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Summary

• methodological introduction on the problems posed by the data tsunami & 
why DM and SPR are a need !!

• some classification and clustering methods and their applications to some 
problems in observational cosmology

• possible applications in an evolving scenario
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Summary

• methodological introduction  on the problems posed by 
the data tsunami & why DM and SPR are a need !!

• some classification and clustering methods and their 
applications to two problems in observational cosmology
(Photometric redshifts and QSO candidates 
identification)

• Future developments and possible applications in an 
evolving scenario



Part I – the scenario
1. Stars
2. Planets
3. Novae
4. Comets
5. Satellites
6. Rings
7. Galactic clusters
8. Galaxy clusters
9. Interplanetary dust
10. Asteroids
11. Binary stars
12. Variable stars
13. Planetary nebulae
14. Globular clusters
15. HII regions
16. Cold ISM
17. Giant stars
18. Cosmic rays
19. Pulsating variables
20. White dwarfs
21. Galaxies
22. Expansion of universe
23. Cosmic dust
24. Supernovae/novae
25. Gas in galaxies
26. SN remnants

27. Radiogalaxies
28. Magnetic variables
29. Flare stars
30. Intergalactic magnetic

fields
31. X stars
32. X background
33. Quasar
34. CMB
35. Masers
36. Infrared stars
37. X galaxies
38. Pulsar
39. Gamma background
40. IR galaxies
41. Superluminal sources
42. GRB
43. Unidentified radio 

sources
44. …
45. ….

From M.Harwit, Cosmic discoveries



The role of technology

Most discoveries take place
immediately after a 
technological breaktrough All discoveries

before 1954
after 1954
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And now, the 
question is…. 
Where to search … 
for the next
discoveries?



• We have almost reached the physical limit of observations ( i.e. single photon

counting) at almost all wavelenght…
• Detectors are linear
• All electromagnetic bands have been opened…

Hence technological breakthrough can be in:

• Accuracy (lower flux limits, increased statistics)
• Sampling (angular resolution, time domain)
• Complexity (data fusion, data mining, modeling, etc.)

New insights will depend mainly on:

• Capability to ACCESS AND MERGE heterogeneous information (multi-epoch, multi-
, etc.)

• Capability to recognize patterns or trends in the parameter space (i.e. physical
laws) which are not limited to the human 3-D visualization

• Capability to extract patterns from very large multiwavelenght, multiepoch, 
multi-technique parameter spaces

Next breakthrough will be in data fusion and access
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Any observed (simulated) datum p defines a point (region) 

in a subset of RN. Es:
• RA and dec
• time
•

• experimental setup (spatial and spectral resolution, limiting mag, 
limiting surface brightness, etc.) parameters

• fluxes
• polarization
• Etc. 100Np N     

The parameter space concept is crucial to:

1. Guide the quest for new discoveries
(observations can be guided to explore poorly
known regions), …

2. Find new physical laws (patterns) 

3. Etc,

The parameter space Vesuvius, now



Every time a new technology enlarges the parameter space or allows a better sampling
of it, new discoveries are bound to take place

Every time you improve the coverage of the PS….

quasars

LSB

Discovery of
Low surface brightness
Universe

Malin 1 

Fornax dwarf

Sagittarius



Projection of parameter space along
(time resolution & wavelength) 

Improving coverage of the Parameter space - II

Projection of parameter space along
(angular resolution & wavelength) 
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Calibrated data 1/160.000 of the sky, moderately

deep (25.0 in r)

55.000 detected sources
(0.75 mag above m lim)
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p={isophotal, petrosian, aperture magnitudes
concentration indexes, shape parameters, etc.}

N >109, D>>100, i>>10



Per Night
• 15 TB of images
• 1 TB catalogs
• 60 sec alerts for 105-106

Objects

Per Year
• 6.5 PB per year of images
and catalogs

Lifetime

• 10 B Stars and 10 B Galaxies
• 60-70 PB of images

Computational (HW+SW) challenges: LSST

Courtesy of Krughoff– Astroinformatics 2010



Part II
DATA MINING IN ASTRONOMY

We would all testify to the
growing gap between the
generation of data and our
understanding of it …

Ian H. Witten & E. Frank, Data Mining, 2001



The astroinformatics domain

Data Gathering (e.g., new generation instruments …)

Data Farming: 
Storage/Archiving
Indexing, Searchability
Data Fusion, Interoperability, ontologies, etc.

Data Mining (or Knowledge Discovery in Databases):

Pattern or correlation search
Clustering analysis, automated classification
Outlier / anomaly searches
Hyperdimensional visualization

Data visualization and understanding
Computer aided understanding
KDD
Etc.

New Knowledge

Data storage , Pbytes
Data access >103 access

Scalability: Petaflops, Exaflops
Computing power (multicore)
Algorithm: parallelism
Visualization: N-dimensional



From Alex Szalay, “ Amdahl’s Law and Extreme Data-Intensive Computing,”
2010 Salishan Conf. on High Speed Computing

Expected growth rates can exceed 1 PB/year for Raw Data - LSST may reach 100 PB!

Memory of
Today’s
Biggest
System

Elaboration
needs to
take place
where the 
data are

Data storage (problem to be solved)



Donald Rumsfeld’s explanation of data mining 
(but he did not know…)

There are known knowns,
There are known unknowns, and

There are unknown unknowns

Donald Rumsfeld’s 
about Iraqi war

Classification
Morphological classification
of galaxies
Star/galaxy separation, etc.

Regression
Photometric redshifts

Clustering
Search for peculiar and rare 
objects,
Etc.

Courtesy S.G. Djorgovski



Scalability of most relevant astronomical algorithms

• Querying: spherical range-search O(N), orthogonal range-search O(N), spatial join 
O(N2), nearest-neighbor O(N), all-nearest-neighbors O(N2)

• Density estimation: mixture of Gaussians, kernel density estimation O(N2), kernel
conditional density estimation O(N3)

• Regression: linear regression, kernel regression O(N2), Gaussian process
regression O(N3)

• Classification: decision tree, nearest-neighbor classifier O(N2), nonparametric 
Bayes classifier O(N2), support vector machine O(N3)

• Dimension reduction: principal component analysis, non-negative matrix
factorization, kernel PCA O(N3), maximum variance unfolding O(N3)

• Outlier detection: by density estimation or dimension reduction 
• Clustering: by density estimation or dimension reduction, k-means, meanshift

segmentation O(N2), hierarchical (FoF) clustering O(N3) 
• Time series analysis: Kalman filter, hidden Markov model, trajectory tracking

O(Nn)
• Feature selection and causality: LASSO, L1 SVM, Gaussian graphicalmodels, 

discrete graphical models
• 2-sample testing and testing and matching: bipartite matching O(N3), n-point 

correlation O(Nn)
Courtesy of A. Gray – Astroinformatics 2010



Exascale (needed for crosscorrelation on 
archives like LSST: Exascale = 1,000X capability 
of Today

• Exascale != Exaflops but
Exascale at the data center size => Exaflops
Exascale at the “rack” size => Petaflops for
departmental systems
Exascale embedded => Teraflops in a cube

It took 14+ years to get from
1st Petaflops workshop: 1994, thru NSF studies, 
HTMT, HPCS … to give us to Petaflops in 2009

We should be OVERJOYED if all
You need is:

• JUST a Million cores
• ONLY 1 Nuclear Power Plant
• MINIMAL programming support

Adapted from Kogge– Astroinformatics 2010

Brute force is not a solution

Better algorithms are needed



The DAME architecture

FRONT END
WEB-APPL.

GUI

FRAMEWORK
WEB-SERVICE
Suite CTRL

DMPlugin
DMPlugin

DMPlugin
servlet

DRIVER
FILESYSTEM &
HARDWARE I/F

Library

Stand 
Alone GRID CLOUD

REGISTRY & 
DATABASE

USER & 
EXPERIMENT 

INFORMATION

USER 
INFO

USER 
SESSIONS

USER 
EXPERIMENTS

DATA MINING
MODELS

Model-Functionality
LIBRARY RUN

clusteringclustering

DMPlugin
DMPlugin

DMPlugin
MLP

regression

user Client-server  AJAX 
(Asynchronous JAva-
Xml) based;
interactive web  app 
based on Javascript 
(GWT-EXT);

HW env virtualization;
Storage + Execution LIB
Data format conversion

Restful, Stateless Web Service
experiment data, working 
flow trigger and supervision
Servlets based on XML
protocol

XML

XML
CALL

CALL

brescia@na.astro.it



brescia@na.astro.it

Data Sources
Images

Catalogs
Time series
Simulations

Information
Extracted

Shapes & Patterns
Science Metadata

Distributions & 
Frequencies

Model Parameters

KDD
Tools

New Knowledge or 
causal connections
between physical
events within the 
science domain

Associative networks
Clustering

Principal components
Self-Organizing Maps

Neural Networks
Bayesian Networks

Support Vector Machines

Unsupervised methods

Supervised methods

Data mining level
Vobs standards and 

infrastructure



What is DAME

DAME is a joint effort between University Federico II, INAF-OACN, and Caltech aimed at
implementing (as web application) a scientific gateway for data analysis, exploration,
mining and visualization tools, on top of virtualized distributed computing environment.

http://voneural.na.infn.it/
Technical and management info
Documents
Science cases
Newsletter

http://dame.na.infn.it/
Web application PROTOTYPE

http://voneural.na.infn.it/
http://dame.na.infn.it/


DAME front-end



DAME plugin wizard



Other DAME based
WEB applications

VO-GClusters – Web application for globular clusters (in coll. with M. Castellano, INAF-
OAR) 

VOGClusters is a sub-framework within DAME for the exploration and mining of VObs
data archives for anything related to Globular clusters

Functionalities

• Cross-correlation of complex and bibliographic data 
• Interoperability of distributed archives



Part III
DAME APPLICATIONS TO  ASTRONOMY



Supervised methods

They learn how to partition the parameter space by means of a training phase based
on examples. 

Neural Networks such as the Multi Layer Perceptron (MLP), Support Vector Machines (SVM), 
etc. 

Pro’s & Con’s

• They are good for interpolation of data, very bad for extrapolations
• They need extensive bases of knowledge (i.e. uniformously sampling the parameter

space)  which are difficult to obtain;
• Errors are easy to evaluate
• Relatively easy to use

• They reproduce all biases and preconceived ideas present in the BoK



Generative Topographic Mapping (GTM), Self Organizing Maps (SOM), Probabilistic Principal
Surfaces (PPS), Support Vector Machines (SVM), etc.

They cluster the data relying on their statistical properties only
Understanding takes place through labeling (very limited BoK).

Unsupervised (clustering) methods

Pro’s & Con’s

• In theory they need little or none knowledge a-priori
• Do not reproduce biases present in the BoK

• Evaluation of errors more complex (through complex statistics)
• They are computationally intensive
• They are not user friendly (… more an art than a science; i.e. lot of experience required)





The Sloan Digital Sky Survey (SDSS) data set & BoK

8000 sq degrees
>210 million galaxies
data are public

Extensive but biased
spectroscopic BoK:
700.000 galaxy spectra

Benchmark for almost
everything in observational

cosmology

Subsample of about 107 Luminous Red Galaxies (LRG)



=0.051

Some results

=0.0415

z=0.0144



• the color space is partitioned (KD-tree - a binary search tree ) into cells containing the same

number of objects from the training set

• In each cell fit a second order polynomial. 

σ =.023

hybrid interpolation+nearest neighbor



Multi Layer Perceptron

x1

x2

x3

x4

z1

z2

z3

zn

y

input

Hidden
layer

output

• input layer (n neurons)

• M hidden layer (1 or 2)

• Output layer (n' <n neurons)

Neurons are connected via activation functions

Different NN's given by different topologies, 
different activation functions, etc. 

INPUT guess OUTPUT

feedback



SDSS-DR4/5 - SS

training validation Test set 60%, 20%, 20%

MLP, 1(5), 1(18)

0.01<Z<0.25 0.25<Z<0.50 99.6 % accuracy

MLP, 1(5), 1(23) MLP, 1(5), 1(24)

rob = 0.196 rob = 0.201

VO-Neural approach



= 0.0183

SDSS – DR4/5 - LRG

VO-Neural results



Uneven coverage of parameter space:

General galaxy sample LRG sample

= 0.0208
z = -0.0029

= 0.0178
z = -0.0011

Non LRG only

= 0.0363

z = -0.0030



Errors can be easily evaluated

General galaxy sample LRG sample

And are, on average, well behaved…. 



What do we learn if the BoK is biased: 

• At high z LRG dominate and interpolative
methods are not capable to “generalize” rules

• An unique method optimizes its performances
on the parts of the parameter space which are 
best covered in the BoK

Step 1: 
unsupervised clustering in 
parameter space

WGE

Step 3: 
output of all NN go to WGE 
which learns the correct 
answer

result

Laurino et al. 2009a,2009b

M1 on BoK

M2 on BoK

M3 on BoK

M4 on BoK

Step 2: 
supervised training of 
different NN for each cluster

Science with Dame 1. Photometric redshifts of galaxies



Single NN

WGE

= 0.0172

No systematic trends

Science with Dame 1. Photometric redshifts of galaxies

Laurino et al. 2009a,2009b

IPAC-Pasadena, August 5 2009



PART II - applications to observational cosmology
Photometric selection of candidate QSO’s

(as a clustering problem)

IPAC-Pasadena, August 5 2009

Traditional way to look 
for candidate QSO in 3 
band survey Cutoff line

Candidate QSOs
for spectroscopic
follow-up’s

errors

Ambiguity 
zone

PPS projection of a 21-D parameter space showing as blue dots the candidate 
quasars.Notice better disentanglement

Adding one 
feature improves 
separation…



SDSS QSO candidate selection algorithm (Richards et al, 2002) targets star-like objects as QSO
candidate according to their position in the SDSS colours space (u-g,g-r,r-i,i-z), if one of these
requirements is satisfied:

‣ QSOs are supposed to be placed >4σ
far from a cylindrical region containing
the “stellar locus” (S.L.), where σ
depends on photometric errors.

‣ QSOs are supposed to be placed inside
the inclusion regions, even if not
meeting the previous requirement.

c = 95%,  e = 65% 
locally less

OR

Science with Dame 1. SDSS selection algorithm



Overall performance of the algorithm: completeness c =   95%, 

efficiency e = 65%, but locally (in colours and redshift) much less.  

1. inclusion regions are regions where S.L. meets QSO’s area (due to absorption from

Lyα forest entering the SDSS filters, which changes continuum power spectrum power

law spectral index). All objects in these areas are selected so to sample the [2.2, 3.0]

redshift range (where QSO density is also declining), but at the cost of a worse

efficiency (Richards et al, 2001).

2.exclusion regions are those regions outside the main “stellar locus” clearly populated

by stars only (usually WDs). All objects in these regions are discarded.

Science with Dame 1. SDSS selection algorithm



Science with Dame 1. Probabilistic Principal Surfaces
2. Negative Entropy Clustering

Step 1: Unsupervised clustering

PPS determines a large number of distinct groups of 
objects: nearby clusters in the colours space are mapped 
onto the surface of a sphere.

NegE=750 NegE=4

Not replaced! Replaced!

Step 2: Cluster agglomeration 

NEC aggregates clusters from PPS to a (a-priori 
unknown) number of final clusters. 

1. Plateau analysis: final number of clusters 

N(D) is calculated over a large interval of D, 

and  critical value(s) Dth are those for which a 

plateau is visible. 

2. Dendrogram analysis: the stability 

threshold(s) Dth can be determined observing 

the number of branches at different levels of 

the graph. 



i-th generation of clustering

No

Yes

Mahalanobis’

distance

Arbitrary parameters
Nc, Dth, Th

To determine the critical dissimilarity Dth

threshold we rely not only on a stability 
requirement. 

A cluster is successful if fraction of confirmed 
QSO is higher than assumed fractionary value 
(Th)

Dth is required to maximize NSR

The process is recursive: feeding merged 
unsuccessful clusters in the clustering pipeline 
until no other successful clusters are found. 

The overall efficiency of the process etot is the 
sum of weighed efficiencies ei for each 
generation: 

Science with Dame 1. DAME Selection Algorithm



labels

algorithm

e and c estimation

Confusion matrix 

To assess the reliability of the algorithm,

the same objects used for the “training”

phase have been re-processed using

photometric informations only. Results

have been compared to the BoK.

c = 89.6 %e = 83.4 %

An example of “tuning”

Efficiency and completeness

NSR

Choice of the clustering

QSOs not QSOs

QSOs 759 72

not QSOs 83 1327



u - g vs g - r r - J vs J - K

Experiment 2: SDSS ∩ UKIDSS

Only a fraction (43%) of these objects have been selected as candidate QSO’s by

SDSS targeting algorithm in first instance: the remaining sources have been included

in the spectroscopic program because they have been selected in other spectroscopic

programmes (mainly stars).

Science with Dame 1. Experiment 2



In this experiment the clustering has been performed on the same sample of the previous

experiment, using only optical colours.

u - g vs g - r

Experiment 2: SDSS ∩ UKIDSS
Science with Dame 1. Experiment 2



Experiment 2: 
local values of e

Experiment 2: SDSS ∩ UKIDSS
Science with Dame 1. Experiment 2



Experiment 2: local values of c



Sample Parameters Labels etot ctot ngen nsuc_clus

Optical QSO 

candidates

(1) 

SDSS colours ‘specClass’ 83.4 %

( 0.3 %)

89.6 %

( 0.6 %)

2

(3,0)

Optical + 

NIR star-like 

objects

(2)

SDSS colours + 

UKIDSS colours

‘specClass’ 91.3 %

( 0.5 %)

90.8 %

( 0.5 %)

3

(3,1,0)

Optical + 

NIR star-like 

objects

(3)

SDSS colours ‘specClass’ 92.6 %

( 0.4 %)

91.4 %

( 0.6 %)

3

(3,0,1)

The catalogue of candidate quasars is publicly available at the URL: 

http://voneural.na.infn.it/catalogues_qsos.html

BUT … LET’S GO BACK TO PHOT-Z

Experiment 2: SDSS ∩ UKIDSS
Science with Dame 1. Experiment summary

http://voneural.na.infn.it/catalogues_qsos.html


IPAC-Pasadena, August 5 2009

SDSS only SDSS + GALEX NUV

SDSS + GALEX NUV & FUV

Science with Dame 1. Photometric redshifts of QSOs

No need for fine tuning !!!

Only New BoK !!!

Laurino et al. 2009a,2009b



Science with Dame 1. Photometric redshifts of QSOs

Distribution of Z_spec (solid) and Z_phot (dashed) for test set !!!!



Science with Dame 1. Photometric redshifts of QSOs

Laurino et al. 2009a,2009b



Errors: 

• Input noise: error propagation on the input 
parameter (Ball et al. 2008)

• Model variance: different models make differing
predictions (Collister & Lahav 2004)

• Model bias: different models may be affected by 
different biases.

• Target noise: in some regions of the parameter 
space, data may represent poorly the relation 
between featured and targets (Laurino 2009).

Science with Dame 1. Photometric redshifts of QSOs

Laurino et al. 2009a,2009b



So far restricted choice of problems

Tagliaferri et al. 2003 Ball & Brunner 2009 BoK

S/G separation S/G separation Y

Morphological classification of galaxies
(shapes, spectra)

Morphological classification of galaxies
(shapes, spectra)

Y

Spectral classification of stars Spectral classification of stars Y

Image segmentation -----

Noise removal
(grav. waves, pixel lensing, images)

-----

Photometric redshifts (galaxies) Photometric redshifts (galaxies, QSO’s) Y

Search for AGN Search for AGN and QSO Y

Variable objects Time domain

Partition of photometric parameter space
for specific group of objects

Partition of photometric parameter space for
specific group of objects

Y

Planetary studies (asteroids) Planetary studies (asteroids) Y

Solar activity Solar activity Y

Interstellar magnetic fields ----

Stellar evolution models ----



Limited number of problems due to limited number of reliable BoKs

Bases of knowledge
(set of well known templates for supervised (training) or unsupervised (labeling) methods

So far

• Limited number of BoK (and of limited scope) available
• Painstaking work for each application (es. spectroscopic redshifts for photometric redshifts training).
• Fine tuning on specific data sets needed (e.g., if you add a band you need to re-train the methods)

Community believes AI/DM methods are black boxes
You feed in something, and obtain patters, trends, i.e. knowledge….

Bases of knowledge need to be built automatically from Vobs Data repositories 



Exposed to a wide choice of algorithms to solve a problem, the r.m.s. astronomer usually panics and is 
not willing to make an effort to learn them ….

M. N

M. 1

M. 2

………………………………………..

Formation of a new
generation of experts
(…… suggesting the solutions)

AND/OR

Implementation of a second
generation of tools

The r.m.s astronomer doesn’t want to become a computer scientist or a mathematician
(large survey projects overcome the problem)

Tools must run without knowledge of GRID/Cloud no personal certificates, no deep understanding of the DM tool etc. )



IPAC-Pasadena, August 5 2009

Summary and Conclusions II. 
Sociological issue to be solved.
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1. Number of technical/algorithmic papers increases with new funding opportunities. Number
of refereed papers remains constant. 

2. Most of the work, so far, remains at the implementation stage (computer Science and 
algorithm development) and does not enter the “science production” stage…

3. Out of one thousand papers checked (galaxies, observational cosmology, survey) over the 
last two years: DM could be applied or involved in at least 30% of them leading to better
results



Recent past Now Near Future 

Separated archives and data centers
(few TB)

Federated archives and data centers
(10 – 100 Tbyte)

No common standards (*.fits) Common standards (*.fits, *.vot, etc.)

Little bandwith (10/50 Kb s-1)

Few objects , few information
(parameter space ~ 10 features)

Larger bandwith (100-1000 Kb s-1)
(last mile problem)

Many objects , much information
(parameter space  > 100 features)

Single CPU processing Still single CPU processing GRID/Cloud computing/Multicore

Largerbandwith (> 1-10 Gb s-1)

Common standards (*.fits, *.vot, etc.)

Virtual Observatory, LSST, SKA
(1-1000 Pbyte)

Whole sky, multi- , multi epoch catalogues
(parameter space  > 100 features)

Research praxis

Traditional statistics Multi variate statistics Statistical Pattern Recognition (DM and ML)

This is only a part of the game
(size and not complexity driven)



Future developments and some conclusions

• Better visualization tools for high dimensionality data

• More machine learning methods

• Parallelization of some codes



Courtesy of S. V. Lombeyda– Astroinformatics 2010

Visualization of high dimensionality spaces



S. V. Lombeyda



Useful links

DAME: http://voneural.na.inf.it/

IVOA: http://www.ivoa.org/

MICA (Meta Institute for Computational
Astrophysics) in Second Life: 
http://www.mica.org/

http://voneural.na.inf.it/
http://www.ivoa.org/
http://www.mica.org/
http://www.mica.org/


Thanks

MICA Amphitheater


