

Big Data Era Time Domain Astronomy

Pablo A. Estevez

Joint work with

Guillermo Cabrera-Vives^{*†‡}, Ignacio Reyes^{§*}, Francisco Förster^{†*}, Juan-Carlos Maureira[†] and Pablo Huentelemu [§]

*Millennium Institute of Astrophysics, Chile [†]Center for Mathematical Modeling, Universidad de Chile, Chile [‡]AURA Observatory in Chile [§]Department of Electrical Engineering, Universidad de Chile, Chile

Contents

- High cadence Transient Survey (HiTS)
- Deep Learning: Convolutional Neural Networks
- Correntropy Filter for Detecting Transients in Image Sequences
- Conclusions

HiTS: High cadence Transient Survey (F.Förster et al.)

Scientific Objective: Find evidence of Shock Breakout

Dark Energy Camera (DECAM) at Cerro Tololo, Chile 512 Mpixels 64 CCDs

http://www.symmetrymagazine.org/

1 HiTS field = 64 CCD arrays ~512 Megapixels per field and epoch

HiTS Image Reduction Pipeline

- At this point, candidates are dominated by artifacts 1:10K
- ML to find the needles in the haystack

Image Differencing

Problem description

- Example of template (reference), science (current image), difference image, SNR difference image
- Image stamps of 21x21 pixels

Traditional Pattern Recognition Model

Inspired in Movie "Inception"

Guillermo Cabrera

Deep Learning

- Deep Learning is achieving impressive results in data science.
- They are based on neural networks, and recent breakthroughs are due to:
 - Large datasets (e.g. millions of images)
 - Faster algorithms and machines
 - New way of dealing with overfitting
- Most common type: Convolutional Neural Nets (ConvNets)

LeNet5 (1998) Y. LeCun et al.

- Architecture designed to process images (handwritten numbers) including invariances to traslation, scaling and distortion
- It combines convolutional and subsampling (pooling) layers

Convolutional Neural Nets Applied to HiTS

Training: Simulated and Real Data from HiTS 2013

Data:

- 802,087 non-transients (negatives) + 802,087 simulated transients (positives).
- 1,250,000 for training, 100,000 for validating, 100,000 for testing.
 Training:
- Stochastic gradient descent (SGD) with batches of 50 examples.
- Learning rate reduced to half every 50,000 iterations
- Implemented using Theano and took approximately 37 hours to train on a NVIDIA TESLA K20 GPU.

Detection Error Tradeoff (DET)

- Consider 100,000 candidates per night, from which around 10 are real transients, and we want to visually inspect 1,000. FPR~10⁻²
- By using our ConvNet model we reduce the FNR from $\sim 10^{-2}$ to $\sim 3x10^{-3}$

Detection Error Tradeoff (DET)

- Results for SNR < 7 are shown in blue
- FNR is reduced from ~10-1 to ~3x10-2 for very faint sources.

Test on 2015 HiTS Campaign (real data)

 All the difference images with SNe candidates were analyzed (Total: 628)

Method	# Correct Detections	FNR
RF	439	0.300
ConvNet	487	0.224

Comparison ConvNet vs RF

 At low SNR, ConvNets has a much lower FNR than RF

Synergy between Classifier's Outputs

- Circles show transient candidates
- Color indicates SNR level.
- This plot is for a given feature

Deep Learning + Random Forests

CORRENTROPY FILTER

• Kalman Gain is replaced with the Correntropy Gain with Kernel Bandwidth σ :

Frame 100/500

Results

HiTS Campaign 2014

HiTS Campaign 2015

Total	32
New candidates	7
New variable stars	1
False positives	15
Rediscovered HiTS candidates	9

Total	78
New candidates	10
New variable stars	16
False positives	52

Conclusions

- The proposed convolutional neural network (ConvNet) approach is useful to detect supernovae.
- Our approach outperforms a previous method based on feature engineering and a random forest (RF) classifier, particularly at low SNR.
- Both models maybe complementary and further research is needed
- Image sequence analysis useful to reduce error rates at the expense of late detections

Thank you

