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ECODOPS 
Efficient COverage of Data On Parameter Space  

User Manual – Rel. 0.4 

1 Introduction 

In addition to optimizing the Parameter Space (PS), by selecting all relevant features, we need to make sure 
that in any classification experiment the training data cover the feature space sufficiently well for the 
classification in the inference data to result qualitatively acceptable. 
 
Machine Learning (ML) models can be interpreted as complex decision boundaries in the training feature 
space. The models are expected to learn true patterns, which should then extend their applicability to new 
datasets. However, for the points that lie outside of the original region of feature space for which decision 
boundaries were created, model predictions may implement a classification function extrapolated from the 
training data, which may then not agree with the patterns outside of the training set. The most 
straightforward solution is to simply match the inference dataset to the training sample. Simple and 
commonly used solutions could consist into cutting data at some magnitude-limit, or, by working in the 
colour space, at some colour level. 
 
Cuts performed in single features allow for a better match between the training and inference set in these 
particular dimensions. However, as the final classification is performed in a space of significantly larger 
dimensionality, the usefulness of such an approach can be rather limited. A match among individual features 
does not have to imply proper coverage of the full feature space. A simple counterexample is a 2D square 
covered by data points drawn from a 2D Gaussian distribution and separated into two subsets by a diagonal. 
In such case, the histograms of single features show overlap of data in individual dimensions, while in fact 
there is no data from two subsets overlapping in 2D at all. Therefore, we look in more detail at coverage in 
the multidimensional feature space of the training and inference data. This is done by projecting the feature 
space onto two dimensions using the t-SNE1 method. 
 
There are many ways of mapping N-dimensional feature spaces onto 2D projections. A popular one in 
astronomy is Self Organizing Map (SOM, Kohonen 1997), and a relevant example of its usage is mapping of 
multi-color space to visualize which regions are not covered by spectroscopic redshifts (Masters et al. 2015). 
Here, we use another advanced visualization method, the t-distributed stochastic neighbor embedding (t-
SNE, van der Maaten & Hinton 2008), which finds complex nonlinear structures and creates a projection onto 
an abstract low-dimensional space. Its biggest advantage over other methods is that t-SNE can be used on a 
feature space of even several thousand dimensions and still create a meaningful 2D embedding. Moreover, 
unlike in SOM where data points are mapped to cells gathering many observations each, in t-SNE every point 
from the N-dimensional feature space is represented as a single point of the low-dimensional projection. This 
makes t-SNE much more precise, allowing to plot the exact data point values over visualized points as 
different colors or shapes, making the algorithm output easier to interpret. Some disadvantages of using t-

                                                           
1 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html  

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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SNE are its relatively long computing time and its inability to map new sources added to a dataset after the 
transformation process, without running the algorithm again. 
 
The t-SNE method makes use of the Kullback-Leibler (K-L) divergence cost function to find an optimal 2D 
representation of a multi-dimensional space. Through a cyclic process, the method tries to minimize the K-L 
divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional 
data.  
Main question is: How to project data to a subspace by preserving discriminability?  
From the Theory of Information, it is known that not all random events are equally random (see plot below 
as examples). 
 

 
Figure 1 – Examples of random event distributions not equally random. 

To quantify this fact, Shannon proposed the concept of Information Entropy: 
 

𝑆𝐻 = −𝑙𝑜𝑔2𝑝𝑋(𝑥)     →     𝐸[𝑆𝐻] = 𝐻(𝑃) = ∑𝑝𝑋(𝑥)𝑆𝐻 
 
From this concept, two properties were derived, the mutual information 𝐼(𝑥, 𝑦) and the K-L Divergence 
𝐾(𝑓, 𝑔): 

𝐼(𝑥, 𝑦) = 𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥, 𝑦) = 𝐻(𝑥) − 𝐻(𝑥|𝑦) = 𝐻(𝑦) − 𝐻(𝑦|𝑥) 

𝐾(𝑓, 𝑔) = ∫𝑓(𝑥)𝑙𝑜𝑔 (
𝑓(𝑥)

𝑔(𝑥)
)𝑑𝑥 

 
from which it derives that I(x,y) can be formulated in terms of K-L Divergence (see also Figure 2): 
 

𝐼(𝑥, 𝑦) = ∬𝑓𝑥𝑦(𝑥, 𝑦)𝑙𝑜𝑔 (𝑓𝑥𝑦(𝑥, 𝑦)/𝑓𝑥(𝑥)𝑓𝑦(𝑦)) 𝑑𝑥𝑑𝑦 

 

   
Figure 2 – Mutual Information in terms of theory of sets (left) and its geometrical explanation (right). 
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In a statistical sense, the entropy became one of the central “moments” of a distribution, after mean and 
variance. In such context, the K-L divergence measures the “distance” between PDFs of two distributions f() 
and g(): 

𝐷𝐾−𝐿(𝑓, 𝑔) = ∫𝑓(𝑥)𝑙𝑜𝑔 (
𝑓(𝑥)

𝑔(𝑥)
) 𝑑𝑥  (1) 

 
With K-L Divergence, we can thus calculate how much information is lost, when we approximate one 
distribution with another, in a more realistic way than through Euclidean metric. 
Essentially, what we are looking at, with the K-L Divergence, is the expectation of the log difference between 
the probability of data in the original distribution with the approximating distribution. Again, if we think in 
terms of binary log, we can interpret this as "how many bits of information we expect to lose". In fact, through 
the properties of logarithms, we can rewrite the above formula (1) in terms of expectation: 

 
𝐷𝐾−𝐿(𝑝, 𝑞) = 𝐸[𝑙𝑜𝑔𝑝(𝑥) − 𝑙𝑜𝑔𝑞(𝑥)] 

 
There is indeed an important difference between the Information entropy as measured in euclidean terms 
and as K-L divergence, easily derivable from the following plot example (Figure 3). 
 

  

 
    (Euclidean)   (K-L Divergence) 

Figure 3 – Example of difference between the Mutual Information calculated for a generic function (top 
panel) from Euclidean distance (bottom left panel) or from K-L) Divergence distance (bottom right panel). 

Now we are able to give the answer to the initial question: the answer is by maximizing the Mutual 
Information between desired responses and the output of the (nonlinear) mapper. This process is done by 
implicitly solving the feature extraction that maximize the classification performance, or through the classical 
PCA (Principal Component Analysis) or through the random embedding (selectable via a user-selected 
parameter; see Section 5 for details about the parameter “init”).  

IED IK-L 
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2 Installation 

The TSNE package is composed by the following files: 
 

1. TSNE.py:  the python script; 
2. Config.ini: the configuration file containing all the model parameters and I/O setup information. 

 
Before to launch the python script, the following python packages must be installed, together with a python 
version 3.7.1 or higher: 

1. numpy 
2. ConfigObj 
3. argparse 
4. sklearn 
5. pandas 
6. matplotlib 
7. csv 
8. astropy 

Make sure that Python has been added to PATH in order to execute the TSNE.py script from any arbitrary 
path on your machine. 

3 How to 

In order to use the tool you have to put in the same work directory the TSNE.py script, your own copy of the 
Config.ini file or the original Config.ini file and your input dataset, properly formatted as a .csv or .fits file  
(please see Section 4 for details) .   
As an example, your work directory and Config.ini file should look like this: 
 

 
Figure 4 – Typical content of the installation folder. 
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Figure 5 – Internal structure of the default config.ini setup file. 

The script will create a sub-directory (in this case named WINE) in the current directory or create a new one 
if the directory already exists. In this sub-directory the script will store the log.txt, the Output.csv and the 
Scatter plot (see Section 4). 
After this early preparation, open the Command Prompt (Windows) or the Terminal (Linux) and reach the 
path where you installed the package files. To execute the TSNE please give the following commands and 
press enter: 

1. python TSNE.py if you want to use the default Config.ini        or 
2. python TSNE.py -c ConfigWINE.ini if you want to use your own copy of the Config.ini (in 

this case named ConfigWINE.ini). 
 

 
Figure 6 – Working directory after the execution of the WINE project. 

In this image you can see the work directory after the TSNE.py execution with the new Output folder named 
WINE (as stated in the ConfigWINE.ini). In the WINE folder you will find the outputs as described in section 
4. 

4 I/O 

4.1 Input Data Format 

The input file must be a .csv (Comma Separated Values) with a header or a .fits file. The first column should 
be the ID column, while the last column must be the class label column. If you have selected “Boolean” as 
Class_Discrimination parameter in the Config.ini, this column has to be filled with True and False strings 
labelling the two classes. If, instead, you have selected “Number”, the column has to be filled with a number 
of unique integers equal to the value of the n_classes parameter (for example: 0 for class 1, 1 for class 2, 2 
for class 3, etc.). 
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4.2 Output 

The method will output in the selected folder an Output.csv file, a log file <name>.txt and the scatter plot of 
of the data in the bi-dimensional embedded space. 
The Output.csv file contains three columns, i.e. the class of each object as in the original input file and the x 
and y columns containing the object’s coordinates in the bi-dimensional embedded space. 
The log.txt file contains a copy of the user configuration file, information on the duration of the execution, 
the number of classes (n_classes) and dimensions (n_dimensions) of the input file, the obtained final 
Kullback - Leibler divergence (kl_divergence) and a copy of the t-SNE output statistics. 
The output statistic information provided by the method is a string message like this: 
 
[t-SNE] Iteration 3000: error = 1.1746874, gradient norm = 0.0000192 (50 iterations in 9.008s) 

 
This information includes: 

● iteration number; 
● error: Kullback-Leibler (K-L) divergence after optimization (error on the minimization of the K-L 

divergence between the joint probabilities of the low-dimensional embedding and the high-
dimensional data); 

● gradient norm: normalized first derivative of the error; 
● time duration of the last 50 iterations. 

5 Configuration of an experiment 

The input, output and parameters of the method are controlled via the Config.ini file. This is divided in two 
subsections, [I/O] and [model parameters].  
 
[I/O] must contain the following information: 
 

● Input: the name of the .csv (or .fits) input dataset. If the .csv (or .fits) is in a different folder with 
respect to the TSNE.py, please insert the full path of the .csv (or .fits); 

● Output: the output folder name, if a folder with this name already exists in the specified path, a new 
folder will be created in the same path, using current date and time as suffix; 

● Log file: the name of the output log .txt file that will contain the model parameters and the final 
measured Kullback-Leibler divergence. 

● Normalization: this parameter can take the values “True” or “False”, use “True” if you want to 
normalize the features before running the t-SNE, “False” otherwise. The normalization performs the 
following operation on each feature X of the input dataset, in order to normalize it in the interval [0, 
1]: 
X_std = (X - X.min) / (X.max - X.min) 

X_scaled = X_std * (max - min) + min 

 
where X.min and X.max are, respectively, the minimum and maximum value assumed by the feature 
X within the input data. 
 

[TSNE parameters] must contain the following  information: 
 

● Class_Discrimination: this parameter can take two values, “Boolean” or “Number”. Insert “Boolean” 
if you have a two-class problem and the class identifier assumes standard True / False labels, 
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otherwise you have to impose such two labels. Insert “Number” if you have an arbitrary number of 
classes. In this last case, the class identifiers must be a collection of integer numbers; 

● n_components: this is the dimension of the embedded lower dimensional space. Leave this 
parameter equal to 2, unless you want to modify the method for 3-D embedding; 

● perplexity: the perplexity is related to the number of nearest neighbors used. Larger or denser 
datasets usually require a larger perplexity. Consider selecting a value between 5 and 50; 

● learning_rate: the learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is 
too high, the data may look like a ‘ball’ with any point approximately equidistant from its nearest 
neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with 
few outliers. If the cost function gets stuck in a bad local minimum, increasing the learning rate may 
help; 

● n_iter: this is the maximum number of iterations for the optimization. Should be at least 250, we 
suggest a number between 1000 and 5000; 

● verbose: verbosity level of the method, it can assume the values 0,1 or 2. ; 0 will display no 
information during the script execution, 1 will display the t-SNE error after the first 250 iterations, 
while the value 2 will display the t-SNE error every 50 iterations. 

● early_exaggeration (default value = 12): this parameter controls how tight natural clusters in the 
original space are in the embedded space and how much space will be left between them 
(multiplicative factor). For larger values, the space between natural clusters will be larger in the 
embedded space. This parameter is not very critical. If the cost function increases during initial 
optimization, the early exaggeration factor or the learning rate might be too high.  

● n_iter_without_progress: this is the maximum number of iterations without progress before the 
method aborts the optimization, used after 250 initial iterations with early exaggeration. Note that 
progress is only checked every 50 iterations, so this value is rounded to the next multiple of 50; 

● init: Initialization of embedding. Possible options are “random” and “pca”. PCA initialization cannot 
be used with precomputed distances and is usually more globally stable than random initialization; 

● random_state: this parameter can take the values “int” or “None”. If “int” is selected, random_state 
is the seed used by the random number generator; If None is selected, the random number generator 
is the RandomState instance used internally by the python function np.random. Note that different 
initializations might result in different local minima of the cost function. 

6 Tooltips 

Because each run of the TSNE.py script will bring slightly different results (even with the same parameters in 
the Config.ini), the first problem we want to address is how we can assess the quality of the visualization? 
Our experience is that the best visualization is always obtained with the lowest Kullback-Leibler divergence 
reported in the log.txt (kl_divergence). So we encourage the user to run the method multiple time (even 
variating the parameters) and selecting the run with the lowest reported kl_divergence. 
 
There are four parameters that control the optimization of t-SNE and the quality of the resulting embedding: 

● perplexity 
● early exaggeration factor 
● learning rate 
● maximum number of iterations 

The perplexity, as stated in the manual, should take a value between 5 and 50 and it depends strongly on 
the density of your data. Perplexity is defined as 2 to the power of the Shannon entropy and can be thought 
as a limit that sets the number of effective nearest neighbors. We advice to increase the perplexity until the 
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points in the embedded space seem uniformly distributed. That is the “signal”  that the perplexity is too high 
and you may lower it to find its most appropriate value. 
 
The maximum number of iterations is usually high enough and does not need any tuning. The optimization 
consists of two phases: the early exaggeration phase and the final optimization. During early exaggeration 
the joint probabilities in the original space will be artificially increased by multiplication with a given factor 
(early exaggeration factor). Larger factors result in larger gaps between natural clusters in the data. If the 
factor is too high, the kl_divergence could increase during this phase (and you can check by setting verbose 
= 2 in your Config.ini). A critical parameter is the learning rate. If it is too low, gradient descent will get stuck 
in a bad local minimum. If it is too high the kl_divergence will increase during optimization. 
 
If you have set all these parameters to get the lowest kl_divergence possible and still the visualization in 
embedded space does not meet you “expectancies”, as a last resort you can set Normalization to True in the 
Config.ini or directly divide your data by a big number and restart the optimization process from the 
beginning. 

7 Example 

Here we want to present a full example of the TSNE on the Pen-Based Recognition of Handwritten Digits Data 
Set (Digits). The dataset is a .csv file, hereafter called Digits.csv, containing 66 columns of which the first one, 
called “ID”, contains the object’s identification numbers and the last one, named “Class”, contains 6 class 
unique numerical identifiers. The Digits.csv dataset is placed within the directory containing the TSNE.py 
script and a copy of the Config.ini file called ConfigDIGIT.ini, whom content is shown in the figure below: 
 

 
Figure 7 – Configuration of setup file config.ini to execute the experiment. 

 
It is possible to  execute the TSNE.py in a Command Prompt (Windows) or Terminal (Unix) with the following 
command: 
 
python TSNE.py -c ConfigDIGITS.ini 

 
obtaining the following output files in the RESULTS folder: 

1. log.txt  
 
TSNE log file 

http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
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TSNE Starting Time: 2018-12-03 16:17:47.620889 

 

*****************   CONFIG FILE COPY   ****************** 

 

[I/O] 

Input = Digits.csv 

Output = E:\TSNE\DIGITS\RESULTS 

Log file = log.txt 

Normalization = False 

 

[TSNE parameters] 

angle = 0.5 

early_exaggeration = 12.0 

init = random 

learning_rate = 200.0 

method = barnes_hut 

metric = euclidean 

min_grad_norm = 1e-07 

n_components = 2 

n_iter = 5000 

n_iter_without_progress = 300 

perplexity = 30.0 

random_state = True 

verbose = 1 

kl_divergence = 0.5797737836837769 

n_classes = 6 

n_dimensions = 64 

 

*****************   END CONFIG FILE COPY   ****************** 

 

*****************   DURATION SUMMARY   ****************** 

 

TSNE End Time: 2018-12-03 16:18:21.757209 

TSNE running time: --- 34.47291827201843 seconds --- 

 

*****************   END DURATION SUMMARY   ****************** 

 

*****************   TSNE VERBOSE DUMP   ****************** 

 

[t-SNE] Computing 91 nearest neighbors... 

[t-SNE] Indexed 1083 samples in 0.004s... 

[t-SNE] Computed neighbors for 1083 samples in 0.190s... 

[t-SNE] Computed conditional probabilities for sample 1000 / 1083 

[t-SNE] Computed conditional probabilities for sample 1083 / 1083 

[t-SNE] Mean sigma: 8.151373 

[t-SNE] KL divergence after 250 iterations with early exaggeration: 

56.661419 

[t-SNE] KL divergence after 5000 iterations: 0.579774 

 
2. Output.csv as described in section 4; 
3. the scatter plot of the objects in the embedded bi-dimensional parameter space 
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Figure 8 – Output bi-dimensional plot of the method. 

As you can see, each of the class has been colored and they appear as separate clusters in the bi-dimensional 
space. 
 

For any request of more information and help, please contact M. Brescia (massimo.brescia@inaf.it) 
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