria adopted to build the base o
knowledge, and photometric redshifts for circa 30 million galaxies having z < 0.5 were derived. A catalog containing
redshifts for the LRG subsample was also produced.



The Sloan Digital Sky Survey (SDSS) data set & BoK
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hybrid interpolation+nearest neighbor

» the color space is partitioned (KD-tree - a binary search tree ) into cells containing the same
number of objects from the training set
 In each cell fit a second order polynomial.

Kd—tree cell=

local i in

=i T R | i 1 1 I T | -IIIIIIIIIIIIIIIIIIIIII—
[ g3 4 g -2 V] o 4 8 a8

u-g

Fig. 4.— On the nght we plot & 2 dimensional demonstration of the color space partitionmg. In
each of these cells we applied the polynomisl fitting technique to estimate redshifts. The left figure
show the results.



Multi Layer Perceptron

INPUT " OUTPUT

feed back

e input layer (n neurons)

e M hidden layer (1 or 2)

e Output layer (n' <n neurons)

Neurons are connected via activation functions

Different NN's given by different topologies,
different activation functions, etc.

Hidden
layer




VO-Neural approach

MLP, 1(5), 1(18)

! !

c rob =0.196 o rob =0.201




VO-Neural results
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Uneven coverage of parameter space:

General galaxy sample LRG sample

if‘.JIG — 0.0208 - 0.4 8.5 0.0 a1 G.2 = 0.3 0.4 0.5 G = 0.0178
Az =-0.0029 Az =-0.0011
Non LRG only

c = 0.0363
Az =-0.0030




Errors can be easily evaluated
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Science with Dame 1. Photometric redshifts of galaxies

What do we learn if the BoK is biased:

* At high z LRG dominate and interpolative
methods are not capable to “generalize” rules

* An unique method optimizes its performances
on the parts of the parameter space which are
best covered in the BoK

Gating Network

Step 1 Step 2 -

Step 3:
unsupervised clusteringin supervised training of output of all NN go to WGE
parameter space different NN for each cluster which learns the correct
answer

M1 on BoK

mm

M4 on BoK

Laurino et al. 2009a,2009b



Science with Dame 1. Photometric redshifts of galaxies

c =0.0172

] 0.4 — No systematic trends

~ Single NN

[ L L L L L L
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0 5.5
zphot 1

ool . . . . . . . . .
00 05 1.0 15 20 25 3.0 35 40 45 50 55
zphot 1

IPAC-Pasadena, August 5 2009



PART Il - applications to observational cosmology

Photometric selection of candidate QSO’s
(as a clustering problem)

Traditional way to look

A Generic Machine-Assisted Discovery Problem:
. . Data Mapping and a Search for Outliers
for candidate QSO in 3 03
. e
band survey L Cutoff line T :
I ' \

(r—i)

Adding one
feature improves

separation...

p1
Candidate QSOs Ambiguity
for spectroscopic zone
follow-up’s

PPS projection of a 21-D parameter space showing as blue dots the candidate

quasars.Notice better disentanglement
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Science with Dame

1. SDSS selection algorithm

SDSS QSO candidate selection algorithm (Richards et al, 2002) targets star-like objects as QSO
candidate according to their position in the SDSS colours space (u-g,g-r,r-i,i-z), if one of these

requirements is satisfied:
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» QSOs are supposed to be placed >4c0
far from a cylindrical region containing
the “stellar locus” (S.L.), where o
depends on photometric errors.

OR

» QSOs are supposed to be placed inside
the inclusion regions, even if not
meeting the previous requirement.

c=95%, e=65%
locally less




1.inclusion regions are regions where S.L. meets QSQO’s area (due to absorption from
Lya forest entering the SDSS filters, which changes continuum power spectrum power
law spectral index). All objects in these areas are selected so to sample the [2.2, 3.0]
redshift range (where QSO density is also declining), but at the cost of a worse
efficiency (Richards et al, 2001).

2.exclusion regions are those regions outside the main “stellar locus” clearly populated
by stars only (usually WDs). All objects in these regions are discarded.

Overall performance of the algorithm: completeness c = 95%,
efficiency e = 65%, but locally (in colours and redshift) much less.



Science with Dame 1. Probabilistic Principal Surfaces
2. Negative Entropy Clustering

t2 -

Step 1: Unsupervised clustering i

X2

PPS determines a large number of distinct groups of
objects: nearby clusters in the colours space are mapped
onto the surface of a sphere.
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Step 2: Cluster agglomeration

] NEC aggregates clusters from PPS to a (a-priori
unknown) number of final clusters.

1. Plateau analysis: final number of clusters
N(D) is calculated over a large interval of D,

Gaussian
distribution

EE D LR R n R A and critical value(s) D are those for which a
K ’ plateauis visible.
NegE=750 NegE=4 2. Dendrogram analysis: the stability

threshold(s) D can be determined observing
the number of branches at different levels of
the graph.



Science with Dame 1. DAME Selection Algorithm
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To determine the critical dissimilarity Dtn
threshold we rely not only on a stability
requirement.

A cluster is successful if fraction of confirmed
QSO is higher than assumed fractionary value

(Th)

Dth is required to maximize NSR

Number of successful clusters
Number of total clusters

NSR =

The process is recursive: feeding merged
unsuccessful clusters in the clustering pipeline
until no other successful clusters are found.

The overall efficiency of the process etot is the
sum of weighed efficiencies ej for each
generation:

n
Etot= D e
i=1



of “tuning”
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An example

Choice of the clustering
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e and ¢ estimation

To assess the reliability of the algorithm,
the same objects used for the “training”
phase have been re-processed using
photometric informations only. Results
have been compared to the BoK.

labels

QSOs not QSOs

algorithm

QSOs 759 72

not QSOs 83 1327

e=83.4% c=89.6%
\ J

Confusion matrix




Science with Dame 1. Experiment2

u-gvsg-r r-Jvsd-K

T T T T T T
Confirmed not-QS0s t Confirmed not-050s
Confirmed QSOs +  Confirmed Q50s

g-r
J-K

-1 o

nly a fraction (43%) of these objects have been selected as candidate QSO’s bQ
DSS targeting algorithm in first instance: the remaining sources have been included
in the spectroscopic program because they have been selected in other spectroscopic
rogrammes (mainly stars). )




| Science with Dame 1. Experiment2
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In this experiment the clustering has been performed on the same sample of the previous
experiment, using only optical colours.



Efficiency e for goal-successful clusters
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Science with Dame

Efficiency e for goal-successful clusters

1.

Experiment 2

Efficiency e for goal-successful clusters




Experiment 2: local values of ¢

Completeness c for goal-successful clusters Completeness ¢ for goal-successful clusters
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; | Science with Dame 1. Experiment summary

Optical QSO 2
candidates SDSS colours ‘specClass’ | 83.4 % 89.6 % (3,0)
(1) ( 0.3%) | ( 0.6 %)
Optical + 3
NIR star-like | SDSS colours + | ‘specClass’ | 91.3 % 90.8 % (3,1,0)
objects UKIDSS colours ( 0.5%) | ( 0.5%)
(2)
Optical + 3
NIR star-like | SDSS colours ‘specClass’ | 92.6 % 91.4 % (3,0,1)
objects ( 0.4%) | ( 0.6 %)
(3)

The catalogue of candidate quasars is publicly available at the URL:

http://voneural.na.infn.it/catalogues qgsos.html

BUT ... LET’S GO BACK TO PHOT-Z



http://voneural.na.infn.it/catalogues_qsos.html
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No need for fine tuning !!!

Only New BoK !!!
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Science with Dame

1. Photometric redshifts of QSOs
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SDSS + GALEX NUV
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Laurino et al. 2009a,2009b



xploration_ .

T ) ‘vE"'b\\'v ) 1. Photometric redshifts of QSOs
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1.

Photometric redshifts of QSOs

25pec

Laurino et al. 2009a,2009b
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1. Photometric redshifts of QSOs

Science with Dame

. Errors:

251

Input noise: error propagation on the input
parameter (Ball et al. 2008)

Model variance: different models make differing
predictions (Collister & Lahav 2004)

Model bias: different models may be affected by
different biases.

Target noise: in some regions of the parameter
space, data may represent poorly the relation
between featured and targets (Laurino 2009).
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Laurino et al. 2009a,2009b



So far restricted choice of problems

Tagliaferri et al. 2003

S/G separation

Morphological classification of galaxies
(shapes, spectra)

Spectral classification of stars
Image segmentation

Noise removal
(grav. waves, pixel lensing, images)

Photometric redshifts (galaxies)
Search for AGN
Variable objects

Partition of photometric parameter space
for specific group of objects

Planetary studies (asteroids)
Solar activity
Interstellar magnetic fields

Stellar evolution models

S/G separation

Morphological classification of galaxies
(shapes, spectra)

Spectral classification of stars

Photometric redshifts (galaxies, QSO’s)
Search for AGN and QSO
Time domain

Partition of photometric parameter space for
specific group of objects

Planetary studies (asteroids)

Solar activity

Ball & Brunner 2009 m

Y
Y



Limited number of problems due to limited number of reliable BoKs

Bases of knowledge
(set of well known templates for supervised (training) or unsupervised (labeling) methods

So far

e Limited number of BoK (and of limited scope) available
* Painstaking work for each application (es. spectroscopic redshifts for photometric redshifts training).
* Fine tuning on specific data sets needed (e.g., if you add a band you need to re-train the methods)

Bases of knowledge need to be built automatically from Vobs Data repositories

Community believes Al/DM methods are black boxes
You feed in something, and obtain patters, trends, i.e. knowledge....

&
. e
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Exposed to a wide choice of algorithms to solve a problem, the r.m.s. astronomer usually panics and is
not willing to make an effort to learn them ....

The r.m.s astronomer doesn’t want to become a computer scientist or a mathematician
(large survey projects overcome the problem)

Tools must run without knowledge of GRID/Cloud no personal certificates, no deep understanding of the DM tool etc. )

Formation of a new

© g generation of experts
3 v ‘ — ) » (...... suggesting the solutions)

AND/OR

Implementation of a second

eneration of tools
g, i —> “—> ﬁ\ seneron et
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Summary and Conclusions II.

Sociological issue to be solved.
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Number of technical/algorithmic papers increases with new funding opportunities. Number
of refereed papers remains constant.

Most of the work, so far, remains at the implementation stage (computer Science and
algorithm development) and does not enter the “science production” stage...

Out of one thousand papers checked (galaxies, observational cosmology, survey) over the

last two years: DM could be applied or involved in at least 30% of them leading to better
results

B ML+AI ref
M SPRref.
M NN ref

H KD ref

= ML+Al all
m SPRall

= NN all
mKDall



Recent past

Now

Near Future

Separated archives and data centers
(few TB)

No common standards (*.fits)

Little bandwith (10/50 Kb s1)

Single CPU processing

Few objects, few information
(parameter space ~ 10 features)

Traditional statistics

Federated archives and data centers
(10— 100 Thyte)

Common standards (*.fits, *.vot, etc.)

Larger bandwith (100-1000 Kb s1)
(last mile problem)

Still single CPU processing

Research praxis

Many objects , much information ,/

(parameter space > 100 features)y
1

\
\

\
\

Multi variate statistics

\

/

Virtual Observatory, LSST, SKA
(1-1000 Pbyte)

Common standards (*.fits, *.vot, etc.)

Largerbandwith (>1-10 Gb s)

GRID/Cloud computing/Multicore

7/

Whole sky, multi-A, multi epoch catalogues
(parameter space > 100 features)

Statistical Pattern Recognition (DM and ML)

This is only a part of the game

(size and not complexity driven)



Future developments and some conclusions

e Better visualization tools for high dimensionality data
* More machine learning methods

* Parallelization of some codes



Visualization of high dimensionality spaces
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Courtesy of S. V. Lombeyda— Astroinformatics 2010




(read order)

2
3
4
5
6

S. V. Lombeyda

(attribute)

position (x,y)
shape

hue

left features
right features }

vibration, sound, etc...




Useful links

DAME: http://voneural.na.inf.it/

IVOA: http://www.ivoa.org/

MICA (Meta Institute for Computational
Astrophysics) in Second Life:
http://www.mica.org/
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http://voneural.na.inf.it/
http://www.ivoa.org/
http://www.mica.org/
http://www.mica.org/

MICA Amphitheater




