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An overview

 methodological introduction to why astronomy needs
statistical pattern recognition and data mining

 what | mean for “data mining” and why | believe
that statistics and DM will prove crucial for the
future of astronomy

e some classification and clustering methods

* some applications to observational
cosmology




The company who is making the journey...
(... almost all of them) The VO-Neural /DAME team

Elancarl o e
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An historical perspective (following Eric’s introduction)

1910

Final settling of stellar 1960’s XXI century

statistics, by the work of Photographic wide field Renaissance of

Kapteyn, Oort, etc.) plates (PSS) statistical astronomy
(synoptic surveys )

: o Palomar ,
: R *. LSST (2013)




Discoveries in astronomy

E%}Antichita‘

1 | 1 | 1 1 1 |
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From M.Harwit, Cosmic discoveries
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Stars

Planets

Novae

Comets

Satellites

Rings

Galactic clusters
Galaxy clusters
Interplanetary dust

. Asteroids

Binary stars

. Variable stars

Planetary nebulae
Globular clusters
HIl regions

. Cold ISM
. Giant stars
. Cosmic rays

Pulsating variables

. White dwarfs
. Galaxies

Expansion of universe

. Cosmic dust

Supernovae/novae

. Gas in galaxies
. SN remnants

27.
28.
29.
30.

31.
32.
33.

35.
36.
37.
38.
39.
40.
41.
42.
43.

Radiogalaxies
Magnetic variables
Flare stars
Intergalactic magnetic
fields

X stars

X background

Quasar

CMB

Masers

Infrared stars

X galaxies

Pulsar

Gamma background
IR galaxies
Superluminal sources
GRB

Unidentified radio
sources

44. ..
45. ..



The role of technoloo

Most discoveries take
place immediately after <5a |5-10a]10-25a|25-50a| >50a
a technological
breaktrough

|/

All discoveries “
B2 pefore 1954

after 1954

Number of discoveries




And now, the question is....

Where to search ... for the next discoveries?
And what have statistics and computer
sciences got to do with it?




Considerations on the next breakthroughs

We have reached the physicai iimit of observations
(single photon counting) at almost all wavelenght...
Detectors are linear

All electromagnetic bands have been opened

Hence
Our capability to gain new insights on the universe will depend mainly on:

» Capability to recognize patterns or trends in the parameter space (i.e.
physical laws) which are not limited to the human 3-D visualization

e Capability to extract patterns from very large multiwavelenght,
multiepoch, multi-technique parameter spaces

The answer to these needs is the International Virtual Observatory
which (like it or not like it) is bound to be implemented and to
change the way astronomers work!



Vesuvius, now

The parameter space

Any observed (simulated) datum p defines a point (region) S

in a subset of R Es:

* RA and dec

* time

e A

* experimental setup (spatial and spectral resolution, limiting mag,
limiting surface brightness, etc.) parameters

* fluxes

 polarization

* Etc. R.A
o

peRY N >>100

The parameter space concept is crucial to:

1. Guide the quest for new discoveries
(observations can be guided to explore poorly
known regions), ...

/!\})

2. Find new physical laws (patterns)

3. Etc,



Every time you improve the coverage of the PS....

Every time a new technology enlarges the paramet
better sampling of it, new discoveries ar d

(7]
o
o
c
>

quasars ~Fornax dwarf

- Sagittarius ®

&8 Discovery of
Low surface brightness
Universe

Diameter c¢m



Improving coverage of the Parameter space - Il

Age of the universe

Projection of parameter space along

Supernova remnants (1839)

. P14 i . .
iy 1939 e (time resolution & wavelength)
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is densely packed

iverse
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p={isophotal, petrosian, aperture magnitudes
concentration indexes, shape parameters, etc.}

|
p' = {RA, 6", 6,14, A4, FML AR 07, AF },...,(An,Aln, FIL AR £, Af
p> = {RA%, 82,1, {2, Ad, F21 AR 127 AR AL A, £2 AR £ 20 AR

The scientific exploitation of a multi band, multiepoch (K epochs) universe implies to search
for patterns, trends, etc. among N points in a DxK dimensional parameter space:

N >10° D>>100, K>10



Is it worth the effort? ... YES!

3-D is always better than 2-D 4{/{




We would all testify to the growing
gap between the generation of
data and our understanding of It ...

lan H. Witten & E. Frank, Data Mining, 2001



« astronomy: problems, data, understanding of the data

structure and biases

» statistics: evaluation of the data, falsification/validation

of theories/models, etc.
* computer science: implementation of

infrastructures, databases, middleware, scalable

tools, etc.

statistics



The various parts of the V.O. task

Data Gathering (e.g., from sensor networks, telescopes...)

Data Farming:
Storage/Archiving Database
Indexing, Searchabjlity == — =R —y ~ technologies

Data Fusi’on, eroperability, ontologies, etc.

/ Clustering analysis, automated classification
Outlier / anomaly searches
Hyperdimensional visualization

P ~
#—> Data Mining (or Knowledge Discovery in Databases): N :
Key mathematical

Pattern or correlation search
issues

|
\

> Data understanding

\ Computer aided understanding Ongoing refarch
KDD
\ Etc. /
~ ~ _ o’
~ L New Knowledge -~

e I




PART II

why Data Mining is crucial to face this data tsunami....




Discovery process in the parameter space as a clustering problem

tProees Py

Physical laws as
patterns in mN

Are not independent
(highly degenerated)

()

Need for dimensionality reduction
from N to N’ with N'<<N

Project onto RN’

Anti-transform _ \
Find clustersin SRN

<

Trace clusters

in RN



Where do A.l. may fit into

K.D.D.
Data | Inerpretation |
| Transbomation |I /\

I Knowledge

Prep o cessing
: Pattens :
*Tramﬂ:-nned :
. Diata l I

PIEp:I:n:Eﬁﬁed
Data

A.I. tools
(soft computing techniques)

ﬁ



Knowledge Discovery in Databases (KDD) is in practice still
unknown to most astronomers.

Its purpose is to identify patterns and to extract new knowledge from
databases in which the dimension, complexity or amount of data has
so far been prohibitively large for unaided human efforts.

To implement KDD tools is expensive (time, computing, need for
specialists), requires coordinated efforts between astronomers and

computer scientists and is aimed to fulfill the needs of large projects

Therefore:

it may or may not affect present day astronomical work not based on large
DB.

It will strongly affect any large scale astronomical science




Learning problems as “function approximation”
X =1{X,,%,, X;,...X | iNput vectors

Y ={X,,%,,X,,..X, | targetvectors M << N

N

find f: Y

f(X) isagoodapproximation of Y

variable characteristics operation

Quantitative Numerical with ordering  Actual measurement regression
relationship and
possibility to define a

metric
Categorical Membership into a finite  Numerical codes Classification
(non ordered) umber of classes. (targets) arbitrarily

No ordering relationship. orderd
Ordered Classes orderd by a Numerical codes non  Classification
categorical relationship but there is arbitrarily orderd

no metric




Machine learning methods can be broadly

grouped in:

Supervised methods

They learn how to partition the parameter space by means of a training phase based
on examples.

Neural Networks such as the Multi Layer Perceptron (MLP), Support Vector Machines (SVM),
etc.

Pro’s & Con’s

 They are good for interpolation of data, very bad for extrapolations

* They need extensive bases of knowledge (i.e. uniformously sampling the parameter
space) which are difficult to obtain;

* Errors are easy to evaluate

* Relatively easy to use

* They reproduce all biases and preconceived ideas present in the BoK



Unsupervised (clustering) methods

They cluster the data relying on their statistical properties only
Understanding takes place through labeling (very limited BoK).

Generative Topographic Mapping (GTM), Self Organizing Maps (SOM), Probabilistic Principal
Surfaces (PPS), Support Vector Machines (SVM), etc.

Pro’s & Con’s

* Intheory they need little or none knowledge a-priori
* Do not reproduce biases present in the BoK

* Evaluation of errors more complex (through complex statistics)
e They are computationally intensive
 They are not user friendly (... more an art than a science; i.e. lot of experience required)



Models implemented in AstroNeural

MLP (Multi layer perceptron): slow, supervised, non linear

SOM (self organizing maps) : faster, unsupervised, non linear, great
visualization, non physical output

e GTM (generative topographic mapping): slow, unsupervised, great visualization,
physical output

e PCA & ICA linear and non linear: terrible visualization, physical output, good
performances on uncorrelated data

e Fuzzy C Means slow on MDSs, effective in “fuzzy problems”

e PPS: great (the best ones for unsupervised clustering, classification and
visualization)

e Competitive Evolution on Data (CED): bad visualization, great accuracy as
unsupervised clustering tool,




The Curse of Hyperdimensionality

The computational cost of clustering analysis:

K-means: KxNxI|xD

Expectation Maximisation: K x N x | x D2

Monte Carlo Cross-Validation: M x K__.2 x N x | x D?
Correlations ~ N log N or N2, ~ Dk (k>1)
Likelihood, Bayesian ¥ N™ (m > 3), ~ D* (k>1)

SVM >~ (NxD)3

N = no. of data vectors, D = no. of data dimensions
K = no. of clusters chosen, K_., = max no. of clusters tried

| = no. of iterations, M = no. of Monte Carlo trials/partitions
N >10°, D>>100, K>10

Some dimensionality reduction methods are needed
(e.g., PCA, ICA, class prototypes, hierarchical methods, etc.), but more work is needed

I:> Terascale (Petascale?) computing and/or better algorithms
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Aims and applications of AstroNeural/DAME

User friendly tool to perform clustering and data mining in high
dimensionality spaces

Aims Applications
Clustering & pattern recognition _

in high dimensionality spaces Astrophysics
Visualization Bioinformatics
Classification - Geophysics

Parametrization of images High energy physics
Modeling of massive data sets Atmospheric physics

Seismology
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First example

evaluation of SDSS redshift using supervised NN (MLP)

Tue Astropuysicar Journar, 663:752-764, 2007 July 10
0 2007, The American Astronomical Society. All rights reserved. Printed in U5 A.

MINING THE SDSS ARCHIVE. I. PHOTOMETRIC REDSHIFTS IN THE NEARBY UNIVERSE

RAFFAELE D'ABRUSCO,I'E ANTONINO STMAN{'},E GIUSEPPE L{'}NGO,L‘"S Massmo ]3|:ua:=,1cr:u,5"‘L Mavrizio PM'}LILL{'},lA

EvLisaserTa DE FILIPPIS,S'l AND ROBERTO TAGLIAFERRI™
Received 2006 Octoher 11 accepted 2007 March 2

ABSTRACT

We present a supervised neural network approach to the determination of photometric redshifts. The method wa:
fine-tuned to match the characteristics of the Sloan Digital Sky Survey, and as base of **a priori” knowledge, it ex-
ploits the rich wealth of spectroscopic redshifts provided by this survey. In order to train, validate, and test the net
works, we used two galaxy samples drawn from the SDSS spectroscopic data set, namely, the general galaxy sample
(GG) and the luminous red galaxy subsample (LRG). The method consists of a two-step approach. In the first step
objects are classified as nearby (z < 0.25) and distant (0.25 < z < 0.50), with an accuracy estimated as 97.52%. I
the second step, two different networks are separately trained on objects belonging to the two redshift ranges. Using :
standard multilayer perceptron operated in a Bayesian framework, the optimal architectures were found to require ong
hidden layer of 24 (24) and 24 (25) neurons for the GG ( LRG) sample. The final results on the GG data set give
robust o, ~ 0.0208 over the redshift range [0.01,0.48] and o, ~ 0.0197 and ~ 0.0238 for the nearby and distan
samples, respectively. For the LRG subsample we find instead a robust o, ~ 0.0164 over the whole range, anc
a, =~ 0.0160 and ~ 0.0183 for the nearby and distant samples, respectively. After training, the networks have beer
applied to all objects in the SDSS table GALAXY matching the same selection criteria adopted to build the base o
knowledge, and photometric redshifts for circa 30 million galaxies having z < 0.5 were derived. A catalog containing
redshifts for the LRG subsample was also produced.



Photometric redshifts
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The Sloan Digital Sky Survey (SDSS) data set & BoK
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- 5=0.0415
| Az=0.0144
s} "\- : 1. L ! | | I L 1 0 y AR e 1 1
L] 0.2 D4 0.8 0 0.2 0.4 0.8
ZﬂFEL‘ ZSPEC
tvpe method data Azpms Notes  Reference
CWW EDR 0.0666 (Csabai et al. 2003 )
SEDF  Bruzual-CHarlot EDR 0.0552 (Csabai et al. 2003)
Interpolated EDR 0.0451 (Csabai et al. 2003)
Polyomial EDR 0.0318 (Csabai et al. 2003)
KD-tree EDR 0.0254 (Csabai et al. 2003)
ANNz EDR 0.0229 (Collister & Lahav 2004 )
ML SVM EDR 0.027 (Wadadekar 2004 )
ML MLP-feed forward SDSS-DR1  xx.xxx  yes (Vanzella et al. 2003)

SDSS-RLG



hybrid interpolation+nearest neighbor

« the color space is partitioned (KD-tree - a binary search tree ) into cells containing the same
number of objects from the training set
* In each cell fit a second order polynomial.

| local It in Kd—tree cells

[l -IIIIIIIIIIIIIIIIIIIIII—
0.8 -2 o 2 4 a a8

n—g

Fig. 4.— Omn the right we plot a 2 dimensional demonstration of the color space partitioning. In
each of these cells we applied the polynomial fitting techmque to estimate redshifts. The left figure
show the results.



Multi Layer Perceptron

INPUT mmp ' OUTPUT

feedback

e input layer (n neurons)

e M hidden layer (1 or 2)

e Qutput layer (n' <n neurons)

Neurons are connected via activation functions

Different NN's given by different topologies,
different activation functions, etc.

Hidden
layer




VO-Neural approach

MLP, 1(5), 1(18)

! !

o rob =0.196 o rob =0.201




VO-Neural results
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Uneven coverage of parameter space:

General galaxy sample LRG sample
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Non LRG only

c = 0.0363
Az =-0.0030




Errors can be easily evaluated
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And are, on average, well behaved....



Second example

Searching for candidate quasars in the SDSS archive

astro-ph/0805.0156v1; to appear soon in MNRAS

Quasar candidates selection in the Virtual Observatory

era

D’Abruscol?, R., Longo™®* G., Walton?, N. A.

Unsupervised method (PPS + NEC clustering)
with small BOK for labeling



on through clustering

e

Only a small fraction of the QSOs predicted by models and X-ray observations are found
in optical and infrared surveys. Highly obscured AGNs are thought to be a major
contributor to the hard X-ray background. Data mining techniques can be used to exploit
both the abundance of optical\infrared data and the quality of deep X-ray observations.

In general, QSOs identification and AGNs classification topics can be addressed using
two distinct approaches:

* QSOs identification: to avoid the risk of loosing objects due to misleading
or incomplete classification schemes, unsupervised approaches are to be
preferred (by-product: serendipitous discovery of outliers and rare objects).

* AGNs classification: a more classical selection algorithm learning how to
classify AGNs “by example” can be applied to this kind of problem. The
efficiency of selection depends on the parameters chosen.



Photometric selection of candidate QSQO’s

Several aigorithms for “general purpose” photometric
identification of candidate QSOs select sources according to
different techniques exist.

» Optical surveys: looking for counterparts of strong radio sources (but only ~
10% of QSO are radio-loud).
 Ultraviolet and optical surveys: looking for star-like sources bluer than stars.

» Multi-colour surveys: looking for star-like objects in colour parameter space
lying outside compact regions (“star locus”) occupied by stars.

Overall performances of a generic targeting algorithm are
usually expressed by two parameters:

candidate quasars Identified by the algorithm
Completeness ¢ = a prior Known quasars

Effici _ confirmed quasars identified by the algorithm
iciency € = ‘candidate quasars selected by the algorithm




Traditional way to look
for candidate QSO in 3
band survey

B =

‘ Cutoff line

4

- \l/errors

)

Candidate QSOs
for spectroscopic
follow-up’s

Ambiguity
zone

In 4 bands degeneracy
is partially removed

A Generic Machine-Assisted Discovery Problem:
Data Mapping and a Search for Qutliers

More are the bands
the lower is the degeneracy

BUT ...

How to find the interesting regions (clusters)?
eData Mining is the answer

How to visualize them ?
*Dimensionality reduction



SDSS QSOs targeting algorithm (1)

SDSS QSO candidate selectio
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SDSS QSOs targeting algorithm (1)

1.inclusion regions are regions where S.L. meets QSO’s area (due to absorption from
Lya forest entering the SDSS filters, which changes continuum power spectrum power

law spectral index). All objects in these areas are selected so to sample the [2.2, 3.0]
redshift range (where QSO density is also declining), but at the cost of a worse
efficiency (Richards et al, 2001).

2.exclusion regions are those regions outside the main “stellar locus” clearly populated
by stars only (usually WDs). All objects in these regions are discarded.

Overall performance of the algorithm: completeness c = 95%,
. efficiency e = 65%, but locally (in colours and redshift) much less.




Unsupervised clustering for QSOs

Ou Igorithm is based on unsupervised clustering inside
colours space and exploits mixed (spectroscopict+photometric) datasets. Once clusters
have been detected by the chosen algorithm, knowledge—basef(spectroscopic types) is

used (i.e., “labels” associated to objects within each cluster) to understand the mixture of
objects contained in each cluster and to perform statistical analysis of th lati

lustering
algorithms




Clustering strategy

Clustering is usually performed on single objects, but this approach may be too
sensitive to single outliers to be extensively used in highly non linear parameter space as
astronomical ones. We perform a pre-clustering on the real distribution of points inside the

parameter space, and then used a clustering algorithm to aggregate the pre-clusters
produced.

supervised or unsupervised (our cnoice In unsupervise

2. Agglomerative clustering: both distance definition and a linkage model (simple,
average, complete, Wards, etc.) need to be provided to perform clustering.
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(a) Linear PCA (b} Mixture of linear PCA (c) Nonlinear principal curve

Figure 1: (a) Principal component analysiz (PCA) showing the first principal axis, (b) mixture of three

localized principal axes, (c¢) a principal curve.



he method:

1. PPS determines a large number of distinct groups of objects: nearby clusters in the
colours space are mapped onto the surface of a sphere.

2. NEC aggregates clusters from PPS to a (a-priori unknown) number of final clusters.

3. These clusters are examined and “interesting” ones are selected through the Base of
knowledge.

Two free parameters to be set are the number of latent variables for
PPS (“resolution” of the initial clustering) and the critical value(s) of

dissimilarity threshold D:» for NEC. |
A high number of initial latent bases (i.e. clusters from PPS) is good for almost all

applications (empty clusters, if any, can be discarded); critical values for D are classically
determined by two similar methods both embodying a stability criterion:

2. Dendrogram analysis: the stability threshold(s) D can be determined observing the
number of branches at different levels of the graph.




he method in two slides

Our goal is an objective classifier which can achieve spectroscopic-like

classification using only photometric attributes of objects.

Id est, a statistical device aimed at discovering unknown correlation between points (sources) in a

photometric only parameter-space using clustering techniques.
Our choice was an unsupervised (no a-priori categories) neural network-based combination of

algorithms:

PPS ('Probabilistic Principal Surfaces)+NEC (Negentropy Clustering) & Kmeans

Spectroscopic sample Clustering on

hotometric data
“knowledge base” P

And maybe something

interesting...
PPS + NEC & eans labels

Outliers and

Photometric data R
significative clusters

We need a “knowledge base”: spectroscopic measured features (in our case, spectral
classification represented by specClass) are needed and will be used as labels, before
applying clustering to the only photometric objects.



Brief sketch of PPS and NEC

(a) Manifold in (b) Manifold in {c) t projected onto
latent space R 4 feature space R B manifold in latent space R 8
x t X E[x|]
— ylx)

o

PPS: the Beauty of Spheres

The original m-dimensional data space is mapped in
a lower n-dimensional space, called “latent space”.
Visualization ease as a spherical manifold is fitted
to the data, then projected into the manifold in R3
and plotted as points on the sphere surface.

Each latent variable on the sphere is responsible for

a number of projected points, which form a “cluster”.
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NEC: a matter of Gaussians
Clustering method based on the “neg-entropy” Negk,

a measure of non gaussianity of a variable. If A is
gaussian, then NegE(A) = 0. Given a threshold d:

If NegE(A U B) < d, then clusters A and B are
replaced by cluster A U B

Not replaced! Replaced!
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Case Study
3D PCA of Yeast Gene Microarray Data




Case Study

Data Projections in latent space

File Edit “ew Insert Tools Desktop Window Help

Projected Data




Case Study

Results: clusters (30)

) Figure 1
File Edit View Insert Tools Desktop ‘Window Help B
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Case Study

Resuits: pdf + clusters superimposed

J Figure 1

File Edit View Insert Tools Desktop ‘Window Help £

Probability density in latent space w0




Case Study

Results: pdf in iatent space ...
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Gene Prototypes corresponding to 30 computed clusters

Case Study
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Tuning the method

isposal) are selected and informations about these clusters are
xploited for the candidate QSO selection.

To determine the critical dissimilarity Di threshold we rely not only on a stability requirement.
Given the following definition:

L , Def its fraction of confirmed QSO
[cluster IS successful] <:> [ is higher then a fixed value

we ask D to maximise the Normalised Success Ratio (NSR):

'NSR = Number of successiul clusters.
°TT Number of total clusters |

The process is recursive: feeding merged unsuccessful clusters in the clustering pipeline
until no other successful clusters are found. The overall efficiency of the process et is the
sum of weighed efficiencies e; for each generation:




An example of “tuning”
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Selection of new candidates

Start

spectroscopic
data

PPS , _ ,
i-th generation of clustering clustering process: candidate
| selected as those objects belonging to

NEC clusters where spectroscopic confirmed
I S— QSOs (“tracers”) are found.
Selection of No

best
clusterization

colours distribution; associated cuts are

Yes . )
S~ T—— appll_ed to photometrlc sample for
data in parameter candidate selection.
space

J,_I

Mahalanobis’ Sﬁ"imim"t?f photometric object from each cluster; the
distance photometric . . . 5
objects object is assigned to the nearest “goal-

| successful cluster” or rejected.

End
candidate
guasars



Data and experiments

Data samples:

1. Optical: sample derived from SDSS database table “Target’ queried for QSO
candidates, containing ~ 1.11-10° records and ~ 5.8:10* confirmed QSO (‘specClass
== 3 OR specClass == 4’).

2. Optical + NIR: sample derived from positional matching (‘best’) between SDSS-
DR3 database view “sStar” queried for all objects with spectroscopic follow-up available
and detection in all 5 bands (u,g,r,i,z) with high reliability for redshift estimation and
line-fitting classification (‘specClass’) and high S/N photometry, and UKIDSS-DR1 star-
like (‘mergedClass == -1’) objects fully detected in each of the four lasSurvey bands

(Y,J,H,K) and clean photometry. This sample is formed by 2192 objects.

Experiments:

candidate QSO star-like objects star-like objects

4 colours 4 + 3 colours 4 colours




Experiment 2: SDSS N UKIDSS
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in the spectroscopic program because they have been selected in other spectroscopic
programmes (mainly stars).




Experiment 2: local values of e
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Experiment 2: local values of ¢
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Experiment 3: optical colours

I
2 Contfirmed no=-Q50s
+ +  Confirmed Q50s

.experiment, using only optical colours.




Results (I)*

Optical
QSO SDSS colours | ‘specClass’ | 83.4 % 89.6 % (3,0)
candidates (£ 0.3 %) | (£ 0.6 %)
(1)
Optical +
NIR star- | SDSS colours + | ‘specClass’ | 91.3% | 90.8 % (3,1,0)
like objects UKIDSS colours (£ 0.5 %) | (£0.5 %)
(2)
Optical +
NIR star- SDSS colours | ‘specClass’ | 92.6% | 91.4 % (3,0,1)
like objects (0.4 %) | (£ 0.6 %)
3)




Third example
Classifying AGN in SDSS with SVM

Seyfert 2

Broad Line Region



Spectroscopic BoK

Catalogo by Sorrentino et al. (2006)
A4 0.05<z<0.095; M(r) >-20.00
d empirical Kewley’s classification
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d Seyfert 2: all the others



Spectroscopic BoK - |
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Spectroscopic BoK
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Support Vector Machines in two slides

given a training set formed by pairs [features-label]: (x, y,), i = 1...|
wherex. € R"ey, € {1,-1}.
Support Vector Machines (SVM) try to solve the following optimization problem:

mln 0, a)+CZ§

wb,& )

With the condition: Y (COT P(X.)+ b)>1- S

Vectors x; are mapped into an higher dimensionality space where the SVM identify an hyper
plane which maximizes the distances from the two classes

C > 0is a classification error correction term

K(%, %) =@(%)" (X;)

Is the so called Kernel function

K% x) =exp(7[x =), 7>0

radial basis function (RBF)



What is a Good Decision Boundary?

* Consider a two-class, linearly separable classification problem

 Many decision boundaries!

— The Perceptron algorithm can be used to find such a boundary

* Are all decision boundaries equally good?

Class 1

Class 2

._‘ ° @ Class 2
[ o)
u @)
u 5)
[ | [ |
O n
Class 1

v



Large-margin Decision Boundary

* The decision boundary should be as far away from the data of
both classes as possible

— We should maximize the margin, m

W

2

m —= ——

m. N, ® |w]
- e Class 2

0 S T _
. _ W X+b=1
Class 1




Transforming the Data

Input space Feature space

 Computation in the feature space can be costly because it
is high dimensional

— The feature space is typically infinite-dimensionall!

* The kernel trick comes to rescue



The optimal vaIues of the two parameter C and gamma cannot be
r

eed to be evaluated on
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procedure.

Usually they are varied as: C=2-5,23, ...215, Gamma= 2715, 271323
This process is computationally heavy and it requires GRID (Cloud computing)

Cross-Validation: in order to avoid overfitting effects we use Cross-Validation
to estimate the best configuration of the SVM:

The training set is divided into 5 folder: ABCDE, and 5 trainings are performed,
with 5 differents training set:

ABCD; ABCE; ABDE; ACDE; BCDE

The excluded folder is used for testing the results and the worse
result is taken



Experiment 2 with SVM

Efficiency isocontours = e(max)=79.69 %

traintipolz_svm.dat .zcale E'm

PON-SCOPE GRID Infrastructure (110 nodes) e

HEG

—0

A Training set 30380 objects lg,(C)

4 e=79.69%

a e Seyfert: €5y = 74.76%
4 e LINER: e n = 81.09%
4 c Seyfert: Coey = 22.77%

s cLINER : c . = 91.69%
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