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Deep Data: co-registered stacked data

 Many spectral channels in an image cube –
becoming the norm 
 Or spectral data without spatial context

 fMRI (high-D time series at each spatial voxel)

 Images stacked from different heterogeneous 
observations
 Image cubes concatenated from UV, VIS-NIR, radio

 The richness can hold the key to discovery of the 
unknown, and subtle relations



IAU Astroinformatics 2016 3
E. Merényi, Rice U
erzsebet@rice.edu

Astronomical images can have 
thousands of channels!

ALMA has receiver Bands 1 – 10. 
This sample is only from one receiver 

(Band 7). 170 channels: C18O, 13CO, CS lines stacked
Spectral resolution: 0.122 MHz

Image planes from ALMA Band 7, protoplanetary disk HD 142527

329.299-329.305GHz 330.555 – 330.564

Ch

342.850-342.856

1 50 51 120 121 170

ALMA hyperspectral image

(Data credit: JVO, project 2011.0.00318.5) 

ALMA spectra from combined C18O, 13CO, CS lines, showing 
differences in composition, Doppler shift, temperature 

Sample emission spectra
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Deep Data: co-registered stacked data

 We collect all these variables to discover more 
details, more unknowns

 Main challenge: complexity, high-D feature vectors 
(mathematically difficult)
 often forces dimension reduction -> losing discovery 

potential 
 cannot be fully solved by tailoring the data to tools
 cannot be solved by increased computing power alone

 Our brain deals with it …
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Ordering and quantization emerge by self-organization through iterative learning.

Topology preserving mapping of acoustic frequencies in the auditory cortex

In the auditory cortex (2-D surface) tonotopic maps are formed where 
the spatial order of cell responses corresponds to the similarity of the 
acoustic frequency of tones perceived.

Image source:  http://wp.unil.ch/neuroaudio/resaerch/auditory-cortex/

Natural neural maps in the brain
Example of biological neural map: tonotopic map

http://wp.unil.ch/neuroaudio/resaerch/auditory-cortex/
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Ordering and quantization emerge by self-organization through iterative learning.

Topology preserving mapping of acoustic frequencies in the auditory cortex

In the auditory cortex (2-D surface) tonotopic maps are formed where 
the spatial order of cell responses corresponds to the similarity of the 
acoustic frequency of tones perceived.

Image source:  http://wp.unil.ch/neuroaudio/resaerch/auditory-cortex/

Natural neural maps in the brain
Example of biological neural map: tonotopic map

Neural maps in brain
• Summarize intelligently:

more neurons where more 
details

• Express the topological
ordering of high-D
inputs in 2-D

http://wp.unil.ch/neuroaudio/resaerch/auditory-cortex/
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Deep Data

 We can mimic the information processing of natural 

neural maps – with artificial neural maps

 The Kohonen Self-Organizing Map (KSOM) is best 

known. More variety exists with different powerful 

capabilities. All are prototype-based learning

algorithms.
 Conscious SOM (CSOM), Neural Gas, LVQ “supervised” variants, 

SOMs with magnification control, …
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CSOM learning four 2-D Gaussian clusters: evolution 
of prototype vectors, unsupervised

Prototypes (black dots) in data space

Prototype vectors in SOM lattice (drawn in parallel coordinates) 

(0,0)

(0,1)

(1,0)

(1,1)

1000 steps 3000 steps 1000000 steps

4,000
data 
vectors,
49 SOM 
prototypes
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SOM learning 4 Gaussian clusters

Prototypes
in data space

Prototypes
in SOM with 

majority labels
and topology 

violations shown 

But, we don’t know the labels. We need to find the clusters from the learned SOM. 

Step 1: SOM learns. This is only needs 2-3 parameters, and is easy.
Step 2: We interpret the SOM’s knowledge. This can be hard for complex data.

From Merényi, Taşdem ir, Zhang, Springer LNAI 540.0, 2009
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SOM learning 4 Gaussian clusters

Merényi et al., 2009 
Tasdemir & Merényi, 2009 

SOM prototypes 
(black dots) 

in data space

SOM knowledge 
visualized

mU-matrix 
representation

CONN graph
representation,
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SOM learning 4 Gaussian clusters
Visualizations to guide cluster identification

SOM knowledge 
visualized

CONN graph
representation, 

unimportant 
connections 

removed

Cannot be shown 
for >2-D data

Can be shown 
for >2-D data

SOM prototypes 
(black dots) 

in data space

mU-matrix 
representation
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NeuroScope approach

NeuroScope: collection of neural map based 
clustering and classification methods and related 
tools (visualization, similarity metric, evaluation 
tools) that we have been developing

 Use all features – keep the discovery potential

 Summarize the data by unsupervised neural 
map learning
 prototype-based learning:   N -> O(sqrt(N))
 preserve the relevant structure (match the 

data distribution), reduce noise
 Does NOT reduce feature dimension

 Visualize in 2-D  - interpretable
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NeuroScope approach to structure discovery

Step 1: Learn the data manifold

 Easy, reliable, little tuning needed, 
automatic.  

 We use Conscience SOMs for maximum 
entropy mapping (best for information 
transfer),  and other advanced SOM 
variants.

Step 2: cluster the SOM prototypes
 Hard for complicated data. Need good 

knowledge representation, and similarity 
measure, like the CONN graph.

 Interactive cluster extraction best so far.

SOM / CONN of the ALMA data
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NeuroScope clustering - real data

 ALMA example of discovering subtle spectral 
feature consistent with non-Keplerian motion in a 
protoplanetary disk, and possibly indicating planet 
formation

 Approach for automation and scalable processing
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Discover more from deep data
Data: ALMA image cubes of HD142527 (Isella, 2015)

Moment maps
Each from 100 channels

C18O J=3-2 13CO J=3-2

SOM / CONN cluster map from stacked
C18O, 13CO lines, 100 + 100 channels as

input feature vectors

N

E100 AU

The emerging structure of the protoplanetary disk
based on all channels of two molecular tracers, 

visualized in one 2-D view

Coloring of clusters is arbitrary (to 
provide contrast), not a heat map!

(Boehler et al., 2016)
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Discover more from deep data

More discovery within one molecular line
More discovery from the combination of lines

C18O  13CO 
Mean cluster signatures alert to interesting
areas missed by the moment maps.  

Two distinct peaks, shifted opposite from 
rest  frequency. Two gas components moving 
in different directions.

(Merényi, Taylor, Isella, IEEE SSCI CIDM 2016)
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So far so good … but not enough

So far we have seen
 We can make interesting discoveries, using the full input 

feature set with NeuroScope tools.
 We can visualize multi-dimensional relationships in high-D 

data

But does it scale?
 Step 1, Iterative SOM learning can take long on regular 

computers

 Step 2, Interactive cluster extraction from an SOM is slow and 
requires expert knowledge 



IAU Astroinformatics 2016 18
E. Merényi, Rice U
erzsebet@rice.edu

Efficiency for large data
Step 1: SOM learning in parallel hardware

SOM accelerator gNBXe (Lachmair, Merényi, Porrmann, Rückert, Neurocomputing, 2013) 

• Three SOM variants implemented, reconfigurable, on-chip learning

• Large-scale computation: handles real hyperspectral imagery

• 2013: FPGA-based prototype, ~ 12–25 x  faster than Core-i7 PC, 4 threads, for large SOM / high-d 
data (consumes 80-90% less energy) . 2016: > 100 x speed-up.

• Future: ASIC implementation is expected to gain another factor of 10 (or more, depending on the 
nano-scale technology)

Designed for optimal algorithm 
mapping
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Automation for Step 2, cluster extraction:
Graph-segmentation informed by SOM and CONN

  Graph-cutting methods: automatic, only 1 or 2 parameters 
  Can’t deal with many data points. N vectors => N^2 edges. For 

this small image (56,000 vectors), over 10^9 edges !!!   
   Use intelligently summarized data (SOM prototypes) as input.

Graph-cutting alg
using Euclidean 

distance

ALMA data cube
N = 56,000
N ^2=2.5*10^9 

Takes forever
Burned down my 

student’s Mac 

Graph-cutting alg
using Euclidean 

distance

SOM prototypes
of ALMA cube

N=400, N^2=16,000

Very fast 
(< 1 second)

???

Graph-cutting alg
using our CONN 

similarity measure

SOM prototypes
of ALMA cube

N=400, N^2=16,000

Very fast
(< 1 second)
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Interactive vs automated results

 Walktrap (Pons & Latapy, 2005) and Infomap (Rosvall & 
Bergstrom) – two best results from graph segmenting 
algorithms with default setting, 1 or 2 parameters.

 Details don’t quite match, but differences reasonable. Graph-
segmentation with SOM + CONN finds structure, and FAST.

Walktrap InfomapInteractive

SOM 
Prototypes

+ CONN

SOM 
Prototypes
+ Euclidean

distance

 Future work: 
explore non-
default 
parameters

 Interpret 
differences



IAU Astroinformatics 2016 21
E. Merényi, Rice U
erzsebet@rice.edu

Interactive vs automated results

 Walktrap (Pons & Latapy, 2005) and Infomap (Rosvall & 
Bergstrom) – two best results from graph segmenting 
algorithms with default setting, 1 or 2 parameters.

 Details don’t quite match, but differences reasonable. Graph-
segmentation with SOM + CONN finds structure, and FAST.

Walktrap InfomapInteractive

SOM 
Prototypes

+ CONN

 Future work: 
explore non-
default 
parameters

 Interpret 
differences



IAU Astroinformatics 2016 22
E. Merényi, Rice U
erzsebet@rice.edu

Mass-processing perspective for pipelines

 Achieve the quality of interactive structure discovery from 
SOMs with automated methods
 by feeding SOM prototypes and CONN measure to suitable graph 

segmentation algorithms (work in progress, previous two slides)

 Perform SOM learning in parallel hardware -> 10^2 – 10^3 
acceleration

 Segment the SOM prototypes automatically – a few seconds

We could map the structure of a protoplanetary disk (as in this 
example) and return the salient spectral properties within a few 
minutes 

 Depending on the number of lines / channels combined 
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Heterogeneous data

 NeuroScope clustering is not limited to stacked 
data of the same kind (e.g., spectral bands; or 
spectral lines)

 Disparate data from different windows of the 
electromagnetic spectrum and from different 
instruments can be combined
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Conclusions

 Greatly increased feature space (e.g., spectral resolution 
for ALMA) offers a magnifying lens for understanding the 
physical processes that generate the features 
(kinematics of atomic and molecular gas and the distribution 
of solid particles in the ALMA example).

 If we can exploit the richness of features (spectral 
details), let the data speak for itself in more articulate ways, 
we can enlarge the discovery space.
 Especially important for discovery of the unknown and subtle

 The NeuroScope approach provides some tools to achieve this.

 It also shows promise for large-scale, automated processing.
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