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Abstract Photometric redshifts (photo-z) are crucial to the scientific exploitation of
modern panchromatic digital surveys. In this paper we present PhotoRApToR (Pho-
tometric Research Application To Redshift): a Java/C++ based desktop application
capable to solve non-linear regression and multi-variate classification problems, in
particular specialized for photo-z estimation. It embeds a machine learning algo-
rithm, namely a multi-layer neural network trained by the Quasi Newton learning
rule, and special tools dedicated to pre- and post-processing data. PhotoRApToR has
been successfully tested on several scientific cases. The application is available for
free download from the DAME Program web site.

Keywords Techniques: photometric · Galaxies: distances and redshifts · Galaxies:
photometry · Cosmology: observations · Methods: data analysis

1 Introduction

The ever growing amount of astronomical data provided by the new large scale digi-
tal surveys in a wide range of wavelengths of the electromagnetic spectrum has been
challenging the way astronomers carry out their everyday analysis of astronomical
sources and we can safely assert that the human ability to directly visualize and cor-
relate astronomical data has been pushed to its limits in the past few years. As a
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consequence of the fact that data have become too complex to be effectively man-
aged and analysed with traditional tools, a new methodological shift is emerging
and Data Mining (DM) techniques are becoming more and more popular in tackling
knowledge discovery problems. A typical problem which is addressed with these new
techniques is that of the evaluation of photometric redshifts. The request for accurate
photometric redshifts (photo-z) has increased over the years due both to the advent
of a new generation of multi-band surveys [17] and to the availability of large pub-
lic datasets which allowed to pursue a wide variety of scientific cases. Ongoing and
future large-field public imaging projects, such as Pan-STARRS [24], KiDS1 (Kilo-
Degree Survey), DES [19], the planned surveys with LSST (Large Synoptic Survey
Telescope, [31]) and Euclid [23], rely on accurate photo-z to achieve their scientific
goals.

Photo-z are in fact essential in constraining dark matter and dark energy through
weak gravitational lensing [44], for the identification of galaxy clusters and groups
(e.g. [13]), for type Ia Supernovae, and for the study of the mass function of galaxy
clusters [1, 37, 48]), just to quote a few applications. Photometric filters integrate
fluxes over a quite large interval of wavelengths and, therefore, the accuracy of pho-
tometric redshift reconstruction is worse than that of spectroscopic redshifts. On the
other hand, in the absence of the minimal telescope time necessary to determine spec-
troscopically the redshifts for all sources in a sample, photometric redshifts methods
provide a much more convenient way to estimate the distance of such sources. The
physical mechanism responsible for the correlation existing between the photomet-
ric features and the redshift of an astronomical source, is the change in the observed
fluxes caused by the fact that, due to the stretch introduced by the redshift, prominent
features of the spectrum move across the different filters of a photometric system.

This mechanism implies a non-linear mapping between the photometric parame-
ter space of the galaxies and the redshift values. This non linear mapping function
can be inferred using advanced statistical and data mining methods in order to eval-
uate photometric estimates of the redshift for a large number of sources. All existing
implementations can be broadly categorized into two classes of methods: theoretical
and empirical. Theoretical methods use template based Spectral Energy Distribu-
tions (SEDs), obtained either from observed galaxy spectra or from synthetic models.
These methods require an extensive a-priori knowledge about the physical properties
of the objects, hence they may be biased by such information. They, however, repre-
sent the only viable method when dealing with faint objects outside the spectroscopic
limit ([27] and references therein).

When accurate and multi-band photometry for a large number of objects is com-
plemented by spectroscopic redshifts for a statistically significant sub-sample of the
same objects, empirical methods might offer greater accuracy. This sample needs,
however, to be statistically representative of the parent population. The spectroscopic
redshifts of this sub-sample are then used to constrain the fit of an interpolating func-
tion mapping the photometric parameter space. Different methods differ mainly in
the way such interpolation is performed.

1http://www.astro-wise.org/projects/KIDS/
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From the data mining point of view, the evaluation of photo-z is a supervised
learning problem [27, 46], where a set of examples is used by the method to learn how
to reconstruct the relation between the parameters and the target [6]. In the specific
case of photometric redshifts, the parameters are fluxes, magnitudes or colors of the
sources while the targets are the spectroscopic redshifts.

A con of this approach being that, as it happens for all interpolative problems,
such methods may suffer to extrapolate and therefore they are effective only when
applied to galaxies with photometry that lie within the range of fluxes/magnitudes
and redshifts well sampled by the training set. In this paper we present PhotoRAp-
ToR (Photometric Research Application To Redshift), namely a Java based desktop
application capable to solve regression and classification problems which has been
finely tuned for photo-z estimation. It embeds a Machine Learning (ML) algorithm,
in the specific case a particular instance of a multi-layer neural network, and special
tools dedicated to pre- and post-processing data. The machine learning model is the
MLPQNA (Multi Layer Perceptron trained by the Quasi Newton Algorithm), which
has proven to be particularly powerful photo-z estimator, also in presence of rela-
tively small spectroscopic Knowledge Base (KB) [8, 14]. The application is available
for download from the DAME program web site.2 This paper is organized as follows:
in Section 2 we describe the Java application; in Section 3 we discuss in some details
how the evaluation of photometric redshifts is performed. Section 4 describe other
functionalities provided by the application, while Section 5 is dedicated to a compar-
ison between PhotoRApToR and an alternative public machine learning tool. Finally
in Section 6 we outline some lessons which were learned during the implementation
of PhotoRaPToR and draw some future developments.

2 PhotoRApToR

Everyone who has used neural methods to produce photometric redshift evaluation
knows that, in order to optimize the results in terms of features, neural network archi-
tecture, evaluation of the internal and external errors, many experiments are needed.
When coupled with the needs of modern surveys, which require huge data sets to be
processed, it clearly emerges the need for a user friendly, fast and scalable applica-
tion. This application needs to run client-side, since a great part of astronomical data
is stored in private archives that are not fully accessible on line, thus preventing the
use of remote applications, such as those provided by the DAMEWARE tool [9]. The
code of the application was developed in Java language and runs on top of a standard
Java Virtual Machine, while the machine learning model was implemented in C++
language to increase the core execution speed. Therefore different installation pack-
ages are provided to support the most common platforms. Moreover, the application
includes a wizard, which can easily introduce the user through the various function-
alities offered by the tool. The Fig. 1 shows the main window of the program. The
main features of PhotoRApToR can be summarized as it follows:

2http://dame.dsf.unina.it/dame photoz.html#photoraptor
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Fig. 1 The PhotoRApToR main window

– Data table manipulation. It allows the user to navigate throughout his/her data
sets and related metadata, as well as to prepare data tables to be submitted for
experiments. It includes several options to perform the editing, ordering, splitting
and shuffling of table rows and columns. A special set of options is dedicated to
the missing data retrieval and handling, for instance Not-a-Number (NaN) or not
calculated/observed parameters in some data samples;

– Classification experiments. The user can perform general classification prob-
lems, i.e. automatic separation of an ensemble of data by assigning a common
label to an arbitrary number of their subsets, each of them grouped on the base
of a hidden similarity. The classification here is intended as supervised, in the
sense that there must be given a subsample of data for which the right output
label has been previously assigned, based on the a priori knowledge about the
treated problem. The application will learn on this known sample to classify all
new unknown instances of the problem;

– Regression experiments. The user can perform general regression problems, i.e.
automatic learning to find out an embedded and unknown analytical law gov-
erning an ensemble of problem data instances (patterns), by correlating the
information carried by each element (features or attributes) of the given patterns.
Also the regression is here intended in a supervised way, i.e. there must be given
a subsample of patterns for which the right output is a priori known. After train-
ing on such KB, the program will be able to apply the hidden law to any new
pattern of the same problem in the proper way;

– Photo-z estimation. Within the supervised regression functionality, the appli-
cation offers a specialized toolset, specific for photometric redshift estimation.
After the training phase, the system will be able to predict the right photo-z value

Author's personal copy



Exp Astron

for any new sky object belonging to the same type (in terms of photometric input
features) of the Knowledge Base;

– Data visualization. The application includes some 2D and 3D graphics tools, for
instance multiple histograms and multiple 2D/3D scatter plots. Such tools are
often required to visually inspect and explore data distributions and trends;

– Data statistics. For both classification and regression experiments a statistical
report is provided about their output. In the first case, the typical confusion
matrix [45] is given, including related statistical indicators such as classifica-
tion efficiency, completeness, purity and contamination for each of the classes
defined by the specific problem. For what the regression is concerned, the appli-
cation offers a dedicated tool, able to provide several statistical relations between
two arbitrary data vectors (usually two columns of a table), such as average
(bias), standard deviation (σ ), Root Mean Square (RMS), Median Absolute Devi-
ation (MAD) and the Normalized MAD (NMAD, [28]), the latter specific for the
photo-z quality estimation, together with percentages of outliers at the common
threshold 0.15 and at different multiples of σ [10, 30].

In Fig. 2 the layout of a general PhotoRApToR experiment workflow is shown. It is
valid for either regression and classification cases.

2.1 The machine learning model

The core of the PhotoRApToR application is its ML model, for instance the
MLPQNA method. It is a Multi Layer Perceptron (MLP; [42]) neural network
(Fig. 3), which is among the most used feed-forward neural networks in a large vari-
ety of scientific and social contexts. The MLP is trained by a learning rule based on
the Quasi Newton Algorithm (QNA).

The QNA is a variable metric method for finding local maxima and minima of
functions [20]. The model based on this learning rule and on the MLP network
topology is then called MLPQNA. QNA is based on Newton’s method to find the
stationary (i.e. the zero gradient) point of a function. In particular, the QNA is an
optimization of Newton’s learning rule, because the implementation is based on a sta-
tistical approximation of the Hessian of the error function, obtained through a cyclic
gradient calculation.

In PhotoRApToR the Quasi Newton method was implemented by following the
known L-BFGS algorithm (Limited memory - Broyden Fletcher Goldfarb Shanno;
[12]), which was originally designed for problems with a very large number of fea-
tures (hundreds to thousands), because in this case it is worth having an increased
iteration number due to the lower approximation precision because the overheads
become much lower. This is particularly useful in astrophysical data mining prob-
lems, where usually the parameter space is dimensionally huge and is often afflicted
by a low signal-to-noise ratio.

The analytical description of the method has been described in the contexts of
both classification [7] and regression [8] and [14]. In the present work, we focus the
attention on its parameter setup and correct use within the presented framework.

Author's personal copy
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Fig. 2 The workflow of a generic experiment performed with PhotoRApToR

Fig. 3 The typical topology of a generic feed-forward neural network, in this case representing the archi-
tecture of MLPQNA. In the simple example there are two hidden layers (the two blocks of dark gray
circles) between the input (X) and output (Y) layers, corresponding to the architecture mostly used in the
case of photo-z estimation. Arrows between layers indicate the connections (weights w) among neurons.
These weights are changed during the training iteration loop, according to the learning rule QNA
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3 Photometric redshift estimation

In practice, the problem of photo-z evaluation consists in finding the unknown func-
tion which maps the photometric set of features (magnitudes and/or colors) into the
spectroscopic redshift space. If a consistent fraction of the objects with spectroscopic
redshifts is available, the problem can in fact be approached as a data mining regres-
sion problem, where the a priori knowledge (i.e. the spectroscopic redshifts forming
the KB), is used to uncover the mapping function. This function can then be used to
derive photo-z for objects without the spectroscopic counterpart information. With-
out entering into much details, which can be found in the literature quoted below and
in the references therein, we just outline that our method has been successfully used
in many experiments done on different KBs, often composed through accurate cross-
matching among public surveys, such as SDSS for galaxies [10], UKIDSS, SDSS,
GALEX and WISE for quasars (many of the following figures are referring to this
experiment; [8], GOODS-North for the PHAT1 contest [14] and CLASH-VLT data
for galaxies [4]. Other photo-z prediction experiments are in progress as preparatory
work for the Euclid Mission [33] and the KiDS3 survey projects.

3.1 User data handling

The fundamental premise to use PhotoRaPToR is that the user must preliminarily
know how to represent the data and, as trivial as it might seem, it is worth to explicitly
state that the user must: (i) be conscious of the target of his experiment, such as for
instance a regression or classification; and (ii) possess a deep knowledge of the used
data. In what follows we shall call features the input parameters (i.e., for instance,
fluxes, magnitudes or colors in the case of photo-z estimation).

Data Formats In order to reach an intelligible and homogeneous representation of
data sets, it is mandatory to preliminarily take care of their internal format, to trans-
form the pattern features, and to force them to assume a uniform representation before
submitting them to the training process. In this respect real working cases might be
quite different. PhotoRApToR can ingest and/or produce data in any of the following
supported formats:

– FITS [49]: tabular/image;
– ASCII [2]: ordinary text, i.e. space separated values;
– VOTable4: VO (Virtual Observatory) compliant XML-based documents;
– CSV [41]: Comma Separated Values;
– JPEG [39]: Joint Photographic Expert Group, as image output type.

Missing Data Very frequently, data tables have empty entries (sparse matrix) or
missing (lack of observed values for some features in some patterns). Missing values

3http://www.astro-wise.org/projects/KIDS/
4http://www.ivoa.net/documents/VOTable/
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[34] are frequently (but not always) identified by special entries in the patterns, like
Not-A-Number, out-of-range, negative values in a numeric field normally accepting
only positive entries etc. Missing data is among the most frequent source of per-
turbation in the learning process, causing confusion in classification experiments or
mismatching in regression problems. This is especially true for astronomy where
inaccurate or missing data are not only frequent, but very often cannot be simply
neglected since they carry useful information. To be more specific, missing data in
astronomical databases can be of two types:

– Type I: true missing data which were not collected. For instance a given region
of the sky or a single object was not observed in a given photometric band, thus
leading to a missing information. These missing data may arise also from the
simple fact that data, coming from any source and related to a generic exper-
iment, are in most case not expressly collected for data mining purposes and,
when originally gathered, some features were not considered relevant and thus
left unchecked;

– Type II: upper limits or non-detections (i.e. object too faint to be detected in
a given band). In this case the missing datum conveys very useful informa-
tion which needs to be taken into account into the further analysis. It needs to
be noticed, however that, often upper limits are not measured in absence of a
detection and therefore this makes these missing data undistinguishable from
Type I.

In other words, missing data in a data set might arise from unknown reasons dur-
ing data collecting process (Type I), but sometimes there are very good reasons for
their presence in the data since they result from a particular decision or as specific
information about an instance for a subset of patterns (Type II). This fact implies
that special care needs to be put in the analysis of the possible presence (and related
causes) of missing values, together with the decision on how to submit these missing
data to the ML method in order to take into account such special cases and prevent
wrong behaviors in the learning process.

Data entries affected by missing attributes, i.e. patterns having fake values for
some features, may be used within the knowledge base used for a photo-z experi-
ment. In particular they can be used to differentiate the data sets with an incremental
quantity of affected patterns, useful to evaluate their noise contribution to the per-
formance of the photo-z estimation after training. Theoretically it has to be expected
that a greater amount of missing data, evenly distributed in both training and test sets,
induces a greater deterioration in the quality of the results. This precious information
may be indeed used to assign different indices of quality to the produced photo-z
catalogues. The organization of data sets with different rates of missing data can be
performed through PhotoRApToR by means of a series of options.

The Fig. 4 shows the panel dedicated to define and quantify the presence of miss-
ing or bad data within the user tables. The panel allows: (i) to quantify the number
of wrong values to be retained/removed in/from the data patterns; (ii) to completely
remove the data patterns affected by the presence of NaN occurrences; (iii) to
assign arbitrary symbols to wrong or missing entries in the dataset (i.e. symbols like
“−999”, “NaN” or whatever).

Author's personal copy
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Fig. 4 Use of the NaN handling tool. After the definition of the NaN symbols, the user can generate a
new dataset only with rows containing NaN elements or another one cleaned by the NaN presence

Data Editing At the PhotoRApToR core is the MLPQNA neural model. In this
respect, before launching any experiment, it may be necessary to manipulate data in
order to fulfill the requirements in terms of training and test patterns (data set rows)
and features (data set columns) representation as well as contents: (i) both the train-
ing and test data files must contain the same number of input and target columns,
and the columns must be in the same order; (ii) the target columns must always be
the last columns of the data file; (iii) the input columns (features) must be limited to
the physical parameters, without any other type of additional columns (like column
identifiers, object coordinates etc.); (iv) all input data must be numerical values (no
categorical entries are allowed).

The application makes available a set of specific options to inspect and modify
data file entries. Every time a new data table is loaded, a new window shows the
complete table properties (Fig. 5), for instance: name, metadata, path and the number
of columns and rows.

For a currently loaded table it is possible to select a subset of the needed columns.
After the selection, a table subset is created and, if the option Row Shuffle is enabled,
the subset rows are also randomly shuffled. The random shuffling operation is useful
to avoid systematic trends during the training phase and to ensure the homogeneity
in the distribution of training and test patterns. This last property is, in fact, directly
connected to the necessity to split the initial data into disjoint data sets, to be used
for the training and testing phases, respectively. This is a simple action made pos-
sible by the Split option. When the table is selected in the Table List, the user must
give two different names for the split files (in this case train and test) and two dif-
ferent percentages of the original data set. It is important to observe that, generally
speaking, in machine learning supervised methods three different subsets for every

Author's personal copy
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Fig. 5 The main panel showing details about the loaded data table and the editing options

experiment are generally required from the available KB: (i) the training set, to train
the method in order to acquire the hidden correlation among the input features; (ii)
the validation set, used to check and validate the training in particular against the loss
of generalization capabilities (a phenomenon also known as overfitting); and (iii) the
test set, used to evaluate the overall performances of the model [8]. In the version of
the MLPQNA model implemented in the PhotoRApToR application, the validation
is embedded into the training phase, by means of the standard leave-one-out k-fold
cross validation mechanism [25].

Therefore, before any photo-z experiment, it is needed to split the data set in only
two subsets, for instance, the training and test sets. There is no any analytical rule
to a priori decide the percentages of the splitting operation. According to the direct
experience, an empirical rule of thumb suggests to use 80 % and 20 % for training
and test sets, respectively [32]. But certainly it depends on the initial amount of avail-
able KB. For example also 60 % vs 40 % and 70 % vs 30 % could be in principle
used in case of large datasets (over ten thousand patterns). The percentage depends
also on the quality of the available KB. When both photometry and spectroscopy are
particularly clean and precise, with a high S/N, there could also be possible to obtain
high performances by training just on half of the KB.

On the other hand, the more patterns are available for test, the more consistent will
be the statistical evaluation of the experiment performances.

Data Plotting Within the PhotoRApToR application there are also instruments,
based on STILTS toolset [47], capable to generate different types of plots (some
examples are shown in Figs. 6, 7 and 8). These options are particularly suited during
the preparation phase of the data for the experiments.

The graphical options selectable by user are:

– multi-column histograms;
– multiple 2D and 3D scatter plots.

Author's personal copy
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Fig. 6 An example of zspec distribution diagram, showing the options available within the histogram
plotting panel

Data Feature Selection Learning by examples stands for a training scheme operating
under supervision of an oracle capable to provide the correct, already known, out-
come for each of the training sample. This outcome is properly a class or value of
the examples and its representation depends on the available KB and on its intrinsic
nature even though in most cases it is based on a series of numerical attributes, related
to the extracted KB, organized and submitted in an homogeneous way.

Therefore, a fundamental step for any machine learning experiment is to decide
which features to use as input attributes for the patterns to be learned. In the

Fig. 7 An example of magnitude distributions, showing the options available within the 2D scatter
plotting panel
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Fig. 8 An example of magnitude distributions, showing the options available within the 3D scatter
plotting panel

specific case of photo-z estimation, for a given data sets, it is necessary to inspect and
check which types of fluxes (bands) and combinations (magnitudes, colors) is more
effective.

In practice, the user must maximize the information carried by hidden correla-
tions among different bands, magnitudes and zspec available. In spite of what can be
thought, not always the maximum number of available parameters should be suitable
to train a machine learning model. The experience demonstrates, in fact, that it is
more the quality of data, than the quantity of features and patterns, the crucial key to
obtain the best prediction results [8]. This phase is very time consuming and usually
requires many tens or even hundreds of experiments. Of course, the exact number of
experiments depends on a variety of factors, among which, the number of photomet-
ric bands and magnitudes for which a high quality of zspec entries is available in the
KB; the photometric and spectroscopic quality of the data, the type of magnitudes
(i.e. aperture, total or isophotal magnitudes, etc.), the completeness of the spectro-
scopic coverage within the KB and the spectroscopic range. In the authors experience,
quite often, the optimal combination turned out to be the feature set obtained from
the colors plus one reference magnitude for each region of the electro-magnetic spec-
trum (broadly divided in UV, optical, Near Infrared, Far Infrared, etc.) [8]. This can
be understood by remembering that colors convey more information than the single
related magnitudes, since from the basic equation defining magnitudes it is easy to
see that a magnitude difference corresponds to a flux ratio and hence in the derived
colors an ordering relationship among features is always implicitly assumed.

3.2 Performing experiments

After having prepared the KB, the user should have two subset tables ready to be
submitted for a photo-z experiment. By looking at the Fig. 2 the experiment consists

Author's personal copy



Exp Astron

of a pre-determined sequence of steps, for instance: (i) Training and validation of
the model network; (ii) blind Test of the trained model network; (iii) Run, i.e. the
execution on new data samples of a well trained, validated and tested network.

We outline that for the first two steps, the basic rule is to use disjointed but homo-
geneous data subsets, because all empirical photo-z methods in general may suffer
to extrapolate outside the range of parameter distributions covered by the training.
In other words, outside the limits of magnitudes and spectroscopic redshift (zspec)
imposed by the training set, these methods do not ensure optimal performances.
Therefore, in order to remain in a safe condition, the user must perform a selection
of test data according to the training sample limits.

None of the objects included in the training sample should be included in the test
sample and, moreover, only the data set used for the test has to be used to generate
performance statistics. In other words the test must be blind, i.e. containing only
objects never submitted to the network before.

For what the training is concerned, this phase embeds two processing steps: the
training of the MLPQNA model network and its validation. It is in fact quite frequent
for machine learning models to suffer of an overfitting on training data, affecting and
badly conditioning the training performances. The problem arises from the paradigm
of supervised machine learning itself. Any ML model is trained on a set of training
data in order to become able to predict new data points. Therefore its goal is not just
to maximize its accuracy on training data, but mainly its predictive accuracy on new
data instances. Indeed, the more computationally stiff is the model during training,
the higher would be the risk to fit the noise and other peculiarities of the training
sample in the new data [21]. The technique implemented within PhotoRaPToR, i.e.
the so called leave-one-out cross validation, does not suffer of such drawback; it can
avoid overfitting on data and is able to improve the generalization performance of the
ML model. In this way, validation can be implicitly performed during training, by
enabling at setup the standard leave-one-out k-fold cross validation mechanism [25].
The automatized process of the cross-validation consists in performing k different
training runs with the following procedure: (i) splitting of the training set into k ran-
dom subsets, each one composed by the same percentage of the data set (depending
on the k choice); (ii) at each run the remaining part of the data set is used for train-
ing and the excluded percentage for validation. While avoiding overfitting, the k-fold
cross validation leads to an increase of the execution time estimable around k − 1
times the total number of runs.

Concerning the photo-z experiment setup, special care must be paid to the setup
of the training parameters, because all the other use cases, for instance the Test and
Run (i.e. the execution on new data), require only the specification of the proper input
data set, and to recall the internal model configuration as it was frozen at the end of
training (Fig. 9). We can group the MLPQNA model training parameters into three
subsets: network topology, learning rule setup and validation setup.

– Network topology. It includes all parameters related to the MLP network
architecture;

– Number of input neurons. In terms of input data set it corresponds to the
number of columns of the data table, (also named as input features of
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Fig. 9 An example of setup phase for a photo-z regression experiment

the data sample, i.e. number of fluxes, magnitudes or colors composing
the photometric information of each object in the data), except for the
target column (i.e. the spectroscopic redshift), which is related to the
single output neuron of the regression network. More in general, in the
case of classification problems, the number of output neurons depends
on the number of desired classes;

– Number of neurons in the first hidden layer. As a rule of thumb, it is
common practice to set this number to 2N + 1, where N is the number
of input neurons. But it can be arbitrarily chosen by the user;

– Number of neurons in the second hidden layer. This is an optional
parameter. Although not required in normal conditions, as stated by the
known universal approximation theorem [18], some problems dealing
with a parameter space of very high complexity, i.e. with a large amount
of distribution irregularities, are better treated by what was defined as
deep networks, i.e. networks with more than one computational (hid-
den) layer [3]. As a rule of thumb, it is reasonable to set this number
to N − 1, where N is the number of input neurons. But it is strongly
suggested to use a number strictly lower than the dimension of the first
hidden layer;

– Number of neurons in the output layer. This number is obviously forced
to 1 for regression problems, while in case of classification this quantity
depends on the number of classes as present within the treated problem;

– Trained network weights. This parameter is related to the matrix of
weights (internal connections among neurons). A weight matrix exists
only after having performed one training session at least. Therefore,
this parameter is left empty at the beginning of any experiment. But,
for all other use cases (Test or Run), it is required to load a previously
trained network. However this parameter could also be used to perform
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further training cycles for an already trained network (i.e. in case of an
incremental learning experiment).

– Validation setup: all parameters related to the optional training validation
process;

– Cross validation k value. When the cross validation is enabled, this
value is related to the automatic procedure that splits in different subsets
the training data set, applying a k-step cycle in which the training error
is evaluated and its performances are validated. Reasonable values are
between 5 and 10, depending on the amount of training data used. The k-
fold cross validation intrinsically tries to avoid overfitting. Nonetheless,
in rare cases (such as a wrong choice of the k parameter with respect
to the train set dimension), a residual overfitting may occur. Therefore
if the user wants to verify it, he/she should simply inspect the results,
usually by comparing train with test performance. Whenever training
accuracy is much better than test one, this is a typical clue of overfit-
ting presence. Therefore, when cross validation with a proper k choice
is enabled, by definition, it should avoid such events. The k parameter
choice is not deterministic, but regulated by a rule of thumb, depend-
ing on the amount of training patterns. We remind also that this value
strongly affects the overall computing time of the experiment.

– Learning rule setup. It includes all parameters related to the QNA learning rule;

– Maximum number of iterations at each Hessian approximation cycle.
The typical range for such value is [1000, 10000], depending on the best
compromise between the requested precision and the complexity of the
problem. It can affect the computing time of the training;

– Number of Hessian approximation cycles. Namely the number of
approximation cycles searching for the best value close to the Hessian
of the error. If set to zero, the max number of iterations will be used for a
single cycle. At each cycle the algorithm performs a series of iterations
along the direction of the minimum error gradient, trying to approxi-
mate the Hessian value. A reasonable range is [20, 60], although also in
this case the exact value depends on the final precision required. If set
to a high value, it is recommended to enable the cross validation option
(see below), to prevent overfitting occurrence;

– Training error threshold. This is one of the stopping criteria of the algo-
rithm (alternative to the couple of the parameters iterations and cycles).
It is the training error threshold (a value of 0.001 is typical for photo-z
experiments).

– Learning decay. This value determines the analytical stiffness of the
approximation process. It affects the expression of the weight updating
law, by adding the term decay ∗ ||networkweights||2. Its range may
vary from a minimum value of 0.0001 (very low stiffness) up to 1000.0
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(very high stiffness). Also in this case if a very low value is adopted,
it is recommended to enable the cross validation option (see below), to
prevent overfitting occurrence.

The error calculated by the MLPQNA model during the training is evaluated for
all the presented input patterns in terms of the difference between the known target
values and the calculated outputs of the model. The error function in the regression
case is based on the Least Mean Square (LSE) + Tychonov regularization [26]. This
function is defined as follows:

E =
∑N

i=1(yi − ti )
2

2
+ decay ∗ ||W ||2

2

where N is the number of input patterns, y and t are the network output and the
pattern target respectively, decay is the decay input parameter and ||W || the norm of
the network weight matrix.

Regularization of the weight decay is the most important issue within the model
mechanisms. When the regularization factor is accurately chosen, then the general-
ization error of the trained neural network can be improved, and the training can be
accelerated. If the best regularization parameter decay is unknown, it could be exper-
imented by varying its value within the allowed range, from a weak up to the strong
regularization. In order to achieve the weight decay rule, we internally minimize a
more complex merit function:

f = E + decay ∗ S

2

Here E is the training error, S is the sum of the squares of the network weights,
and the decay coefficient decay controls the amount of smoothing applied to the
network. Optimization is performed from the initial point and until the successful
stopping of the optimizer has been reached.

Searching for the best decay value is a typical trial-and-error procedure. It is
usually performed by training the network with different values of the parame-
ter decay, from the lower value (no regularization) to the infinite value (strongest
regularization). By inspecting statistical results at each stage of the procedure the
overfitting tendency can be monitored by continuously changing the decay fac-
tor. A zero decay usually corresponds to an overfitted network. Very large decay
means instead an underfitted network. Between these extreme values there is a range
of networks which reproduce the dataset with different degrees of precision and
smoothness.

After having successfully terminated a training session, the model will pro-
duce (among several output files) a final network weight matrix (file by default
called trainedWeights.txt) and the network configuration setup (file by default called
frozen train net.txt), which can be used during next experiment steps (Test and Run
use cases), together with the respective input data sets.
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3.3 Inspection of results

Interpolative methods, such as MLPQNA, have the advantage that the training set is
made up of real objects. In this sense, any empirical method intrinsically takes into
account effects such as the filter band-pass and flux calibrations, even though the
difficulty in extrapolating to regions of the input parameter space not well sampled
in the training data is one of the main drawbacks [16].

This is why a strong requirement of empirical methods is that the training set
must be large enough to cover properly the parameter space in terms of colors,
magnitudes, object types and redshift. If this is true, then the calibrations and cor-
responding uncertainties are well known and only limited extrapolations beyond the
observed locus in color-magnitude space are required. Hence, under the conditions
described above about the consistency of the training set, a realistic way to measure
photometric uncertainties is to compare the photometric redshifts estimation with
spectroscopic measures in the test samples.

All individual experiments should be evaluated in a consistent and objective man-
ner through an homogeneous set of statistical indicators. We remark that all statistical
results reported throughout this paper are referred to the blind test data sets only. In
fact, it is good practice to evaluate the results on data (i.e. the test set) which have
never been presented to the network during any of the training or validation phases.
As easy to understand, the combination of test and training data might introduce a
straightforward systematic bias which could mask reality.

Within PhotoRApToR we use a specific algorithm to generate statistics. For each
experiment, given a list of N blind test samples for zspec and zphot , we define:

Δz = zspec − zphot

Δznorm = zspec − zphot

1 + zspec

where Δznorm is the normalized Δz. By indicating with x either Δz or Δznorm, we
calculate the following statistical indicators:

bias(x) =
∑N

i=1 xi

N

σ(x) =

√
√
√
√
√

∑N
i=1

[

xi −
(∑N

i=1 xi

N

)]2

N

RMS(x) =
√

∑N
i=1 x2

i

N

MAD(x) = Median(| x |)
NMAD(x) = 1.4826 × Median(| x |)

There is also a relation between the Root Mean Square (RMS) and the Stan-
dard Deviation σ : RMS = √

mean2 + σ 2, but σ 2 is the variance, so we have
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RMS = √
mean2 + variance. Therefore, for a direct comparison of results, in

terms of distance of mσ (m = 1, 2, ...) from the distribution of Δz, it is much more
precise to use the Standard Deviation as main indicator, rather than the simple RMS.

There is often a confusion about the relation between photometric and spectro-
scopic redshifts used to apply the statistical indicators. For instance, the performance
could be very different if the simple Δz is used instead of the Δznorm. The idea
is that the Δz cannot represent the best statistical indicator in the specific case of
photometric redshift prediction.

The velocity dispersion error, intrinsically present within the photometric estima-
tion, is not uniform over a wide range of spectroscopic redshift and therefore the
related statistics is not able to give a consistent estimation. On the contrary, the nor-
malized term Δznorm introduces a more uniform information, correlating in a more
correct way the variation of photometric estimation, and thus permitting a more
consistent statistical evaluation at all ranges of spectroscopic redshift.

For what the analysis of the catastrophic outliers is concerned, according to [35],
the parameter D95 ≡ Δ95/

(
1 + zphot

)
enables the identification of outliers in pho-

tometric redshifts derived through SED fitting methods (usually evaluated through
numerical simulations based on mock catalogues). In fact, in the hypothesis that the
redshift error Δznorm is Gaussian, the catastrophic redshift error limit would be con-
strained by the width of the redshift probability distribution, corresponding to the
95 % confidence interval, i.e. with Δ95 = 2σ (Δznorm). In our case, however, photo-
z are empirical, i.e. not based on any specific fitting model and it is preferable to use
the standard deviation value σ (Δznorm) derived from the photometric cross matched
samples, although it could overestimate the theoretical Gaussian σ , due to the resid-
ual spectroscopic uncertainty as well as to the method training error. Therefore, we
consider as catastrophic outliers the objects with |Δznorm| > 2σ (Δznorm). This
although it is common practice to indicate as outliers all objects with |Δznorm| >

0.15, (thus included in the provided statistics).
It is also important to notice that for empirical methods it is useful to ana-

lyze the correlation between the NMAD (Δznorm) = 1.48 × median (|Δznorm|)
and the standard deviation σclean(Δznorm) calculated on the data sample for which
|Δznorm| ≤ 2σ (Δznorm). In fact, the quantity NMAD is smaller than the value of
the σclean. In such condition we can assert that the pseudo-gaussian distribution of
(Δznorm) is mostly influenced by the presence of catastrophic outliers.

All the described statistical indicators are provided by PhotoRaPToR as the out-
put of every photo-z estimation test and are stored in specific files (by default named
as test statistics.txt). For completeness we also provide a similar statistics file as the
output of any training session (Fig. 10). But its use is only to allow a quick compar-
ison between training and test, just in order to verify the absence of any overfitting
occurrence.

Besides the statistics files, PhotoRApToR makes also available some graphical
tools, useful to perform a visual inspection of photo-z experiments. In particular a
2D scatter plot to show the trend of photo-z vs zspec (Fig. 11), as well as a set
of histograms useful to graphically evaluate the distributions of quantities Δz and
Δznorm.
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Fig. 10 The statistics produced at the end of a photo-z regression experiment. The training and test results
are also automatically stored in the files train statistics.txt and test statistics.txt, respectively

4 Other functionalities

To complete the description of the resources made available by PhotoRApToR, we
wish to stress that besides photometric redshift estimation (to be intended as a spe-
cific type of regression experiment), the user has the possibility to perform generic
regression as well as multi-class classification experiments.

Fig. 11 The photo-z vs zspec plot as produced after a photo-z regression experiment. In this example the
diagram shows both training (black dots) and test (gray crosses) objects, although the blind test objects
are the most relevant to evaluate the prediction performances
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For a generic regression problem, all the above functionalities described in the
case of the photo-z, remain still valid, with the only straightforward exception for the
statistics produced, which is generated for generic quantities formulated below.

Δout = target − output

Δoutnorm = target − output

1 + target

Also in the case of the multi-class classification, the above considerations and
options remain still valid with only some differences, described in what follows.

During the training setup (Fig. 12), there are two specific options, not foreseen for
regression problems:

– Output neurons. The number of neurons of the output layer (which is forced to
be 1 in the regression experiments), in this case corresponds to the number of
different classes present in the training sample. It is required that the class iden-
tifiers should have a binary format label. For instance, in a three-class problem,
the target classes are represented in three columns labeled respectively, as (100),
(010) and (001);

– Cross entropy: this optional parameter, if enabled, replaces the standard training
error evaluation (for instance the MSE between output and target values). Its
meaning is discussed below.

The Cross Entropy (CE) error function was introduced to address classification
problem evaluation in a consistent statistical fashion [43]. The CE method consists of
two phases: (i) it generates a random data sample (trajectories, vectors, etc.) accord-
ing to a specified mechanism; (ii) it updates the parameters of the random mechanism
based on the data to produce a better sample in the next iteration.

Fig. 12 The setup panel of a multi-class classification experiment. It is also possible to assign arbitrary
class labels to all output instances in the training and test sets (see subpanel Assigning Classes)
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In practice, a data model is created based on the training set, and its CE is measured
on a test set to assess how accurately the model is predicting the test data. The method
compares indeed two probability distributions, p the true distribution of data in the
data set, and q which is the distribution of data as predicted by the model. Since the
true distribution is unknown, the CE cannot be directly calculated, while an estimate
of CE is obtained using the following expression:

H (T , q) = −
N∑

i=1

1

N
log2q (xi)

where T is the chosen training set, corresponding to the true distribution p, N is
the number of objects in the test set, and q(x) is the probability of the event x as
estimated from the training set.

Another difference with respect to regression experiments is of course the statistics
produced to evaluate the results outcoming from a classification experiment. In this
case, at the base of the statistical indicators adopted, there is the commonly known
confusion matrix, which can be used to easily visualize the classification performance
[40]: each column of the matrix represents the instances in a predicted class, while
each row represents the instances in the real class (Fig. 13). One benefit of a confu-
sion matrix is the simple way in which it allows to see whether the system is mixing
different classes or not.

More specifically, for a generic two-class confusion matrix,

we then use its entries to define the following statistical quantities:

Fig. 13 The statistics produced at the end of a 2-class classification experiment
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– total efficiency: te. Defined as the ratio between the number of correctly clas-
sified objects and the total number of objects in the data set. In our confusion
matrix example it would be:

te = NAA + NBB

NAA + NAB + NBA + NBB

– purity of a class: pcN . Defined as the ratio between the number of correctly clas-
sified objects of a class and the number of objects classified in that class. In our
confusion matrix example it would be:

pcA = NAA

NAA + NBA

pcB = NBB

NAB + NBB

– completeness of a class: cmpN . Defined as the ratio between the number of cor-
rectly classified objects in that class and the total number of objects of that class
in the data set. In our confusion matrix example it would be:

cmpA = NAA

NAA + NAB

cmpB = NBB

NBA + NBB

– contamination of a class: cntN . It is the dual of the purity, namely it is the ratio
between the misclassified objects in a class and the number of objects classified
in that class, in our confusion matrix example will be:

cntA = 1 − pcA = NBA

NAA + NBA

cntB = 1 − pcB = NAB

NAB + NBB

All these statistical indicators are packed in an output file, produced at the end of
the test phase of any classification experiment.

The MLPQNA machine learning method, embedded into PhotoRaptor, has been
already tested in several classification cases. In [7], we compared the performances of
MLPQNA with other machine learning based classifiers and traditional techniques as
well, in terms of accuracy of identifying candidate globular clusters in the NGC 1399
HST single-band data. In Cavuoti et al., [15], we compared MLPQNA with standard
MLP and Support Vector Machine to photometrically classify AGNs in the SDSS
DR4 archive. Finally, we recently have exploited the MLPQNA to perform classifi-
cation experiments within SDSS DR10 archive, aimed at photometrically identifying
quasars from the whole sample including also galaxies and stars, as well as to verify
the possibility to disentangle normal galaxies from objects with a peculiar spectrum,
[11].
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5 Comparison with public machine learning tools

We performed a simple comparison between PhotoRApToR and an alternative
machine learning tool publicly available: the scikit-learn toolset [38]. The com-
parison is based on the photo-z estimation by means of a supervised non-linear
regression experiment, by directly comparing the statistical performances between
the MLPQNA model provided through PhotoRApToR and the widely known ensem-
ble method based on Random Forest [5], which uses a random subset of candidate
data features to build an ensemble of decision trees.

The data set used for the experiment was obtained by merging the photometry
from four different surveys (UKIDSS, SDSS, GALEX and WISE), including derived
colors and reference magnitudes for each band as internal features, thus covering a
wide range of wavelengths from the UV to the mid-infrared. While the spectroscopic
redshifts, (i.e. the zspec target values) were derived from selected quasars of the
SDSS-DR7 database. The complete KB consisted of ∼ 1.4×104 objects, from which
the 60 % used as training set and the residual 40 % as blind test set (see [8], for more
details). We remark also that in that case, our MLPQNA has been directly compared
with other several photo-z estimation methods (see references therein), achieving best
results.

After having trained the two ML models with the same training set, their photo-
z estimation results have been compared in terms of statistics and residual analysis
(outlier percentages). The results are shown in Fig. 14 and reported in Table 1. From
the comparison, it results apparent that MLPQNA performs better than Random For-
est, especially in the high-redshift zone (i.e. at zspec > 2.0), showing a more robust
prediction capability also in the sparsely populated regions of the parameter space.

In addition, unlike the PhotoRApToR resource, in order to setup and run the Ran-
dom Forest model provided by the scikit-learn package, as well as to prepare and
execute the experiments, some manipulations of the source code have been nec-
essary. The reason is that the scikit-learn package is provided as a library to be
imported in a user-defined script code, which implies a certain knowledge of the
Python programming language.

Although we reported a use case example where PhotoRaptor has been tested
on a dataset of about 104 samples, we want to emphasize that the reliability of our
resource has been already verified for data sets up to ∼ 106 samples. However, in
such cases the computational cost of the experiment becomes very high, although the
regression accuracy does not seem to require such amount of data in the training set.
Therefore, as general rule of thumb, a good compromise between computational time
and performance could be to limit the training sample to about 105 samples.

In addition, our model MLPQNA has been tested in a public photo-z contest
(PHAT1, [27], and [14]), resulting as one of the best interpolative methods. In
another work [10] we published a catalogue of photometric redshifts for the SDSS
DR9 release, by comparing our prediction accuracy with other machine learning
methods. More recently PhotoRaptor has been used by an independent group [29],
that performed a regression feature analysis with SDSS DR10 galaxies by com-
paring our resource with random forest [22] and FANN artificial neural networks
[36].
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Fig. 14 The photo-z vs zspec scatter plots as produced after the photo-z estimation experiment. The upper
plot refers to the Random Forest model while the lower one is related to the MLPQNA model results. Both
diagrams show the distributions of the ∼ 5.7 × 103 objects composing the blind test set

Table 1 Comparison of the performances among the different tools

Photo-z Estimation Statistics Δznorm

Model BIAS σ MAD RMS NMAD

PhotoRApToR (MLPQNA) 0.004 0.069 0.020 0.069 0.029

Scikit (Random Forest) 0.009 0.083 0.021 0.084 0.031

Outlier percentages [%] |Δznorm|
Model > 0.15 > 1σ > 2σ > 3σ > 4σ

PhotoRApToR (MLPQNA) 2.43 9.39 2.89 1.40 0.91

Scikit (Random Forest) 5.27 11.03 4.48 2.31 1.34

MLPQNA is the ML engine of our application, based on a four-layers neural network, while Random
Forest is the ML model provided by the scikit-learn public resource. Both methods were trained on the
multi-survey mixed (colors + reference magnitudes) dataset, obtained by cross-matching photometry of
UKIDSS, SDSS, GALEX and WISE surveys. The reported statistics is related to the photo-z estimation on
the blind test set of about ∼ 5.7×103 QSO objects. For the definition of the parameters and for discussion
see text.
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6 Perspective and conclusions

Driven by the advances in the digital detectors and computing technology, astronomy
has become an immensely data-rich science. This exponential data avalanche contin-
ues. It enables some exciting new science, but poses many non-trivial challenges that
are common to many other data-driven fields. Nowadays the technological evolution
of astronomical instruments has been so fast to render physically impossible to move
the data from their original repositories. The real goal of science, namely data anal-
ysis and knowledge discovery, begins after all the data processing and data delivery
through the archives. This requires some powerful new approaches to data explo-
ration and analysis, leading to knowledge discovery and understanding. This implies
that, as it has always been asked for but never implemented, we must be able to
move the programs and not the data. Therefore, the future of any data-driven service
depends on the capability and possibility of moving the data mining applications to
the data centers hosting the data themselves. In such scenario, PhotoRApToR repre-
sents our test bench of a desktop application prototype capable to fulfill this concept.
As a final perspective, we want to address the still open problem to find an efficient,
reliable and standard way to provide single photo-z errors in the case of interpolative
methods. We have recently started to investigate such problem and intend to improve
PhotoRaptor in the next future with such kind of a tool.
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