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Summary
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• Data Mining  and astronomy

• Why DAME and what is DAME

• Photometric redshifts and galaxy phot-z’s in DAME

• A DM “pipeline” for QSO’s (candidate selection and phot-z’s)

• Some general considerations on the future

Summary of the talk



Astronomical
Data mining

Austin (TX) - 1984

Compilation of photoelectric multiaperture photometry

Through standard luminosity profile curves to derive 
“Extrapolation corrections” 

…. in order to derive Total Magnitudes of galaxies

1. What is DM

Most of us have done it for their whole life



Astronomical
Data mining

Data Mining is not only new astronomy. 

In many cases (but NOT ALL) it is just the name we give to rather usual stuff 

when it needs to be performed fast and on billions of records of COMPLEX data

Data Base of Knowledge

(BoK)
Model

Knowledge

1. What is DM

Human brain is not sufficient

Machine learning methods



Data Mining is the activity of extracting USEFUL information from COMPLEX 
data using Statistical Pattern Recognition and Machine Learning methods.

DM Taxonomy 1. To catalogue the known 

(classification)

2. Characterize the unknown 

(clustering)

3. Find functional dependencies 

(regression)

4. Find exceptions (outliers)

Supervised Methods

Patterns are learnt from extensive set of 

templates  (Base of Knowledge = BoK)

Unsupervised Methods

Patterns are discovered using the data 

themselves

Astronomical
Data mining

1. What is DM
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The scientific exploitation of a multi band, multiepoch (K epochs) universe implies to search
for patterns, trends, etc. among N points in a DxK dimensional parameter space:  

N >109, D>>100, K>10
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Astronomical
Data mining

2. Why DM? Surveys!
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R.A


t



Any observed (simulated) datum p defines a point (region) 

in a subset of RN. Es:
• RA and dec
• time
• 

• experimental setup (spatial and spectral resolution, limiting mag, 
limiting surface brightness, etc.) parameters

• fluxes
• polarization
• Etc.

100 Np N     

The parameter space concept is crucial to:

1. Guide the quest for new discoveries
(observations can be guided to explore poorly
known regions), …

2. Find new physical laws (patterns) 

3. Etc,

Astronomical
Data mining

2.    Why DM. 
Parameter space
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The computational cost of DM:

N =  no. of data vectors, D =  no. of data dimensions
K =  no. of clusters chosen, Kmax =  max no. of clusters tried
I =  no. of iterations, M =  no. of Monte Carlo trials/partitions

K-means:   K  N  I  D

Expectation Maximisation:   K  N  I  D2

Monte Carlo Cross-Validation:  M  Kmax
2  N  I  D2

Correlations ~  N log N or N2,  ~ Dk (k ≥ 1)

Likelihood, Bayesian ~ Nm (m ≥ 3),  ~  Dk (k ≥ 1)

SVM > ~ (NxD)3

Astronomical Data mining 1. Why DM

2. What is DM



ASTROINFORMATICS
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ASTROINFORMATICS

(emerging field)
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variable characteristics Type Operation/example

Quantitative Numerical with ordering
relationship and 
possibility to define a 
metric

Actual measurement Regression
Photometric
redshifts

Categorical
(non ordered)

Membership into a finite 
umber of classes.
No ordering relationship.

Numerical codes
(targets) arbitrarily
ordered

Classification
Search for peculiar
objects, QSO’s,
Star/galaxy, etc.

Ordered
categorical

Classes ordered by a 
relationship but there is
no metric

Numerical codes non 
arbitrarily ordered

Classification
Morphological and 
physical
classification of
galaxies, etc.

Machine Learning problems as “function approximation”
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Astronomical
Data mining

2. Machine learning



What is DAME 1. The prototype

DAME is a joint effort between University Federico II, INAF and Caltech aimed at: 

implementing (as web application) a suite of data exploration, data mining and data 

visualization tools.

http://dame.na.infn.it/

Web application PROTOTYPE

http://voneural.na.infn.it/

Documents 

Italian Ministry 
of Foreign Affairs

Prototype by O. Laurino

http://dame.na.infn.it/
http://voneural.na.infn.it/
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What is the real DAME 1. The real thing

1. User friendly

2. Flexible and expandable 

3. Running also on HPC or distributed systems

P.M. Massimo Brescia 

Will substitute the prototype at the end of October 2009



PART II - applications of DAME 

to observational cosmology
Photometric redshifts of galaxies and QSO’s

Selection of candidate quasars

D’Abrusco et al. 2007, ApJ, 663, pp. 752-764 
D’Abrusco et al. 2009, MNRAS,  396, 223-262
Laurino et al., 2009, Thesis
Laurino et al., 2009, MNRAS, in preparation
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Science with Dame 1. Photometric redshifts of galaxies
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Science with Dame 1. Photometric redshifts of galaxies

Photometric redshifts are always a function approximation hence a DM problem:
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BoK
(set of templates)

Mapping function Knowledge (phot-z’s)

Observed Spectroscopic Redshifts

Synthetic colors from theoretical SEDs
Synthetic colors from observed SED’s
…..

Knowledge always reflects the biases in the 
BoK.

Interpolative
Uneven coverage of parameter space

SED fitting 
Unknown or oversimplified physics
Unjustified assumptions
…..
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Data used in the science cases:

SDSS: 108 galaxies in 5 bands;  

BoK: spectroscopic redshifts for 106 galaxies
BoK: incomplete and biased.  

UKIDDS: overlap with SDSS

GALEX: overlap with SDSS

Z
=

0
.2

5

LRG

SDSS

Science with Dame 1. Photometric redshifts of galaxies
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s=0.051

s=0.0415

z=0.0144

SED fitting
Templates from synthetic colors obtained from theoretical SED’s
Mapping function from simple interpolation

Interpolative
Templates from synthetic colors obtained from theoretical SED’s
Mapping function from Bayesian inference

Science with Dame 1. Photometric redshifts of galaxies
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• the color space is partitioned (KD-tree - a binary search tree ) into cells containing the same 

number of objects from the training set

• In each cell a second order polynomial is fit to BoK. 

σ =.023

Science with Dame 1. Photometric redshifts of galaxies
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• input layer (n neurons)

• M hidden layer (1 or 2)

• Output layer (n' <n neurons)

Neurons are connected via activation functions

Different NN's given by different topologies, different 
activation functions, etc. 

INPUT guess OUTPUT

feedback

x1

x2

x3

x4

z1

z2

z3

zn

y

input

Hidden
layer

output

Science with Dame 1. Multi Layer Perceptron

MLP or Multi Layers Perceptron



SDSS-DR4/5 - SS

Training
60%

Validation
20%

Test set
20%

MLP, 1(5), 1(18)

0.01<Z<0.25 0.25<Z<0.50 99.6 % accuracy

MLP, 1(5), 1(23) MLP, 1(5), 1(24)

Science with Dame 1. Photometric redshifts of galaxies

Z
=

0
.2

5

LRG

SDSS

IPAC-Pasadena, August 5 2009
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s = 0.0183

SDSS – DR4/5 - LRG

Z
=

0
.2

5

Science with Dame 1. Photometric redshifts of galaxies

Catalogue can be 

downloaded from the 

DAME site.

D’Abrusco et al. 2007



Science with Dame 1. Photometric redshifts of galaxies

IPAC-Pasadena, August 5 2009
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General galaxy sample LRG sample

s = 0.0208
z = -0.0029

s = 0.0178
z = -0.0011

Non LRG only

s = 0.0363

z = -0.0030

D’Abrusco et al. 2007

Science with Dame 1. Photometric redshifts of galaxies



General galaxy sample LRG sample
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Science with Dame 1. Photometric redshifts of galaxies



What do we learn if the BoK is biased: 

• At high z LRG dominate and interpolative
methods are not capable to “generalize” rules

• An unique method optimizes its performances
on the parts of the parameter space which are 
best covered in the BoK

Step 1: 
unsupervised clustering in 
parameter space

WGE

Step 3: 
output of all NN go to WGE 
which learns the correct 
answer

result

Laurino et al. 2009a,2009b

M1 on BoK

M2 on BoK

M3 on BoK

M4 on BoK

Step 2: 
supervised training of 
different NN for each cluster

Science with Dame 1. Photometric redshifts of galaxies



Single NN

WGE

s = 0.0172

No systematic trends

Science with Dame 1. Photometric redshifts of galaxies

Laurino et al. 2009a,2009b

IPAC-Pasadena, August 5 2009



PART II - applications to observational cosmology
Photometric selection of candidate QSO’s

(as a clustering problem)

IPAC-Pasadena, August 5 2009

Traditional way to look 
for candidate QSO in 3 
band survey Cutoff line

Candidate QSOs
for spectroscopic
follow-up’s

errors

Ambiguity 

zone

PPS projection of a 21-D parameter space showing as blue dots the 

candidate quasars.Notice better disentanglement

Adding one 

feature 

improves 

separation…



SDSS QSO candidate selection algorithm (Richards et al, 2002) targets star-like objects as QSO
candidate according to their position in the SDSS colours space (u-g,g-r,r-i,i-z), if one of these
requirements is satisfied:

‣ QSOs are supposed to be placed >4σ
far from a cylindrical region containing
the “stellar locus” (S.L.), where σ
depends on photometric errors.

‣ QSOs are supposed to be placed inside
the inclusion regions, even if not
meeting the previous requirement.

c = 95%,  e = 65% 
locally less

OR

Science with Dame 1. SDSS selection algorithm



Overall performance of the algorithm: completeness c =   95%, 

efficiency e = 65%, but locally (in colours and redshift) much less.  

1. inclusion regions are regions where S.L. meets QSO’s area (due to absorption from

Lyα forest entering the SDSS filters, which changes continuum power spectrum power

law spectral index). All objects in these areas are selected so to sample the [2.2, 3.0]

redshift range (where QSO density is also declining), but at the cost of a worse

efficiency (Richards et al, 2001).

2.exclusion regions are those regions outside the main “stellar locus” clearly populated

by stars only (usually WDs). All objects in these regions are discarded.

Science with Dame 1. SDSS selection algorithm



Science with Dame 1. Probabilistic Principal Surfaces
2. Negative Entropy Clustering

Step 1: Unsupervised clustering

PPS determines a large number of distinct groups of 
objects: nearby clusters in the colours space are mapped 
onto the surface of a sphere.

NegE=750 NegE=4

Not replaced! Replaced!

Step 2: Cluster agglomeration 

NEC aggregates clusters from PPS to a (a-priori 
unknown) number of final clusters. 

1. Plateau analysis: final number of clusters 

N(D) is calculated over a large interval of D, 

and  critical value(s) Dth are those for which a 

plateau is visible. 

2. Dendrogram analysis: the stability 

threshold(s) Dth can be determined observing 

the number of branches at different levels of 

the graph. 



i-th generation of clustering

No

Yes

Mahalanobis’

distance

Arbitrary parameters

Nc, Dth, Th
To determine the critical dissimilarity Dth

threshold we rely not only on a stability 
requirement. 

A cluster is successful if fraction of confirmed 
QSO is higher than assumed fractionary value 
(Th)

Dth is required to maximize NSR

The process is recursive: feeding merged 
unsuccessful clusters in the clustering pipeline 
until no other successful clusters are found. 

The overall efficiency of the process etot is the 
sum of weighed efficiencies ei for each 
generation: 

Science with Dame 1. DAME Selection Algorithm



labels

algorithm

e and c estimation

Confusion matrix 

To assess the reliability of the algorithm,

the same objects used for the “training”

phase have been re-processed using

photometric informations only. Results

have been compared to the BoK.

c = 89.6 %e = 83.4 %

An example of “tuning”

Efficiency and completeness

NSR

Choice of the clustering

QSOs not QSOs

QSOs 759 72

not QSOs 83 1327



u - g vs g - r r - J vs J - K

Experiment 2: SDSS ∩ UKIDSS

Only a fraction (43%) of these objects have been selected as candidate QSO’s by

SDSS targeting algorithm in first instance: the remaining sources have been included

in the spectroscopic program because they have been selected in other spectroscopic

programmes (mainly stars).

Science with Dame 1. Experiment 2



In this experiment the clustering has been performed on the same sample of the previous

experiment, using only optical colours.

u - g vs g - r

Experiment 2: SDSS ∩ UKIDSS
Science with Dame 1. Experiment 2



Experiment 2: 
local values of e

Experiment 2: SDSS ∩ UKIDSS
Science with Dame 1. Experiment 2



Experiment 2: local values of c



Sample Parameters Labels etot ctot ngen nsuc_clus

Optical QSO 

candidates

(1) 

SDSS colours ‘specClass’ 83.4 %

(± 0.3 %)

89.6 %

(± 0.6 %)

2

(3,0)

Optical + 

NIR star-like 

objects

(2)

SDSS colours + 

UKIDSS colours

‘specClass’ 91.3 %

(± 0.5 %)

90.8 %

(± 0.5 %)

3

(3,1,0)

Optical + 

NIR star-like 

objects

(3)

SDSS colours ‘specClass’ 92.6 %

(± 0.4 %)

91.4 %

(± 0.6 %)

3

(3,0,1)

The catalogue of candidate quasars is publicly available at the URL: 

http://voneural.na.infn.it/catalogues_qsos.html

BUT … LET’S GO BACK TO PHOT-Z

Experiment 2: SDSS ∩ UKIDSS
Science with Dame 1. Experiment summary

http://voneural.na.infn.it/catalogues_qsos.html
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SDSS only SDSS + GALEX NUV

SDSS + GALEX NUV & FUV

Science with Dame 1. Photometric redshifts of QSOs

No need for fine tuning !!!

Only New BoK !!!

Laurino et al. 2009a,2009b

s= 0.154

s= 0.104

s= 0.089



Ball et al. 2008, ApJ,  683, 1221

Science with Dame 1. Photometric redshifts of QSOs

Degeneracy induced by lines exiting photometric bands

IPAC-Pasadena, August 5 2009



Science with Dame 1. Photometric redshifts of QSOs

Distribution of Z_spec (solid) and Z_phot (dashed) for test set !!!!

IPAC-Pasadena, August 5 2009



Science with Dame 1. Photometric redshifts of QSOs

Laurino et al. 2009a,2009b



Errors: 

• Input noise: error propagation on the input 
parameter (Ball et al. 2008)

• Model variance: different models make differing
predictions (Collister & Lahav 2004)

• Model bias: different models may be affected by 
different biases.

• Target noise: in some regions of the parameter 
space, data may represent poorly the relation 
between featured and targets (Laurino 2009).

Science with Dame 1. Photometric redshifts of QSOs

Laurino et al. 2009a,2009b
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Summary and Conclusions II. 
Sociological issue to be solved.
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1. Number of technical/algorithmic papers increases with new funding opportunities. Number
of refereed papers remains constant. 

2. Most of the work, so far, remains at the implementation stage (computer Science and 
algorithm development) and does not enter the “science production” stage…

3. Out of one thousand papers checked (galaxies, observational cosmology, survey) over the 
last two years: DM could be applied or involved in at least 30% of them leading to better
results



Summary and Conclusions II. 

Machine Learning based Data Mining is unavoidable when working on huge data 

sets. 

The extraction of BoK’s offers challenges to good data repositories and data archives. 

Reliability and completeness of information

(no data is better than bad data) 

Compliance with ontologies

Advanced queries in natural language

Fast, efficient, innovative

algorithms

WEKA, DAME, etc.

Implementation and 

access to DR

IPAC, CDS, ADSC, etc.

Accuracy of results depends on accuracy of BoK !!!!

BoK !!!

Quality control

Metadata



Max Brescia

THANKS


